
What Makes a Code Change Easier to Review
An Empirical Investigation on Code Change Reviewability

Achyudh Ram∗

University of Waterloo
Waterloo, Canada

arkeshav@uwaterloo.ca

Anand Ashok Sawant∗
Delft University of Technology

Delft, The Netherlands
a.a.sawant@tudelft.nl

Marco Castelluccio
Mozilla, London, United Kingdom

University of Napoli Federico II, Naples, Italy
mcastelluccio@mozilla.com

Alberto Bacchelli
University of Zurich
Zurich, Switzerland
bacchelli@ifi.uzh.ch

ABSTRACT
Peer code review is a practice widely adopted in software projects
to improve the quality of code. In current code review practices,
code changes are manually inspected by developers other than the
author before these changes are integrated into a project or put
into production. We conducted a study to obtain an empirical un-
derstanding of what makes a code change easier to review. To this
end, we surveyed published academic literature and sources from
gray literature (e.g., blogs and white papers), we interviewed ten
professional developers, and we designed and deployed a reviewa-
bility evaluation tool that professional developers used to rate the
reviewability of 98 changes. We find that reviewability is defined
through several factors, such as the change description, size, and co-
herent commit history. We provide recommendations for practition-
ers and researchers. The preprint and data for this paper are publicly
available. Preprint [https://doi.org/10.5281/zenodo.1420271]; data
and materials [https://doi.org/10.5281/zenodo.1323659].

CCS CONCEPTS
• Software and its engineering→ Collaboration in software
development;

KEYWORDS
Code quality, code review, pull request

ACM Reference Format:
Achyudh Ram, Anand Ashok Sawant, Marco Castelluccio, and Alberto
Bacchelli. 2018. What Makes a Code Change Easier to Review: An Empirical
Investigation on Code Change Reviewability. In Proceedings of the 26th
ACM Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering (ESEC/FSE ’18), November 4–9, 2018,
Lake Buena Vista, FL, USA. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3236024.3236080

∗A. Ram and A. A. Sawant are both first authors, and contributed equally to the work.

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of
the 26th ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE ’18), November 4–9, 2018, Lake Buena
Vista, FL, USA, https://doi.org/10.1145/3236024.3236080.

1 INTRODUCTION
Code review is a widespread practice aimed at reducing software
defects and improving software maintainability [33]. The form of
code review that is most widely adopted in both industrial [68, 69]
and open-source software [67] (OSS) settings has been called Mod-
ern Code Review [39] (MCR) and is: (1) tool-based, (2) asynchronous,
(3) informal, and (4) focused on reviewing new code changes rather
than the whole, existing code base. The MCR process is imple-
mented via tools such as Gerrit [19] and GitHub’s pull-requests [51].

Ensuring an effective and efficient code review process is an open
research area. Existing research has found that code change authors
receive delayed or no feedback at all for their contributions [35,
52], while reviewers have problems staying on track with their
increasing workload [53]. In such a context, it is in the interest of
both authors and reviewers that the proposed code changes are easy
to review. Nevertheless little evidence is available on what makes
a code change easier to review, although this knowledge would
provide valuable insights for both practitioners and researchers.
Change authors can use it to help speed up the integration of their
contributions and project reviewers can impose sound contribution
guidelines. Researchers can focus their attention on how to support
authors in automatically preparing an easy to review contribution.

We present an in-depth study, conducted to obtain an under-
standing of the factors that make a code change easier to review.
Existing work on code review (e.g., [38, 56, 62, 74]) investigated the
factors of code changes associated with a higher acceptance or a
lower time to review, but these factors are often dominated by as-
pects on which an author as little to no control, such as the identity
of the author [62]. Instead, we expect reviewability to regard those
factors related to the understandability and structure of the change
rather than authorship and semantic aspects. Nevertheless, we do
not make preset hypotheses on what reviewability is.

We conduct a study in three phases: In the first phase, we perform
a multivocal literature review [47] to gain a sound foundation about
what aspects of a code change reviewers focus on. From the analysis
of 22 white literature sources published at international venues
and 21 gray literature sources, ten distinct themes emerged that
related to code change quality. In the second phase, to empirically
determine which themes play a role in the reviewability of a change,
we conduct task-based interviews with ten developers who work
on either industry or open source projects. Our interviewees lead
us to identify three primary factors that are critical to a change’s

https://doi.org/10.5281/zenodo.1420271
https://doi.org/10.5281/zenodo.1323659
https://doi.org/10.1145/3236024.3236080
https://doi.org/10.1145/3236024.3236080
https://doi.org/10.1145/3236024.3236080


ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA A. Ram, A. A. Sawant, M. Castelluccio, A. Bacchelli

Figure 1: A section of garbled commit history

reviewability. In the third phase, to triangulate our findings, we
deploy a tool that allows reviewers to rate the reviewability of a
change they have just reviewed. We collect real world data from
35 developers, and we observe that factors identified in the second
phase of our study are confirmed. This allows us to put forth an
empirically verified definition for code change reviewability.

2 BACKGROUND
Peer code review is an accepted practice to reduce the number of
software defects introduced during the development process [33].
In 1976, Fagan formalized a process where line-by-line code inspec-
tions [46] take place in a large group. However, Fagan inspections
suffered from being synchronous, thus not having a place in the
modern world where developers work in a more agile and dis-
tributed environment. This limitation has led to the widespread
adoption of a more lightweight, informal, and asynchronous code
review process knowns as modern code review (MCR) [33, 37, 57].

MCR is an iterative process, where each code change generates
a feedback loop between the author and the reviewers. When an
author submits a change, the reviewers can decide whether to
directly accept/reject it or request further changes (e.g., to make
the change conform to a project’s standards). This feedback loop
is repeated until either the reviewers are satisfied or they deem
the change unworthy of integration in the project. Most modern
collaborative code review tools such as Gerrit and GitHub pull
requests adhere to this model.

A considerable amount of literature investigated the factors that
affect the review outcome of code changes (e.g., merge decisions
regarding pull requests [51]) and the variables that may delay this
outcome. For example, smaller patches were found to be more likely
acceptedwhen sent by experienced developers [36, 58, 62, 76, 78, 81].
Jiang et al. found that contributors can shorten the time taken for re-
viewing their patches by participating actively in the development
community and limiting the number of subsystems their patch
alters [56]. Gousios et al. noted that the track record of the con-
tributor and the number of lines in the pull request are important
factors leading to the acceptance of a submitted change [51].

In this study, we are interested in examining the factors that
lead to better reviewability of code changes. As a motivating ex-
ample (Figure 1), we consider the (shortened) commit history from
a pull request contributed to Mockito.1 The contributor tried to
address three independent issues in the same pull request, propos-
ing a commit history that included several intermediate, temporary
1https://github.com/mockito/mockito/pull/49/commits

commits that did not convey meaningful information about the
change. Both these aspects hindered the code review process and
forced the reviewers to request multiple iterations over the patch.
By commenting explicitly, the reviewers called out the contribu-
tor regarding the commit history and the presence of composite
changes: “rework your commit history in order to see what your
changes actually involves and split multiple fixes in separate PRs."
While these aspects had an impact on the code review of the submit-
ted change, we see that the outcome of the change is not adversely
affected (this change was eventually accepted), as opposed to the
effort required by the reviewers. This example illustrates as to why
factors that lead to code changes that are easier to review may be
only partially related to their acceptance and time to review.

3 RESEARCH METHODOLOGY
To obtain a deep understanding of the factors that make a code
change easier to review, we conducted mixed methods research [42]
to address the following research questions:

RQ1: What makes a good code change, according to white
and gray literature? We scope the initial focus of our investi-
gation by surveying the existing literature regarding the charac-
teristics associated with the quality of proposed code changes.
We aim to collect a set of themes that can guide our subsequent
empirical investigation on the factors that define code change
reviewability. To obtain a comprehensive set of themes as an
answer to this question, we not only focus on academic peer-
reviewed literature (i.e., white literature), but we also consider
sources from the gray literature, such as blogs, white papers, and
contribution guidelines (this approach is formally known as mul-
tivocal literature review [47]). In fact, for our practitioner-oriented
field “synthesizing and combining both the state-of-the-art and
-practice is very important” [47]; moreover, although there is
a considerable amount of recent research on code review, the
specific topic of quality of code changes has more diverse doc-
uments and scarcer academic investigations, which makes it a
recommended candidate for multivocal synthesis [79].

RQ2: What do reviewers associatewith code change reviewa-
bility? Once we collect the candidate themes, we turn to prac-
titioners to validate the themes’ relevance to code change re-
viewability, to elicit missing, diverse factors, and to empirically
determine the criticality of each factor. We consider two an-
gles: (RQ2.a) we investigate general reviewers’ perceptions of
code changes that may have reviewability issues (according to
the aforementioned themes) in a system they are not familiar
with and (RQ2.b) we investigate specific reviewers’ feedback on
code changes that they just reviewed for the real-world systems
they work on. With this approach, we aim at triangulating and
validating the findings from different sources to obtain a more
comprehensive view on code change reviewability.

