Line data Source code
1 : /*
2 : * Copyright (C) 2010 Google Inc. All rights reserved.
3 : *
4 : * Redistribution and use in source and binary forms, with or without
5 : * modification, are permitted provided that the following conditions
6 : * are met:
7 : *
8 : * 1. Redistributions of source code must retain the above copyright
9 : * notice, this list of conditions and the following disclaimer.
10 : * 2. Redistributions in binary form must reproduce the above copyright
11 : * notice, this list of conditions and the following disclaimer in the
12 : * documentation and/or other materials provided with the distribution.
13 : * 3. Neither the name of Apple Computer, Inc. ("Apple") nor the names of
14 : * its contributors may be used to endorse or promote products derived
15 : * from this software without specific prior written permission.
16 : *
17 : * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
18 : * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
19 : * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
20 : * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
21 : * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
22 : * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
23 : * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24 : * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 : * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 : * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 : */
28 :
29 : #include "HRTFElevation.h"
30 :
31 : #include <speex/speex_resampler.h>
32 : #include "mozilla/PodOperations.h"
33 : #include "AudioSampleFormat.h"
34 :
35 : #include "IRC_Composite_C_R0195-incl.cpp"
36 :
37 : using namespace std;
38 : using namespace mozilla;
39 :
40 : namespace WebCore {
41 :
42 : const int elevationSpacing = irc_composite_c_r0195_elevation_interval;
43 : const int firstElevation = irc_composite_c_r0195_first_elevation;
44 : const int numberOfElevations = MOZ_ARRAY_LENGTH(irc_composite_c_r0195);
45 :
46 : const unsigned HRTFElevation::NumberOfTotalAzimuths = 360 / 15 * 8;
47 :
48 : const int rawSampleRate = irc_composite_c_r0195_sample_rate;
49 :
50 : // Number of frames in an individual impulse response.
51 : const size_t ResponseFrameSize = 256;
52 :
53 0 : size_t HRTFElevation::sizeOfIncludingThis(mozilla::MallocSizeOf aMallocSizeOf) const
54 : {
55 0 : size_t amount = aMallocSizeOf(this);
56 :
57 0 : amount += m_kernelListL.ShallowSizeOfExcludingThis(aMallocSizeOf);
58 0 : for (size_t i = 0; i < m_kernelListL.Length(); i++) {
59 0 : amount += m_kernelListL[i]->sizeOfIncludingThis(aMallocSizeOf);
60 : }
61 :
62 0 : return amount;
63 : }
64 :
65 0 : size_t HRTFElevation::fftSizeForSampleRate(float sampleRate)
66 : {
67 : // The IRCAM HRTF impulse responses were 512 sample-frames @44.1KHz,
68 : // but these have been truncated to 256 samples.
69 : // An FFT-size of twice impulse response size is used (for convolution).
70 : // So for sample rates of 44.1KHz an FFT size of 512 is good.
71 : // We double the FFT-size only for sample rates at least double this.
72 : // If the FFT size is too large then the impulse response will be padded
73 : // with zeros without the fade-out provided by HRTFKernel.
74 0 : MOZ_ASSERT(sampleRate > 1.0 && sampleRate < 1048576.0);
75 :
76 : // This is the size if we were to use all raw response samples.
77 : unsigned resampledLength =
78 0 : floorf(ResponseFrameSize * sampleRate / rawSampleRate);
79 : // Keep things semi-sane, with max FFT size of 1024.
80 0 : unsigned size = min(resampledLength, 1023U);
81 : // Ensure a minimum of 2 * WEBAUDIO_BLOCK_SIZE (with the size++ below) for
82 : // FFTConvolver and set the 8 least significant bits for rounding up to
83 : // the next power of 2 below.
84 0 : size |= 2 * WEBAUDIO_BLOCK_SIZE - 1;
85 : // Round up to the next power of 2, making the FFT size no more than twice
86 : // the impulse response length. This doubles size for values that are
87 : // already powers of 2. This works by filling in alls bit to right of the
88 : // most significant bit. The most significant bit is no greater than
89 : // 1 << 9, and the least significant 8 bits were already set above, so
90 : // there is at most one bit to add.