In this study, we do not restrict ourselves to any single platform
or programming language. Review of code changes is done univer-
sally, and we try to capture the perspective from both industrial
and OSS settings to gain a thorough understanding as to what fac-
tors define code change reviewability. We focus primarily on the
review process of a pull-request (PR) submitted on GitHub or of

https://github.com/mockito/mockito/pull/49/commits


What Makes a Code Change Easier to Review ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

a code change submitted to code review systems, such as MozRe-
view [24], Bugzilla [14], and Reviewboard [26]. Overall, our data
sources include: (1) academic peer-reviewed literature, (2) industry
white papers and guidelines, (3) task-based guided interviews with
developers, and (4) reviewers’ feedback on code changes submitted
on the aforementioned code review systems.

3.1 White and Gray Literature Survey (RQ1)
To form a basis for the factors that affect the reviewability of a
patch, we conduct a multivocal literature review.

3.1.1 Identifying RelevantWhite Literature: Weperform a keyword-
based search on Google Scholar, IEEE Explore, and ACM Digital
Library to create an initial selection of articles. As keywords we
use: ‘code review’, ‘code review practices’, ‘pull request acceptance’,
‘evaluating contributions on GitHub’, ‘pull-based development’. We
initially restrict our search to work on the review of pull requests or
code changes. We then expand the search terms to include papers
on program comprehension related to the understandability of a
code change, as it is reasonable to assume that reviewability is
linked with this specific understanding. We also search for studies
that focus on characterizing the code review process and the tools
used in code review. All the resulting studies primarily evaluate
code changes based on the merge decision or the time taken for
this decision. This step resulted in an initial set of 12 papers.

We then perform backward snowballing [80] inspecting papers
referred to in this initial selection of articles. At the same time, we
surveyed the proceedings of all the relevant, top-level conference
venues in Software Engineering such as ICSE [21], MSR [25], IC-
SME [22], ESEC/FSE [18] and journals such as IEEE TSE [31] and
ACM TOSEM [29]. This step resulted in a further set of 28 papers.

We then filter the pool of papers that we have identified. Our
primary filtration criterion is the relevance to our end-goal, which
was assessed by reading the study setting, the methodology, and
the conclusions made by the authors. When the relevance was not
easy to ascertain from just this information, we add it to a list of
selected articles that require further examination. This list was then
discussed among all the authors to determine its relevance. This
step resulted in a list consisting of 22 papers.

3.1.2 Identifying Relevant Gray Literature: We conduct the gray
literature survey according to the guidelines proposed by Garousi
et al. [48]. We search for documents from gray literature by using
Google and filtering on a year by year basis. We use keywords such
as ‘code submission guidelines’, ‘code review practices’, ‘pull request
guidelines’, ‘GitHub CONTRIBUTING.md’, and ‘pull request review
preparation’ to obtain a set of search results with content that might
be relevant. We restrict ourselves to results only from the first page
of Google. We take great care to ensure that these sources originate
from reputable companies, organizations, and authors. We also take
steps from preventing our personal search bias from playing a role
in the search results, hence we search on Google using Google
Chrome’s incognito mode.

We restrict ourselves to white papers, reports, contribution guide-
lines, and developer blogs. We expand this initial selection of 55
results by performing backward snowballing [80] (i.e., we follow

Table 1: Overview of the Interview Participants

ID Domain Company/project Experience
P1 Industry Microsoft 4 years
P2 Industry HP 18 years
P3 Industry SET GmbH 8 years
P4 Industry SET GmbH 14 years
P5 Industry Milvum B.V. NL 5 years
P6 Industry Google 10 years
P7 Industry Google 5 years
P8 Industry Google 10 years
P9 OSS Spring Framework 9 years
P10 OSS Spring Framework 12 years

the web links these sources contain that might refer to other docu-
ments on code review). We try to ensure that each of these results
is relevant to our study as they must talk about factors that affect
the review process. This step results in a selection of 21 sources.

3.1.3 Data Extraction from the Identified Literature: For both the
white and gray literature, we summarize each source and create
an enumeration of the mentioned aspects that can impact the code
review process and the outcome of a submitted code change. Sub-
sequently, we conduct iterative content analysis sessions [61] to
group summaries and aspects into the higher level themes that are
related to the quality and reviewability of a code change. Iteratively,
for each recommendation or outcome from a literature source, we
verify whether we have previously identified a theme of this nature
to which this document can be assigned or whether a new theme
needs to be created or improved. Each document can fall into more
than one theme. This iterative process resulted in ten themes related
to the quality of code changes and, possibly, reviewability.

3.2 Task-based Interviews (RQ2.a)
The goal of interviewing reviewers is three-fold: (1) to investigate
whether and how the themes identified in the literature survey
phase are factors of reviewability, (2) to determine any additional,
diverse factor that might affect reviewability, and (3) to gain an
understanding as to what reviewers consider as the key factors.

We strived to interview senior professional developers with a
multi-year experience in both programming and code review, work-
ing on projects that routinely perform code review. To this aim,
we contacted developers who work for large companies in three
different Western countries (i.e., the United States of America, The
Netherlands, and Italy) and those that actively work on well-known
OSS projects. We contacted industrial developers that were in our
personal and professional network and those that work for large,
established companies. In the case of open source developers, we
mailed internal developers of large project asking for an interview.
Overall this resulted in ten interview participants (identified as
P1-10), whose background is summarized in Table 1.

The interview starts with the interviewee being asked to review
a real-world code change, this acts as an incentive to help the
interviewee provide open, yet specific answers on what can make
the code change more or less straightforward to review. This task
also has the added advantage of familiarizing the interviewee with



ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA A. Ram, A. A. Sawant, M. Castelluccio, A. Bacchelli

the motivation behind this study. We select a set of three pull-
requests from the Mockito project [23]. The actual reviewers have
rejected two out of these changes due to issues related to themes
emerged in the literature survey; one change, instead, has been
accepted by the project without any discussion and we use it as
a control. We ask the interviewees to be as detailed as possible
about the issues they identify and to what extent they perceive it as
affecting the ease with which the change can be reviewed. Before
every interview, we randomize the code changes to mitigate any
ordering effect.

After these tasks, we ask a series of questions about the inter-
viewees’ opinion on factors of a code change that make the review
task easier or harder, by following a semi-structured interview for-
mat [75]. We ask about specific factors and ask them to recollect
problems to review a code change that they have previously en-
countered. After each interview, we transcribe and summarize its
content2. Based on new factors uncovered or new discussion points,
we iterate over the interview guideline. When, after the first five
interviews, we reach a saturation point [49] (interviewees provide
insights very similar to the earlier ones), we use a new set of code
changes as a review task to increase the diversity in the responses.
Overall, we used two different set of patches.

3.3 Developers’ Feedback on Changes (RQ2.b)
After having collected information about reviewers’ perceptions
of factors that affect the ease with which they can review a code
change, using pull-requests from systems they are not familiar with
and asking about the experiences concerning reviewability issues
they recall, we collect feedback about more specific cases.

To do so, we designed a tool that automatically asks for feedback
from reviewers concerning a code change that they just reviewed.
To design a usable tool, we employed the Rapid Iterative Testing
and Evaluation (RITE) [63] method to evaluate the user experience
and to uncover any usability issues associated with the initial setup
and the feedback submission process. We choose five software de-
velopers who work in a commercial setting to use and test our tool.
As per the norms of RITE, we declare the design to be successful
after three consecutive iterations of the evaluation occur without
the detection of any errors or failures. We follow the same issue
categorization and resolution as Medlock et al. [63]. The result of
this evaluation is the interface seen in Figure 2.

We create different integrations for this tool targeted at four
different code review platforms. The GitHub integration consists of
a GitHub app that integrates with the pull request mechanism in
GitHub and posts a comment and link to a page where the reviewer
can rate the PR, indicate how long it took to review, mention what
was right about its reviewability and what should be improved.
The integrations for Bugzilla [14], MozReview [24], and Review-
Board [26] rely on a Mozilla Firefox plugin that allows reviewers
to provide feedback on a code change submitted to these platforms
by dynamically changing the pages.

Once our tool had passed the RITE evaluation, we conducted
a pilot with the students and teaching assistants of the Software
Engineering course at the Delft University of Technology. This

2Interview guidelines and transcripts for which we got permission are available in the
accompanying material [66]

Figure 2: Developer feedback form (with trimmed text areas)

pilot allowed us to find bugs in the prototype and fix them before
deploying it to real developers.

We spread this tool out to developers by advertising it on social
media platforms such as Twitter and Reddit. We also, contacted
developers of some open source projects to ask them if they would
like to try it out. Finally, Mozilla agreed to use it internally to
rate the code changes reviewed for their open source projects. To
incentivize the use of our feedback tool, we provided a dashboard to
the contributors and project maintainers to view these responses as
a report with graphical visualizations. Overall, we collect feedback
on the reviewability of 98 real-world code changes3.

4 RQ1 – A GOOD CODE CHANGE
ACCORDING TO LITERATURE

We describe the themes (ordered alphabetically) that constitute a
good code change according to the white and gray literature. Table 2
gives a high-level overview.
Change description. The quality of the change description has
been shown to be associated with how well reviewers can under-
stand a change [74]. Bosu et al. put forth a set of guidelines that
change descriptions should follow [38]. Zhang et al. also find that,
on GitHub, a good change description should mention the reviewer
who is most appropriate for that change[82].

These characteristics are echoed in developer guidelines, many
of which require the authors to submit code changes with ade-
quate documentation about the nature and impact of the change,
as well as (for programming library projects) usage examples for
the change [10, 11, 28]. GitHub’s guidelines further recommend
that a change should mention an appropriate reviewer [20]. Addi-
tionally, gray literature indicates that the description must link the
addressed issue [2, 5, 6, 10–12, 27, 28].
Change scope. Jiang et al. find that the time to review a change in
Linux increases with the number of modified subsystems and pack-
ages [56]. Kononenko et al.made similar observations atMozilla [58]

3Data for these changes is available in the accompanying material [66]



What Makes a Code Change Easier to Review ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

Table 2: Themes emerged from white and gray literature

Theme White literature Gray literature
Change description [82], [74], [38] [40], [28], [27], [10],

[11], [13], [6], [12], [5],
[3], [4], [2]

Change scope [56], [58], [38], [72] [27], [3]
Code churn [76], [81], [78], [36],

[56], [62], [70], [58],
[38]

[40], [5], [3], [1]

Code quality [53], [81], [71], [70],
[43], [58], [52]

[28], [10], [11], [41],
[6], [9], [4]

Code style [54], [62], [43], [52] [32], [6], [5], [4], [1]
Commit history [53], [81], [72] [27], [11], [32], [8], [4],

[2], [1]
Composite changes [74], [58], [52] [28], [13], [41], [17],

[5]
Nature of the change [62], [58], [65]
Subsystem hotness [51], [53], [81], [56]
Test inclusion [53], [76], [81], [43],

[77], [52]
[10], [11], [32], [6],
[12], [8], [9], [7], [3],
[4], [2]

and Bosu et al. at Microsoft [38], while Soares et al. found no corre-
sponding evidence among GitHub projects [72]. Marlow et al. note
that there is less uncertainty when merging changes that are small
in scope, as their impact is easier to understand [62].

Code churn. Code churn is the most frequent theme mentioned
in the surveyed white literature. Kononenko et al. reports that
developers indicate that size-related factors (e.g., change size and
number of modified files) considerably influence the reviewing
time [58]; they also find that smaller changes undergo fewer rounds
of revisions. Bosu et al. find that review effectiveness decreases
with the size of the change [38]. They recommend smaller and
incremental changes. A gray literature source, based on peer review
at Cisco Systems, suggests the number of lines modified in a change
to be less than 200 and to not exceed 400 [40].

Weißgerber et al. similarly show that small changes (at most four
lines) have a higher chance of acceptance [78]. This point is also
reflected in the work of Marlow et al. [62], who find that there is
less uncertainty when deciding whether to merge small changes,
and Yu et al. [81], who find that the size is one of the determinants
of change evaluation latency on GitHub. However, Jiang et al.’s
case study on the Linux Kernel found no impact for factors such as
change size, spread, and fragmentation [56], thus also contradicting
the Linux Foundation’s guidelines [41].

Code quality. Gousios et al. [52, 53] find that factors such as code
documentation, adherence to project conventions, style confor-
mance, and code quality play a significant role in the acceptance
of code changes. Kononenko et al. similarly find that the quality
of code documentation, readability of the code, and adherence to
variable-naming conventions negatively affect the understanding
of a code change [58]. Silva et al. specifically study the topics dis-
cussed in code reviews and find that code design and adherence to
project conventions are most commonly mentioned [71]. Due to the

broad definition of quality, overlap exists with other themes such
as code style, test inclusion, code churn and composite changes.

Code style.Marlow et al. find that changes that suffer from stylistic
issues and adherence to poor coding practices require additional
reviewer effort and often end up being rejected [62]. Gousios et al.
go further to show that, apart from code quality, style conformance
is the only factor that both the reviewers and authors are concerned
with while working in the pull-based development model [52].
Hellendoorn et al. observed that changes that match the project’s
coding style are more likely to sail through a code review [54].
Gray literature sources, such as open source project contribution
guidelines, typically specify their code style conventions on topics
like variable naming and placement of new methods, which they
expect to be followed by any submitted change [1, 3, 27].

Commit history. Yu et al. find that a higher number of commits
for a code change lead to a more extended review period in GitHub
pull requests [81]. Soares et al. show that a larger number of com-
mits in a code change decreases its chances of acceptance [72].
Gousios et al. find that the format of the commit (e.g., the message
that summarizes the change) is a component of code quality and
plays a role in the review process [53].

Several blogs and contribution guidelines echo these findings [1,
2, 4, 8, 32]. Some projects (e.g., Spring Framework and Mockito)
require to squash commits on the same logical change [11, 27].

Composite changes. Tao et al. find that addressing more than
one issue in a code change (making it a composite or tangled
change) increases the difficulty of understanding the change [74].
Kononenko et al. find that one of the factors that affects the time
and outcome of a review is whether a code change is properly sep-
arated into self-contained pieces [58]. Gousios et al. recommend
practitioners to keep their changes small and isolated [52].

The Linux Kernel requires code changes to be split into logically
independent changes, each of which yields a properly function-
ing kernel [41]. Other open-source projects also recommend and
require this practice [13, 17, 28].

Nature of the change. A code change can have several goals,
such as introducing new functionality, fixing a bug, or maintaining
existing code. The type of this change affects how reviewers per-
ceive the change. Padhye et al. find that project maintainers readily
accept code changes that fix a bug or update the documentation,
rather than approving a new functionality into the project [65]. Vice
versa, Marlow et al. find that the review period is shorter when the
change addresses an urgent issue or fixes a known bug, as opposed
to introducing new features that might conflict with existing func-
tionalities [62]. Changes to interfaces between different subsystems
furthermore increase the review time [58].

Subsystem hotness. Gousios et al. find that code changes in ac-
tively developed parts of OSS systems have a higher chance of being
accepted [51, 53]. Yu et al. also find that “hotness” of the part of the
system to which the contribution is being made reduces the review
time [81]. However, Jiang et al. find a different result on the Linux
kernel: there, code changes to more actively developed subsystems
have a lower rate of acceptance [56]. They hypothesize that this
could be due to multiple authors doing duplicate work by trying to
address the same issue.



ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA A. Ram, A. A. Sawant, M. Castelluccio, A. Bacchelli

Test inclusion. In Gousios et al.’s findings, reviewers tend to con-
sider changes with tests included as being technically sound, thus
making the code review easier [53]. Others also find that the inclu-
sion of test cases is considered an evaluation of a code change’s
technical proficiency and determines the amount of time needed
to review the change [76, 81]. Tsay et al. observe that project core
members may ask authors to provide specific test cases to motivate
the need for the code change being submitted [77].

Some open-source projects require changes to be covered by
automated tests [10, 11, 32]. Most of the gray literature sources
also recommend that any change is accompanied by an adequate
number of test cases [2–4, 6–9, 12].

The analysis of the white and the gray literature let emerge
ten themes associated with the outcome and time to review
a code change. For some themes, there is an indication that
they may be related to code change reviewability.

5 RQ2 – DEVELOPERS’ PERSPECTIVE ON
CODE CHANGE REVIEWABILITY

We present the developers’ perception on reviewability and the
reviewers’ feedback on specific code changes.

5.1 RQ2.a – Task-based Interview Results
Out of the first set of code changes shown to interviewees, one
change had no issues with its reviewability. This code change has
a succinct description, short commit history with clear commit
messages, and a code coverage report that shows no drop in the
coverage percentage. The second change attempts to fix a non-
existent issue with no clear description as to why the change is
needed and has no tests included. The third change tries to fix mul-
tiple issues and has several commits with garbled commit messages.

In the second set of code changes, the first change attempts to fix
a bug without proper tests to verify whether the fix works, however,
the build fails due to ‘checkstyle’ issues. The second change pro-
poses to modify the inner workings of the project without proper
motivations. Furthermore, the code change complicates the code
base without strong advantages and the patch has a garbled commit
history. The third patch aims at updating the code base to the latest
version of a dependency. The accompanying change description
motivated the change and guided its understanding.