91 0 : size |= (size >> 1);
92 0 : size++;
93 0 : MOZ_ASSERT((size & (size - 1)) == 0);
94 :
95 0 : return size;
96 : }
97 :
98 0 : nsReturnRef<HRTFKernel> HRTFElevation::calculateKernelForAzimuthElevation(int azimuth, int elevation, SpeexResamplerState* resampler, float sampleRate)
99 : {
100 0 : int elevationIndex = (elevation - firstElevation) / elevationSpacing;
101 0 : MOZ_ASSERT(elevationIndex >= 0 && elevationIndex <= numberOfElevations);
102 :
103 0 : int numberOfAzimuths = irc_composite_c_r0195[elevationIndex].count;
104 0 : int azimuthSpacing = 360 / numberOfAzimuths;
105 0 : MOZ_ASSERT(numberOfAzimuths * azimuthSpacing == 360);
106 :
107 0 : int azimuthIndex = azimuth / azimuthSpacing;
108 0 : MOZ_ASSERT(azimuthIndex * azimuthSpacing == azimuth);
109 :
110 : const int16_t (&impulse_response_data)[ResponseFrameSize] =
111 0 : irc_composite_c_r0195[elevationIndex].azimuths[azimuthIndex];
112 :
113 : // When libspeex_resampler is compiled with FIXED_POINT, samples in
114 : // speex_resampler_process_float are rounded directly to int16_t, which
115 : // only works well if the floats are in the range +/-32767. On such
116 : // platforms it's better to resample before converting to float anyway.
117 : #ifdef MOZ_SAMPLE_TYPE_S16
118 : # define RESAMPLER_PROCESS speex_resampler_process_int
119 : const int16_t* response = impulse_response_data;
120 : const int16_t* resampledResponse;
121 : #else
122 : # define RESAMPLER_PROCESS speex_resampler_process_float
123 : float response[ResponseFrameSize];
124 0 : ConvertAudioSamples(impulse_response_data, response, ResponseFrameSize);
125 : float* resampledResponse;
126 : #endif
127 :
128 : // Note that depending on the fftSize returned by the panner, we may be truncating the impulse response.
129 0 : const size_t resampledResponseLength = fftSizeForSampleRate(sampleRate) / 2;
130 :
131 0 : AutoTArray<AudioDataValue, 2 * ResponseFrameSize> resampled;
132 0 : if (sampleRate == rawSampleRate) {
133 0 : resampledResponse = response;
134 0 : MOZ_ASSERT(resampledResponseLength == ResponseFrameSize);
135 : } else {
136 0 : resampled.SetLength(resampledResponseLength);
137 0 : resampledResponse = resampled.Elements();
138 0 : speex_resampler_skip_zeros(resampler);
139 :
140 : // Feed the input buffer into the resampler.
141 0 : spx_uint32_t in_len = ResponseFrameSize;
142 0 : spx_uint32_t out_len = resampled.Length();
143 0 : RESAMPLER_PROCESS(resampler, 0, response, &in_len,
144 0 : resampled.Elements(), &out_len);
145 :
146 0 : if (out_len < resampled.Length()) {
147 : // The input should have all been processed.
148 0 : MOZ_ASSERT(in_len == ResponseFrameSize);
149 : // Feed in zeros get the data remaining in the resampler.
150 0 : spx_uint32_t out_index = out_len;
151 0 : in_len = speex_resampler_get_input_latency(resampler);
152 0 : out_len = resampled.Length() - out_index;
153 0 : RESAMPLER_PROCESS(resampler, 0, nullptr, &in_len,
154 0 : resampled.Elements() + out_index, &out_len);
155 0 : out_index += out_len;
156 : // There may be some uninitialized samples remaining for very low
157 : // sample rates.