5.1.1 Reviewability Aspects in Focus: We asked our interviewees
as to what aspects of a change help them in understanding it. As
they started to inspect the changes, we asked to explain what they
were looking at and to also consider the meta-aspects of the change
in addition to the technical aspects.
Change description.The change description is themost frequently
brought up aspect that developers feel affect the reviewability. P2
immediately pointed out, for one of the changes, that the descrip-
tion did not mention where the code comes from and why, i.e., it
did not explain the change’s context. P6 mentioned the same: “the
first thing I want to see in a pull request is why you want [it].”

Nine out of the ten interviewees stressed that mentioning the mo-
tivation behind a specific change along with what is being changed

is essential in aiding the code review process. P4 put this as: “[the
patch description] is especially important for reviewing, as one
has to understand why [and] not only what changes have been
made but why they have been made.” P9 was the only one in dis-
agreement; in his opinion, “the code cannot lie and users do lie.”
Fundamentally, he does not trust what an author has mentioned in
the change description and relies on the code itself.
Code churn. The consensus among our interviewees was that
smaller the change the more reviewable it is.

P1 started his review by saying: “let me just take a look at the
size of the change over here.” P4 found one of the changes easier to
review “because it is a really short change, one can read it fast.” P10
feels that “its definitely easier to review small changes”, a sentiment
that was also echoed by P6. P7 and P8mention that in their company,
changes are bucketed into four sizes (extra small, small, medium
and large), as the company had found that there is a considerable
decrease in reviewability when a change goes from being medium
in size to large. The exact number of lines that places a change into
one of these categories is unknown. However, our interviewees
stated that the general rule of thumb is that for a change to be
reviewable it must be at most 250 lines long. However, P9 contends
that one cannot generalize size being an issue or a helpful aspect
of reviewability. In his view, a lot depends on the nature of the
change. Some issues need larger volumes of code and this is, at
times, inescapable. He prefers to measure the size of the change
by “[counting] the functionality to see how much functionality is
added”, but he concedes that this is not trivial.
Commit history. The consensus among our interviewees was that
the commit messages must be self-explanatory and cannot have
non-descriptive idioms such as “Fix typo” or “Update”.

This theme is especially important to interviewee P5, who re-
marked that “First I check if the commit history is normal . . . not
‘fix this’, ‘fix that’ in there because people can just use rebase to
clean that up.” P9 also mentions that an author who wants to make
a PR more reviewable should “make each commit self-contained.”
All of our interviewees remarked on the issue of having multiple
commits in a code change versus having one single merged commit.
They were primarily in favor of having a single merged commit that
could stand on its own. If this is not the case, then the interviewees
did agree that it made it harder to review the code change. For
instance, P4 remarked that he would have expected “the developer
to clean up the commit structure before the pull request” as he did
not see the value of having multiple commits in a single change.
P6 mentioned that he would have kept minor fixes or changes in
his local branch and then merged these commits and pushed the
PR as a single commit, as he felt “[such commit history behavior
made] it easier for the reviewer to follow the change logic.” There
are certain circumstances where multiple commits in a code change
are deemed acceptable. P7 remarked, while looking at the commit
history of a large PR he was reviewing, that “it has been extremely
helpful to have small and focused commits.” However, the commits
must be self-contained and have meaningful commit messages. Fur-
thermore, interviewees P9 and P10 felt that the ratio of commits in
a change to the number of files changed should not be high.
Test inclusion. According to our interviewees, the integration of
tests is not vital in aiding the understanding of a change under



What Makes a Code Change Easier to Review ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

review. Nine interviewees say that the inclusion of tests is a quick
check: They only look at the presence of tests and whether the
change has impacted the test coverage.

P1 mentions that the lack of test inclusion does not impact the
ability to understand or assess a PR. He could evaluate the code
visually and appreciate its impact. P9 echoed a similar sentiment,
because he understands the effects of most changes he sees in his
project without the aid of tests. Out of our interviewees, only P5
mentioned that he looks at the tests first when reviewing a change
to understand the nature of the change and what the developer
is trying to do. All our interviewees mention that the presence of
tests does have an impact on their decision to accept/reject the
change. P3 said: “Sometimes one has to reject it if the code is not
documented properly and if there are too few test cases that cover
the changes.” P7 mentions that a PR with no tests that cover the
change would not be reviewed. P9 put it as: “when test coverage
goes down its a smell”, so when he sees a change that has a negative
impact on the code coverage, the patch is rejected.
Additional factors.All our interviewees mention that having mul-
tiple issues addressed in the same code change is something that
they deem unacceptable. However, this is not necessarily due to
a reduced understanding of the change, for example, P5 says that
“you should have just one pull request per issue because it keeps
your history cleaner, otherwise it is more difficult to revert.” But
P5 also concedes that splitting different code modifications into
separate changes can aid the reviewability of the patch. P9 echoed
a similar sentiment and said that in his project they might even
reject a code change outright if this was not done.

P1 mentions that one reason he has rejected a code change in the
past is that someone had “added something to a highly contested
file and [added it] to the top.” There is a preference that in a file to
which many developers are contributing that a developer always
adds new features at the bottom. P4 agrees with this perspective,
he felt that an exception to this convention is only made if there
is the addition of a global variable at the top. Additionally, he felt
that semantically similar changes should be grouped as this aids in
improving the reviewability of the change.

5.1.2 Impact of Reviewability on Acceptance: We asked our intervie-
wees as to how serious they felt the aforementioned reviewability
issues were when it came to accepting or rejecting a code change.
Only P9 mentioned that they would take a serious view of such
problems and outright reject a change. He felt that “especially if [in
his] estimate that it will take 3 or 4 times to go back and forth to
get to the end result”, he would end up addressing the issue himself
and discard the change.

Our industrial interviewees have a different perspective on this.
P1 mentions that—in a commercial setting—a patch is not merely
outright rejected if it fails some reviewability criteria, instead he
speaks of a temporary rejection. In his opinion, this is because “there
are open lines of communication”, thus, a reviewer can talk to the
developer who created the change and explain what needs to be
fixed before accepting it. P5 too agrees with this sentiment: “it might
be a soft reject . . . [giving] him a chance to clean it up first.” P4
mentions too that for small issues such as fixing typos in commits
or code, it is a convention that the reviewer makes the fixes himself.
In their company, it is protocol that the original author only handles

larger issues. However, in the company where P6 works, such issues
while not deserving of an outright reject, would be expected to be
fixed by the original author.

5.1.3 Improving the Reviewability: We ask our interviewees as to
how contributors can improve the reviewability of a code change.
P1, P9-10 felt that in OSS development one should learn from pre-
viously accepted patches.

OSS projects have contribution guidelines, but P6 feels that these
manual checks are not ideal. In his opinion, it would be beneficial
to have “automating checks . . . so I don’t have to go around com-
menting just because the syntax is not correct.” He proposes that
the first round of reviews is done with the aid of review bots before
the change is sent to a human reviewer. This step should help the
author clean up the code change and prevent him from submitting
a code change where reviewability is an issue. This step is also ben-
eficial for the reviewer, as he does not have to do a lot of boilerplate
review work and can focus on the semantics of the change.

Interviewed developers primarily focus on three aspects
for reviewability, i.e., code churn, change description and
commit history. Surprisingly, test inclusion does not play a
significant role in reviewability and the connection between
reviewability and acceptance is weak.

5.2 RQ2.b – Feedback on Reviewability
Overall, we received feedback on 98 real-world code changes from
35 reviewersworking on six industry projects and threeOSS projects.

5.2.1 Manual Analysis: We manually analyzed each of these rated
code changes from three angles: the (A1) feedback on the reviewabil-
ity (as provided via our tool), the (A2) review comments (as provided
through the standard code review tool), and the (A3) content of the
code change and the information provided by the author.

A1 – Feedback: We read the feedback provided to us by the re-
viewer and tried to assign it to one or more of the themes previously
emerged from RQ1. The list of themes was exhaustive enough to
cover all the feedback: This strengthens the credibility of the com-
pleteness of the list. We assigned a score to each mentioned theme,
according to whether it was mentioned positively (‘+1’), neutrally
(‘0’), or negatively (‘-1’) with respect to reviewability. A score of ‘0’
was also used when there was no comment on that theme.

A2 – Review comments: In addition to the analysis of the feedback,
we also analyzed the comments that reviewers put in the review
of the proposed code change through the code review tool. We
assigned these comments to one or more themes (again, the list of
themes was found to be exhaustive) and assigned a (‘+1’/‘0’/‘-1’)
score to each theme using the same aforementioned semantic.

A3 –Content: Finally, we inspected the content of the source code
change and the accompanying information, by analyzing it in terms
of the themes emerged from RQ1 that we could objectively assess
without being developers of these systems. Specifically, we exam-
ined ‘change description’ (whether the rationale and/or the behavior
of the change was described), ‘test inclusion’ (whether tests accom-
pany the changed production code), ‘composite change’ (whether
one issue only is addressed), ‘code churn’ (how many lines/files



ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA A. Ram, A. A. Sawant, M. Castelluccio, A. Bacchelli

were added/removed), and ‘change scope’ (how many packages and
files are involved in the change). For the “binary” themes (i.e., test
inclusion, change description and composite changes), we assign
a score of ‘+1’ if the theme is present, ‘-1’ otherwise. For the “nu-
merical” themes (i.e., ‘code churn’ and ‘change scope’), we assign a
score of ‘+1’ when the value is less or equal than the median across
all the changes, ‘0’ when it is between the median and the upper
quartile, and ‘-1’ when is above the upper quartile.

5.2.2 Results: Figure 3 summarizes the results. In this figure, if a
code change has a negative score for one of the themes from one
of the three angles (e.g., the feedback remarks about missing tests,
i.e., ‘test inclusion’ for feedback (A1) would be ‘-1’), we draw a line
from the block denoting this theme to the final reviewability rating
(as indicated by the reviewers in their feedback) of the change. For
positive scores, a line is drawn to the right from the theme to the
rated reviewability. The figure is divided in three parts denoting
the source of the remark (e.g., A1, feedback, is the first with blue
lines). In case of a neutral score (‘0’), we do not draw a line but
increase the height of the block representing the theme.

Never mentioned themes. Analyzing the results from a high-
level perspective, we found that no concepts related to the themes of
‘subsystem hotness’ and ‘nature of the change’ were ever mentioned
in either the feedback or the review comments.

Negative scores. Figure 3 shows that most review comments (A2,
orange lines) are in a negative sense and predominantly focus
on code style and code quality aspects. The association between
the negative rating of these factors on the reviewability rating is
not prominent. For code style, the negative comments are evenly
divided across 1–4 star rated changes; for code quality, the negative
ratings are distributed across 2–4 star changes. The feedback (A1)
provided by the reviewer on these changes mirrors the comments
that the reviewers post in the review comments.

Sometimes feedback (A1, blue lines) provides an unfavorable
view of the commit history, however, overall this is not associated
with a low star rating. There are only isolated cases in which code
churn, composite changes, test inclusion and change description are
mentioned in the feedback (A1) or the reviewer comments (A2) with
a negative connotation. We see that in these cases the lowest the
change is rated is 3 stars. Through the analysis of the change (A3,
purple lines), we found that most changes do not include tests. We
observe that reviewers rarely comment (A2) on this and little feed-
back (A1) mentions it. Despite the lack of testing, the corresponding
code changes are still rated with 4 or 5 stars.

Positive scores. Predominantly positive feedback (A1, blue lines) is
provided in the cases of code churn and code description and these
changes are mostly scored with either 4 or 5 stars. In the analysis of
the content (A3, purple lines), the same themes are largely scored
positively and are associated with a higher reviewability rating.
In the case of test inclusion and change description, there are few
positive reviewer comments in the review and in both cases, the
positive scores correspond to 4 or 5 star rated changes.

For most of the themes, when there is a positive score, it is for
a change with a 4 or 5 star rating. In a few cases, a positive score
relates to a 1 or 2 star. One such instance is where a positive score
for code churn relates to a 1 star rated change. This specific change

change desc. - D change scope - S code churn - C code quality - Q

code style - ST commit history - H test inclusion - T

theme positively
evaluated

negatively
evaluated

comp. change - CO 

2

5

4

3

1

A3 - Content

5

4

3

2

1
T

CO 

C

S

D

A2 - Review comments

5

4

3

2

1

4

5

T

D

H

ST

Q

rated reviewability

A1 - Feedback

5

4

3

2

1 1

2

3

4

5

T

CO 

C

S 

D

H

ST

Q

Figure 3: The themes and the rated reviewability.



What Makes a Code Change Easier to Review ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

is an outlier as the reviewer appears to understand the patch as
the positive comment mentions the patch was small, however, the
change had no description, thus it was rated poorly.

Positive characteristics concerning code churn and change
description are mostly found in changes that are rated
highly when it comes to reviewability. Most changes that
lack of test inclusion still receive a high reviewability rating.

6 CODE CHANGE REVIEWABILITY
In the first phase of this study (RQ1), we found ten themes that
are (considered to be) related to the outcome of a code review.
Considering the semantic of these themes, it was reasonable to
think that some of these themes could contribute to the degree
of reviewability of a change. From the analysis of the reviewers’
perception from the interviews (RQ2.a), three factors (from the
list of the ten themes) were considered more important to define
reviewability - change description, code churn and commit history.
Factors such as composite changes and code style were mentioned
to a lesser degree. Triangulating this finding with the analysis of the
real-world reviewed code changes for which we collected feedback
on reviewability (RQ2.b), we found that change description and
code churn are perceived as major factors of reviewability.

Code change reviewability can be empirically defined as
how well a change is (1) explained (‘change description’
and ‘commit history’), (2) properly sized and self-contained
(‘code churn’ and ‘composite changes’), and (3) aligned
with the project’s style (‘code style’). The three factors that
most significantly define reviewability are the quality of
the description and the commit history, as well as the size.

7 DISCUSSION
In this section, we discuss our main findings, suggest recommenda-
tions for practitioners, and consider the implications for researchers.
Subsequently, we discuss the evaluation of the results and the qual-
ity criteria for our study.

7.1 Reviewability and Rejection Decisions
We found that—in the industrial setting—reviewability aspects are
not the principal drivers behind the overall decision made on the
code change. In fact, our industrial interviewees consider reviewa-
bility aspects as easily fixable and only temporarily reject a change.

Our OSS interviewees, instead, take a more extreme view of
reviewability factors and consider it a good enough reason to reject
a code change. In their opinion, when a contributor submits a
change, it should already be of sufficiently high quality so that it is
easily reviewable. If they sense that they themselves will have to
improve certain aspects of a patch, they are inclined to rejection.

Despite the difference in the two settings, we see that there is
an additional reviewer overhead that is caused by the presence
of reviewability issues. One way to avoid either a temporary or
permanent rejection of a code change is to have an automated way
of assessing important reviewability aspects of a code change. This

would give a contributor immediate feedback on the code change
and allow him to improve it before an actual reviewer assesses it.

Currently, many automated tools aid a reviewer in analyzing
the impact of a change. For example, tools such as Codecov [15],
Coveralls [16] and Operias [64] automatically analyze the code
coverage change on a GitHub pull request and provide a detailed
report on the same to the contributor and reviewer. Continuous
integration tools such as Travis CI [30] that help a contributor and
reviewer understand if a GitHub pull request breaks the build.
Recommendations and Implications. Currently, no tool per-
forms automated checks for reviewability factors. Our interviewees
agreed that having a tool that performed the boilerplate review and
checked the reviewability aspects in an automated manner would
reduce reviewer burden and allow a reviewer to focus on the se-
mantics of a change. Given the empirical definition of code change
reviewability that we found and the key factors, the possibility of
designing and deploying such a tool seems to be in the reach, based
on current research results (e.g., in change decomposition [34, 45]).
We envision a tool that would score a change based on its change
descriptions’ quality, commit history, size, and adherence to the
project style; this tool will give authors an opportunity to improve
before the review. This is a ripe opportunity to gain more practical
impact with current software engineering research.

Our results also show that there is a considerable difference
between the acceptance criteria in industry and in OSS. Given that
most studies that investigate the acceptance of a patch focus on
open source projects, we question if the same results would hold
in industry given the difference in socio-technical factors. Further
studies can be designed and conducted to investigate this dichotomy
between two different development settings further.

7.2 Review Comments VS. Collected Feedback
In the collected reviewability feedback data, for factors such as
code style, code quality and commit history, the comments are
only negative, instead, the feedback provided via our tool was also
positive for these factors. Despite being possible reviewers never
directly post a review comment commending the author’s effort; at
times the same happened when the reviewer had a negative remark.

Positive reinforcement has been shown to play a role in inducing
employees of companies to achieve peak productivity and quality
of work [44]. Praising change authors for the positive aspects of
their contribution could be beneficial irrespective of the authors’
seniority within the project, although this could be even more
valuable for newcomers [59]. Furthermore, authors could get a
better understanding of what aspects of their code change were
considered as good by reviewers, which would lead them to adhere
to similar standards with their future contributions.
Recommendations and implications. In the current deployment
of our code change reviewability feedback collection tool, we pro-
vide authors with a dashboard where they can see how reviewers
rate their contributions and can read the feedback written by the
reviewers (in anonymized form). Authors can see how long it has
taken to review their contributions and what factors contribute
positively and negatively to the reviewability of their contributions.
However, this report dashboard is only a beginning: Investigating
whether and how this information is useful and how it should be



ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA A. Ram, A. A. Sawant, M. Castelluccio, A. Bacchelli

integrated into existing code review platforms is an open research
problem which we leave as future work. Moreover, further research
can be conducted on how to incentivize reviewers in also providing
positive feedback when reviewing code changes.