158 0 : PodZero(resampled.Elements() + out_index,
159 0 : resampled.Length() - out_index);
160 : }
161 :
162 0 : speex_resampler_reset_mem(resampler);
163 : }
164 :
165 : #ifdef MOZ_SAMPLE_TYPE_S16
166 : AutoTArray<float, 2 * ResponseFrameSize> floatArray;
167 : floatArray.SetLength(resampledResponseLength);
168 : float *floatResponse = floatArray.Elements();
169 : ConvertAudioSamples(resampledResponse,
170 : floatResponse, resampledResponseLength);
171 : #else
172 0 : float *floatResponse = resampledResponse;
173 : #endif
174 : #undef RESAMPLER_PROCESS
175 :
176 0 : return HRTFKernel::create(floatResponse, resampledResponseLength, sampleRate);
177 : }
178 :
179 : // The range of elevations for the IRCAM impulse responses varies depending on azimuth, but the minimum elevation appears to always be -45.
180 : //
181 : // Here's how it goes:
182 : static int maxElevations[] = {
183 : // Azimuth
184 : //
185 : 90, // 0
186 : 45, // 15
187 : 60, // 30
188 : 45, // 45
189 : 75, // 60
190 : 45, // 75
191 : 60, // 90
192 : 45, // 105
193 : 75, // 120
194 : 45, // 135
195 : 60, // 150
196 : 45, // 165
197 : 75, // 180
198 : 45, // 195
199 : 60, // 210
200 : 45, // 225
201 : 75, // 240
202 : 45, // 255
203 : 60, // 270
204 : 45, // 285
205 : 75, // 300
206 : 45, // 315
207 : 60, // 330
208 : 45 // 345
209 : };
210 :
211 0 : nsReturnRef<HRTFElevation> HRTFElevation::createBuiltin(int elevation, float sampleRate)
212 : {
213 0 : if (elevation < firstElevation ||
214 0 : elevation > firstElevation + numberOfElevations * elevationSpacing ||
215 0 : (elevation / elevationSpacing) * elevationSpacing != elevation)
216 0 : return nsReturnRef<HRTFElevation>();
217 :
218 : // Spacing, in degrees, between every azimuth loaded from resource.
219 : // Some elevations do not have data for all these intervals.
220 : // See maxElevations.
221 : static const unsigned AzimuthSpacing = 15;
222 : static const unsigned NumberOfRawAzimuths = 360 / AzimuthSpacing;
223 : static_assert(AzimuthSpacing * NumberOfRawAzimuths == 360,
224 : "Not a multiple");
225 : static const unsigned InterpolationFactor =
226 : NumberOfTotalAzimuths / NumberOfRawAzimuths;
227 : static_assert(NumberOfTotalAzimuths ==
228 : NumberOfRawAzimuths * InterpolationFactor, "Not a multiple");
229 :
230 0 : HRTFKernelList kernelListL;
231 0 : kernelListL.SetLength(NumberOfTotalAzimuths);
232 :
233 0 : SpeexResamplerState* resampler = sampleRate == rawSampleRate ? nullptr :
234 0 : speex_resampler_init(1, rawSampleRate, sampleRate,
235 0 : SPEEX_RESAMPLER_QUALITY_MIN, nullptr);
236 :
237 : // Load convolution kernels from HRTF files.
238 0 : int interpolatedIndex = 0;
239 0 : for (unsigned rawIndex = 0; rawIndex < NumberOfRawAzimuths; ++rawIndex) {
240 : // Don't let elevation exceed maximum for this azimuth.
241 0 : int maxElevation = maxElevations[rawIndex];
242 0 : int actualElevation = min(elevation, maxElevation);
243 :
244 0 : kernelListL[interpolatedIndex] = calculateKernelForAzimuthElevation(rawIndex * AzimuthSpacing, actualElevation, resampler, sampleRate);
245 :
246 0 : interpolatedIndex += InterpolationFactor;
247 : }
248 :
249 0 : if (resampler)
250 0 : speex_resampler_destroy(resampler);
251 :
252 : // Now go back and interpolate intermediate azimuth values.
253 0 : for (unsigned i = 0; i < NumberOfTotalAzimuths; i += InterpolationFactor) {
254 0 : int j = (i + InterpolationFactor) % NumberOfTotalAzimuths;
255 :
256 : // Create the interpolated convolution kernels and delays.
257 0 : for (unsigned jj = 1; jj < InterpolationFactor; ++jj) {
258 0 : float x = float(jj) / float(InterpolationFactor); // interpolate from 0 -> 1
259 :
260 0 : kernelListL[i + jj] = HRTFKernel::createInterpolatedKernel(kernelListL[i], kernelListL[j], x);
261 : }
262 : }
263 :
264 0 : return nsReturnRef<HRTFElevation>(new HRTFElevation(&kernelListL, elevation, sampleRate));
265 : }
266 :
267 0 : nsReturnRef<HRTFElevation> HRTFElevation::createByInterpolatingSlices(HRTFElevation* hrtfElevation1, HRTFElevation* hrtfElevation2, float x, float sampleRate)
268 : {
269 0 : MOZ_ASSERT(hrtfElevation1 && hrtfElevation2);
270 0 : if (!hrtfElevation1 || !hrtfElevation2)
271 0 : return nsReturnRef<HRTFElevation>();
272 :
273 0 : MOZ_ASSERT(x >= 0.0 && x < 1.0);
274 :
275 0 : HRTFKernelList kernelListL;
276 0 : kernelListL.SetLength(NumberOfTotalAzimuths);
277 :
278 0 : const HRTFKernelList& kernelListL1 = hrtfElevation1->kernelListL();
279 0 : const HRTFKernelList& kernelListL2 = hrtfElevation2->kernelListL();
280 :
281 : // Interpolate kernels of corresponding azimuths of the two elevations.
282 0 : for (unsigned i = 0; i < NumberOfTotalAzimuths; ++i) {
283 0 : kernelListL[i] = HRTFKernel::createInterpolatedKernel(kernelListL1[i], kernelListL2[i], x);
284 : }
285 :
286 : // Interpolate elevation angle.
287 0 : double angle = (1.0 - x) * hrtfElevation1->elevationAngle() + x * hrtfElevation2->elevationAngle();
288 :
289 0 : return nsReturnRef<HRTFElevation>(new HRTFElevation(&kernelListL, static_cast<int>(angle), sampleRate));
290 : }
291 :
292 0 : void HRTFElevation::getKernelsFromAzimuth(double azimuthBlend, unsigned azimuthIndex, HRTFKernel* &kernelL, HRTFKernel* &kernelR, double& frameDelayL, double& frameDelayR)
293 : {
294 0 : bool checkAzimuthBlend = azimuthBlend >= 0.0 && azimuthBlend < 1.0;
295 0 : MOZ_ASSERT(checkAzimuthBlend);
296 0 : if (!checkAzimuthBlend)
297 0 : azimuthBlend = 0.0;
298 :
299 0 : unsigned numKernels = m_kernelListL.Length();
300 :
301 0 : bool isIndexGood = azimuthIndex < numKernels;
302 0 : MOZ_ASSERT(isIndexGood);
303 0 : if (!isIndexGood) {
304 0 : kernelL = 0;
305 0 : kernelR = 0;
306 0 : return;
307 : }
308 :
309 : // Return the left and right kernels,
310 : // using symmetry to produce the right kernel.
311 0 : kernelL = m_kernelListL[azimuthIndex];
312 0 : int azimuthIndexR = (numKernels - azimuthIndex) % numKernels;
313 0 : kernelR = m_kernelListL[azimuthIndexR];
314 :
315 0 : frameDelayL = kernelL->frameDelay();
316 0 : frameDelayR = kernelR->frameDelay();
317 :
318 0 : int azimuthIndex2L = (azimuthIndex + 1) % numKernels;
319 0 : double frameDelay2L = m_kernelListL[azimuthIndex2L]->frameDelay();
320 0 : int azimuthIndex2R = (numKernels - azimuthIndex2L) % numKernels;
321 0 : double frameDelay2R = m_kernelListL[azimuthIndex2R]->frameDelay();
322 :
323 : // Linearly interpolate delays.
324 0 : frameDelayL = (1.0 - azimuthBlend) * frameDelayL + azimuthBlend * frameDelay2L;
325 0 : frameDelayR = (1.0 - azimuthBlend) * frameDelayR + azimuthBlend * frameDelay2R;
326 : }
327 :
328 : } // namespace WebCore
|