7.3 Test Inclusion and Reviewability
Past research found that the integration of tests is critical to the
acceptance of a code change. For example, Gousios et al. [53] find
that reviewers use lack of testing as a reason to reject a code change.
Tsay et al. [76] showed that project maintainers always ask for test
cases to be included in the code change so that a reviewer can
confirm if the code change does solve the issue it claims that it fixes.
Even gray literature sources state that the anatomy of a good code
change includes good tests that cover the change and adequately
test the behavioral aspects of the change. Contribution guidelines
for large open source projects such as Spring Framework [27],
JUnit [10], and Mockito [11] all state that any contribution must
be well tested. Mockito even has an automated code coverage tool
installed on its repository on GitHub that checks the impact a
contribution has on the overall code coverage of the project, thereby
making it easier for reviewers to spot a change that is untested or
insufficiently tested.

Our interviewees mention that for them test inclusion is simply
a binary check, they see if there are tests or not. However, they
do not consider the test cases as vital to understanding the change
and can simply review the change even in the absence of test cases.
The data we collect from our code change reviewability feedback
collection tool echoes this behavior.

We see that for a majority of the code changes there are no tests
included. Reviewers do not appear to mind this behavior, there is
only one isolated case where the reviewer commented on the lack
of testing. Our findings are in line with those reported by Spadini
et al. [73]. For the other changes, it seems that by simply inspecting
the change the reviewer can judge its correctness.
Recommendations and implications. Previous work has shown
that inclusion of tests in a submitted change is pivotal to its chances
of acceptance; conversely, we observed an unexpected lack of con-
cern about test inclusion, particularly when it comes to the re-
viewability aspects of a change. Future research work should be
designed and conducted to, on the one hand, understand the reason
for these developers’ perception and, on the other hand, provide fur-
ther empirical evidence on the benefits of including tests in a code
change as well as how to persuade practitioners in the importance
of testing.

7.4 Results Evaluation and Quality Criteria
Credibility. To strengthen the credibility of our study, we triangu-
lated insights from different data sources: We performed a multivo-
cal literature survey involving both white (22) and gray (21) sources,
we gathered qualitative data from 10 professional developers who
work in industrial and OSS settings, and we gathered feedback on
reviewability of 98 real-world code changes. Two authors did the
manual analysis of the 98 rated code changes. To measure their
inter-rater reliability (Krippendorf α value [60]), they had an over-
lapping set of 15 instances along seven dimensions: On these, the
reliability was above 0.9 (i.e., very good).

Originality. Previous studies in the context of code review study
the quality of a code change based on its acceptance. However,
other factors can have an impact on the reviewer and the ease of
the review.With this study, we identify factors that affect a change’s
reviewability and provide its first empirically-based definition.
Usefulness. In this study, the factors that we identify that con-
tribute to reviewability is actionable for change authors and review-
ers alike. Furthermore, our study highlights the need for a new tool
that automatically assesses reviewability and provides an author
with feedback before the code review process starts.
Interviewer bias. The results might be influenced by our own
biases that might have led interviewees giving us the answers we
wanted, e.g., by driving interviewees to provide more desirable
answers [55]. To mitigate this issue we collected independent data
from developers by asking them to give us feedback on real-world
changes, without our involvement in the feedback process.
Prior knowledge bias. Previous knowledge of the field helps a
researcher interpret select lines of inquiry and events, however, it
might blind the researcher to alternative explanations for a phe-
nomenon [50]. We address this issue by ensuring apart from the
first author, the other authors were involved in the process of in-
terpreting the literature, interview, and feedback data.
External validity. In this study, we collect data from three different
sources - literature, developer interviews and developer feedback.
We do not have a specific focus on a single programming language,
ecosystem or platform. Furthermore, we strive to include data from
both industrial and academic sources in our analysis.

8 CONCLUSION
We have presented a study we conducted to gain an empirical un-
derstanding of what makes a code change easier to review. We find
that there are three primary factors (code churn, change description
and commit history) that define a change’s reviewability, and our
novel findings and scientific contributions include:

(1) The first empirical definition of reviewability (code churn,
change description and commit history) based on several
sources. This can be used to inform the creation of a tool that
is able to automatically assess the reviewability of a change.

(2) Observe that reviewability factors are seen in different light
in industry as opposed to OSS projects, thus questioning the
transferability of existing research conducted in OSS settings
to industrial settings.

(3) Empirical evidence on the substantial difference between
reviewability and acceptability. This is important for research
(e.g., considering “acceptance” as a proxy for discovering
features of a good patch would lead to biased results).

(4) Evidence that reviewers provide little to no feedback on
reviewability to authors. This is important for practition-
ers (who must rethink positive/negative reinforcement) and
research (to investigate ways to trigger this feedback).

(5) Evidence that investigating the gray literature contributes
to a more complete synthesis of information than is possible
using only the white literature.

Based on our findings, we provide recommendations to both
researchers and practitioners alike. We hope that the insights we
have uncovered lead to a more efficient code review process.



What Makes a Code Change Easier to Review ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

ACKNOWLEDGMENTS
A. Bacchelli gratefully acknowledges the support of the Swiss Na-
tional Science Foundation through the SNF Project No. PP00P2_170529.

REFERENCES
[1] 2014. Ionic. The Art of a Successful Pull Request. https://blog.ionic.io/

pull-requests/. (2014). Accessed: 2018-01-31.
[2] 2014. Radify. Perfect Pull Requests. http://radify.io/blog/perfect-pull-requests/.

(2014). Accessed: 2018-01-31.
[3] 2015. M. Seemann. Ten tips for better Pull Requests. http://blog.ploeh.dk/2015/

01/15/10-tips-for-better-pull-requests/. (2015). Accessed: 2018-01-31.
[4] 2015. Structured Procrastination. Why and how to correctly

amend GitHub pull requests. https://blog.adamspiers.org/2015/03/24/
why-and-how-to-correctly-amend-github-pull-requests/. (2015). Accessed:
2018-01-31.

[5] 2016. Alpha’s Manifesto. How to create a good pull request. https://blog.
alphasmanifesto.com/2016/07/11/how-to-create-a-good-pull-request/. (2016).
Accessed: 2018-01-31.

[6] 2016. Dev. Pull Requests: The Good, The Bad and The Ugly. https://dev.to/
backendandbbq/pull-requests-the-good-the-bad-and-the-ugly. (2016). Accessed:
2018-01-31.

[7] 2016. Elastic. The Art of a Pull Request. https://www.elastic.co/blog/
art-of-pull-request. (2016). Accessed: 2018-01-31.

[8] 2017. Anorgan’s Blog. Preparing Your Pull Request For Code Review. https://blog.
anorgan.com/2017/04/27/preparing-your-pull-request-for-code-review/. (2017).
Accessed: 2018-01-31.

[9] 2017. D. Merejkowsky. Lessons Learned From A Failed Pull Request. https:
//dmerej.info/blog/post/lessons-learned-from-a-failed-pull-request/. (2017). Ac-
cessed: 2018-01-31.

[10] 2017. JUnit Team. Guide for contributors. https://github.com/junit-team/junit5/
blob/master/CONTRIBUTING.md. (2017). Accessed: 2018-01-31.

[11] 2017. Mockito. Guide for contributors. https://github.com/mockito/mockito/
blob/release/2.x/.github/CONTRIBUTING.md. (2017). Accessed: 2018-01-31.

[12] 2017. S. Nonnenberg. Top ten pull request review mistakes. https://blog.
scottnonnenberg.com/top-ten-pull-request-review-mistakes/. (2017). Accessed:
2018-01-31.

[13] 2018. Atlassian Blog. The (written) unwritten guide to pull requests. https://www.
atlassian.com/blog/git/written-unwritten-guide-pull-requests. (2018). Accessed:
2018-01-31.

[14] 2018. Bugzilla. https://www.bugzilla.org/. (2018). last accessed March 2018.
[15] 2018. Codecov tool. https://codecov.io/. (2018). last accessed March 2018.
[16] 2018. Coveralls tool. https://coveralls.io/. (2018). last accessed March 2018.
[17] 2018. Django Documentation. Committing code. https://docs.djangoproject.com/

en/dev/internals/contributing/committing-code/. (2018). Accessed: 2018-01-31.
[18] 2018. ESEC/FSE - ACM Joint European Software Engineering Conference and

Symposium on the Foundations of Software Engineering. http://www.esec-fse.
org/index. (2018). Accessed: 2018-07-31.

[19] 2018. Gerrit Code Review. https://www.gerritcodereview.com/. (2018). Accessed:
2018-01-31.

[20] 2018. GitHub Blog. How to write the perfect pull request. https://github.com/
blog/1943-how-to-write-the-perfect-pull-request. (2018). Accessed: 2018-01-31.

[21] 2018. ICSE - International Conference on Software Engineering. http://www.
icse-conferences.org. (2018). Accessed: 2018-07-31.

[22] 2018. ICSME - International Conference on Software Maintenance and Evolution.
http://conferences.computer.org/icsm/. (2018). Accessed: 2018-07-31.

[23] 2018. Mockito. Guide for contributors. https://github.com/mockito/mockito.
(2018). Accessed: 2018-07-31.

[24] 2018. MozReview. http://mozilla-version-control-
tools.readthedocs.io/en/latest/mozreview.html. (2018). last accessed March
2018.

[25] 2018. MSR - International Conference on Mining Software Repositories. http:
//www.msrconf.org. (2018). Accessed: 2018-07-31.

[26] 2018. Reviewboard. https://wiki.mozilla.org/ReviewBoard. (2018). last accessed
March 2018.

[27] 2018. Spring Framework. Contribution guidelines. https://github.com/
spring-projects/spring-framework/blob/master/CONTRIBUTING.md. (2018). Ac-
cessed: 2018-01-31.

[28] 2018. The Apache Software Foundation. Guide for new project contributors.
https://apache.org/dev/contributors.html. (2018). Accessed: 2018-01-31.

[29] 2018. TOSEM - ACM Transactions on Software Engineering and Methodology.
https://tosem.acm.org. (2018). Accessed: 2018-07-31.

[30] 2018. Travis Continuous Integration tool. https://travis-ci.org/. (2018). last
accessed March 2018.

[31] 2018. TSE - IEEE Transactions on Software Engineering. https://www.computer.
org/web/tse. (2018). Accessed: 2018-07-31.

[32] 2018. Yeomen. Contributing: pull request guidelines. http://yeoman.io/
contributing/pull-request.html. (2018). Accessed: 2018-01-31.

[33] Alberto Bacchelli and Christian Bird. 2013. Expectations, outcomes, and chal-
lenges of modern code review. In Proceedings of the 2013 international conference
on software engineering. IEEE Press, 712–721.

[34] Mike Barnett, Christian Bird, Joao Brunet, and Shuvendu K Lahiri. 2015. Helping
developers help themselves: Automatic decomposition of code review changesets.
In Proceedings of the 2015 International Conference on Software Engineering. IEEE
Press.

[35] Olga Baysal, Oleksii Kononenko, Reid Holmes, and Michael W Godfrey. 2012.
The secret life of patches: A firefox case study. In Reverse Engineering (WCRE),
2012 19th Working Conference on. IEEE, 447–455.

[36] Olga Baysal, Oleksii Kononenko, Reid Holmes, and Michael W Godfrey. 2016.
Investigating technical and non-technical factors influencingmodern code review.
Empirical Software Engineering 21, 3 (2016), 932–959.

[37] Moritz Beller, Alberto Bacchelli, Andy Zaidman, and Elmar Juergens. 2014. Mod-
ern Code Reviews in Open-Source Projects: Which Problems Do They fix?. In
Proceedings of the 11th Working Conference on Mining Software Repositories. 202–
211.

[38] Amiangshu Bosu, Michaela Greiler, and Christian Bird. 2015. Characteristics
of useful code reviews: An empirical study at microsoft. In Mining Software
Repositories (MSR), 2015 IEEE/ACM 12th Working Conference on. IEEE, 146–156.

[39] Jason Cohen. 2010. Modern Code Review. In Making Software, Andy Oram and
Greg Wilson (Eds.). O’Reilly, Chapter 18, 329–338.

[40] Jason Cohen, Eric Brown, Brandon DuRette, and Steven Teleki. 2006. Best kept
secrets of peer code review. Smart Bear.

[41] J Corbet. 2018. How to participate in the linux community. http://ldn.
linuxfoundation.org/book/how-participate-linux-community. (2018). Accessed:
2018-01-31.

[42] Vicki L Creswell JW, Clark P, JohnW. J.W. Creswell, V.L. Vicki L Plano Clark, Vicki
L.P. Plano Clark, and V.L. Vicki L Plano Clark. 2007. Designing and Conducting
Mixed Methods Research. 275 pages. https://doi.org/10.1111/j.1753-6405.2007.
00096.x

[43] Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim Herbsleb. 2012. Social coding
in GitHub: transparency and collaboration in an open software repository. In
Proceedings of the ACM 2012 conference on Computer Supported Cooperative Work.
ACM, 1277–1286.

[44] Aubrey C Daniels. 1989. Performance management: Improving quality productivity
through positive reinforcement. Performance Management Pub.

[45] Martin Dias, Alberto Bacchelli, Georgios Gousios, Damien Cassou, and Stéphane
Ducasse. 2015. Untangling Fine-Grained Code Changes. In Proceedings of the 22nd
IEEE International Conference on Software Analysis, Evolution, and Reengineering.
341–350.

[46] Michael Fagan. 2002. Design and code inspections to reduce errors in program
development. In Software pioneers. Springer, 575–607.

[47] Vahid Garousi, Michael Felderer, and Mika V Mäntylä. 2016. The need for
multivocal literature reviews in software engineering: complementing systematic
literature reviews with grey literature. In Proceedings of the 20th International
Conference on Evaluation and Assessment in Software Engineering. ACM, 26.

[48] Vahid Garousi, Michael Felderer, and Mika V Mäntylä. 2017. Guidelines for
including the grey literature and conducting multivocal literature reviews in
software engineering. arXiv preprint arXiv:1707.02553 (2017).

[49] Barney Glaser. 1998. Doing Grounded Theory: Issues and Discussions. Sociology
Press.

[50] Barney G Glaser. 1998. Doing grounded theory: Issues and discussions. Sociology
Press.

[51] Georgios Gousios, Martin Pinzger, and Arie van Deursen. 2014. An exploratory
study of the pull-based software development model. In Proceedings of the 36th
International Conference on Software Engineering. ACM, 345–355.

[52] Georgios Gousios, Margaret-Anne Storey, and Alberto Bacchelli. 2016. Work
practices and challenges in pull-based development: The contributor’s perspec-
tive. In Software Engineering (ICSE), 2016 IEEE/ACM 38th International Conference
on. IEEE, 285–296.

[53] Georgios Gousios, Andy Zaidman, Margaret-Anne Storey, and Arie Van Deursen.
2015. Work practices and challenges in pull-based development: the integra-
tor’s perspective. In Proceedings of the 37th International Conference on Software
Engineering-Volume 1. IEEE Press, 358–368.

[54] Vincent J Hellendoorn, Premkumar T Devanbu, and Alberto Bacchelli. 2015.
Will they like this?: Evaluating code contributions with language models. In
Proceedings of the 12th Working Conference on Mining Software Repositories. IEEE
Press, 157–167.

[55] Donald C Hildum and Roger W Brown. 1956. Verbal reinforcement and inter-
viewer bias. The Journal of Abnormal and Social Psychology 53, 1 (1956), 108.

[56] Yujuan Jiang, Bram Adams, and Daniel M German. 2013. Will my patch make
it? and how fast? case study on the linux kernel. In Mining Software Repositories
(MSR), 2013 10th IEEE Working Conference on. IEEE, 101–110.

[57] Sami Kollanus and Jussi Koskinen. 2009. Survey of software inspection research.
The Open Software Engineering Journal 3, 1 (2009), 15–34.

https://blog.ionic.io/pull-requests/
https://blog.ionic.io/pull-requests/
http://radify.io/blog/perfect-pull-requests/
http://blog.ploeh.dk/2015/01/15/10-tips-for-better-pull-requests/
http://blog.ploeh.dk/2015/01/15/10-tips-for-better-pull-requests/
https://blog.adamspiers.org/2015/03/24/why-and-how-to-correctly-amend-github-pull-requests/
https://blog.adamspiers.org/2015/03/24/why-and-how-to-correctly-amend-github-pull-requests/
https://blog.alphasmanifesto.com/2016/07/11/how-to-create-a-good-pull-request/
https://blog.alphasmanifesto.com/2016/07/11/how-to-create-a-good-pull-request/
https://dev.to/backendandbbq/pull-requests-the-good-the-bad-and-the-ugly
https://dev.to/backendandbbq/pull-requests-the-good-the-bad-and-the-ugly
https://www.elastic.co/blog/art-of-pull-request
https://www.elastic.co/blog/art-of-pull-request
https://blog.anorgan.com/2017/04/27/preparing-your-pull-request-for-code-review/
https://blog.anorgan.com/2017/04/27/preparing-your-pull-request-for-code-review/
https://dmerej.info/blog/post/lessons-learned-from-a-failed-pull-request/
https://dmerej.info/blog/post/lessons-learned-from-a-failed-pull-request/
https://github.com/junit-team/junit5/blob/master/CONTRIBUTING.md
https://github.com/junit-team/junit5/blob/master/CONTRIBUTING.md
https://github.com/mockito/mockito/blob/release/2.x/.github/CONTRIBUTING.md
https://github.com/mockito/mockito/blob/release/2.x/.github/CONTRIBUTING.md
https://blog.scottnonnenberg.com/top-ten-pull-request-review-mistakes/
https://blog.scottnonnenberg.com/top-ten-pull-request-review-mistakes/
https://www.atlassian.com/blog/git/written-unwritten-guide-pull-requests
https://www.atlassian.com/blog/git/written-unwritten-guide-pull-requests
https://docs.djangoproject.com/en/dev/internals/contributing/committing-code/
https://docs.djangoproject.com/en/dev/internals/contributing/committing-code/
http://www.esec-fse.org/index
http://www.esec-fse.org/index
https://www.gerritcodereview.com/
https://github.com/blog/1943-how-to-write-the-perfect-pull-request
https://github.com/blog/1943-how-to-write-the-perfect-pull-request
http://www.icse-conferences.org
http://www.icse-conferences.org
http://conferences.computer.org/icsm/
https://github.com/mockito/mockito
http://www.msrconf.org
http://www.msrconf.org
https://github.com/spring-projects/spring-framework/blob/master/CONTRIBUTING.md
https://github.com/spring-projects/spring-framework/blob/master/CONTRIBUTING.md
https://apache.org/dev/contributors.html
https://tosem.acm.org
https://www.computer.org/web/tse
https://www.computer.org/web/tse
http://yeoman.io/contributing/pull-request.html
http://yeoman.io/contributing/pull-request.html
http://ldn.linuxfoundation.org/book/how-participate-linux-community
http://ldn.linuxfoundation.org/book/how-participate-linux-community
https://doi.org/10.1111/j.1753-6405.2007.00096.x
https://doi.org/10.1111/j.1753-6405.2007.00096.x


ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA A. Ram, A. A. Sawant, M. Castelluccio, A. Bacchelli

[58] Oleksii Kononenko, Olga Baysal, and Michael W Godfrey. 2016. Code review
quality: how developers see it. In Proceedings of the 38th International Conference
on Software Engineering. ACM, 1028–1038.

[59] Vladimir Kovalenko and Alberto Bacchelli. 2018. Code review for newcomers: is
it different?. In Proceedings of the 11th International Workshop on Cooperative and
Human Aspects of Software Engineering. 29–32.

[60] Klaus Krippendorff. 2011. Computing Krippendorff’s alpha-reliability. (2011).
[61] William Lidwell, Kritina Holden, and Jill Butler. 2010. Universal Principles of

Design, Revised and Updated: 125 Ways to Enhance Usability, Influence Perception,
Increase Appeal, Make Better Design Decisions, and Teach through Design (2nd ed.).
Rockport Publishers.

[62] Jennifer Marlow, Laura Dabbish, and Jim Herbsleb. 2013. Impression formation
in online peer production: activity traces and personal profiles in github. In
Proceedings of the 2013 conference on Computer supported cooperative work. ACM,
117–128.

[63] Michael C Medlock, Dennis Wixon, Mark Terrano, Ramon Romero, and Bill
Fulton. 2002. Using the RITE method to improve products: A definition and a
case study. Usability Professionals Association 51 (2002).

[64] Sebastiaan Oosterwaal, Arie van Deursen, Roberta Coelho, Anand Ashok Sawant,
and Alberto Bacchelli. 2016. Visualizing code and coverage changes for code
review. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering. ACM, 1038–1041.

[65] Rohan Padhye, Senthil Mani, and Vibha Singhal Sinha. 2014. A study of external
community contribution to open-source projects on GitHub. In Proceedings of
the 11th Working Conference on Mining Software Repositories. ACM, 332–335.

[66] Achyudh Ram, Anand Ashok Sawant, Marco Castelluccio, and Alberto Bacchelli.
2018. Data and Material for “What Makes A Code Change Easier To Review?”.
https://doi.org/10.5281/zenodo.1323659. (2018).

[67] P. Rigby, B. Cleary, F. Painchaud, M.A. Storey, and D. German. 2012. Open Source
Peer Review–Lessons and Recommendations for Closed Source. IEEE Software
(2012).

[68] Peter C Rigby and Christian Bird. 2013. Convergent contemporary software peer
review practices. In Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering. ACM, 202–212.

[69] Caitlin Sadowski, Emma Söderberg, Luke Church, Michal Sipko, and Alberto
Bacchelli. 2018. Modern Code Review: A Case Study at Google. In Proceedings of
the 40th ACM/IEEE International Conference on Software Engineering, Software
Engineering in Practice Track. 181–190.

[70] Walt Scacchi. 2007. Free/open source software development: Recent research
results and methods. Advances in Computers 69 (2007), 243–295.

[71] Marcelino Campos Oliveira Silva, Marco Tulio Valente, and Ricardo Terra. 2016.
Does Technical Debt Lead to the Rejection of Pull Requests? arXiv preprint
arXiv:1604.01450 (2016).

[72] Daricélio Moreira Soares, Manoel Limeira de Lima Júnior, Leonardo Murta, and
Alexandre Plastino. 2015. Acceptance factors of pull requests in open-source
projects. In Proceedings of the 30th Annual ACM Symposium on Applied Computing.
ACM, 1541–1546.

[73] Davide Spadini, Mauricio Aniche, Margaret Storey, Magiel Bruntink, and Alberto
Bacchelli. 2018. When Testing Meets Code Review: Why and How Developers
Review Tests. In Proceedings of the 40th ACM/IEEE International Conference on
Software Engineering. 677–687.

[74] Yida Tao, Yingnong Dang, Tao Xie, Dongmei Zhang, and Sunghun Kim. 2012.
How do software engineers understand code changes?: an exploratory study in
industry. In Proceedings of the ACM SIGSOFT 20th International Symposium on
the Foundations of Software Engineering. ACM, 51.

[75] B.C. Taylor and T.R. Lindlof. 2010. Qualitative communication research methods.
Sage Publications, Incorporated.

[76] Jason Tsay, Laura Dabbish, and James Herbsleb. 2014. Influence of social and
technical factors for evaluating contribution in GitHub. In Proceedings of the 36th
international conference on Software engineering. ACM, 356–366.

[77] Jason Tsay, Laura Dabbish, and James Herbsleb. 2014. Let’s talk about it: evaluat-
ing contributions through discussion in GitHub. In Proceedings of the 22nd ACM
SIGSOFT international symposium on foundations of software engineering. ACM,
144–154.

[78] Peter Weißgerber, Daniel Neu, and Stephan Diehl. 2008. Small patches get in!.
In Proceedings of the 2008 international working conference on Mining software
repositories. ACM, 67–76.

[79] William Foote Ed Whyte. 1991. Participatory action research. Sage Publications,
Inc.

[80] Claes Wohlin. 2014. Guidelines for snowballing in systematic literature studies
and a replication in software engineering. In Proceedings of the 18th international
conference on evaluation and assessment in software engineering. ACM, 38.

[81] Yue Yu, Huaimin Wang, Vladimir Filkov, Premkumar Devanbu, and Bogdan
Vasilescu. 2015. Wait for it: determinants of pull request evaluation latency
on GitHub. In Mining software repositories (MSR), 2015 IEEE/ACM 12th working
conference on. IEEE, 367–371.

[82] Yang Zhang, Gang Yin, Yue Yu, and Huaimin Wang. 2014. A exploratory
study of@-mention in github’s pull-requests. In Software Engineering Conference
(APSEC), 2014 21st Asia-Pacific, Vol. 1. IEEE, 343–350.

https://doi.org/10.5281/zenodo.1323659

	Abstract
	1 Introduction
	2 Background
	3 Research Methodology
	3.1 White and Gray Literature Survey (RQ1)
	3.2 Task-based Interviews (RQ2.a)
	3.3 Developers' Feedback on Changes (RQ2.b)

	4 RQ1 – A Good Code Change According to Literature
	5 RQ2 – Developers' Perspective on Code Change Reviewability
	5.1 RQ2.a – Task-based Interview Results
	5.2 RQ2.b – Feedback on Reviewability

	6 Code Change reviewability
	7 Discussion
	7.1 Reviewability and Rejection Decisions
	7.2 Review Comments VS. Collected Feedback
	7.3 Test Inclusion and Reviewability
	7.4 Results Evaluation and Quality Criteria

	8 Conclusion
	Acknowledgments
	References

