Line data Source code
1 : /* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*-
2 : * This Source Code Form is subject to the terms of the Mozilla Public
3 : * License, v. 2.0. If a copy of the MPL was not distributed with this
4 : * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
5 :
6 : #include "PathHelpers.h"
7 :
8 : namespace mozilla {
9 : namespace gfx {
10 :
11 : UserDataKey sDisablePixelSnapping;
12 :
13 : void
14 29 : AppendRectToPath(PathBuilder* aPathBuilder,
15 : const Rect& aRect,
16 : bool aDrawClockwise)
17 : {
18 29 : if (aDrawClockwise) {
19 19 : aPathBuilder->MoveTo(aRect.TopLeft());
20 19 : aPathBuilder->LineTo(aRect.TopRight());
21 19 : aPathBuilder->LineTo(aRect.BottomRight());
22 19 : aPathBuilder->LineTo(aRect.BottomLeft());
23 : } else {
24 10 : aPathBuilder->MoveTo(aRect.TopRight());
25 10 : aPathBuilder->LineTo(aRect.TopLeft());
26 10 : aPathBuilder->LineTo(aRect.BottomLeft());
27 10 : aPathBuilder->LineTo(aRect.BottomRight());
28 : }
29 29 : aPathBuilder->Close();
30 29 : }
31 :
32 : void
33 69 : AppendRoundedRectToPath(PathBuilder* aPathBuilder,
34 : const Rect& aRect,
35 : const RectCornerRadii& aRadii,
36 : bool aDrawClockwise)
37 : {
38 : // For CW drawing, this looks like:
39 : //
40 : // ...******0** 1 C
41 : // ****
42 : // *** 2
43 : // **
44 : // *
45 : // *
46 : // 3
47 : // *
48 : // *
49 : //
50 : // Where 0, 1, 2, 3 are the control points of the Bezier curve for
51 : // the corner, and C is the actual corner point.
52 : //
53 : // At the start of the loop, the current point is assumed to be
54 : // the point adjacent to the top left corner on the top
55 : // horizontal. Note that corner indices start at the top left and
56 : // continue clockwise, whereas in our loop i = 0 refers to the top
57 : // right corner.
58 : //
59 : // When going CCW, the control points are swapped, and the first
60 : // corner that's drawn is the top left (along with the top segment).
61 : //
62 : // There is considerable latitude in how one chooses the four
63 : // control points for a Bezier curve approximation to an ellipse.
64 : // For the overall path to be continuous and show no corner at the
65 : // endpoints of the arc, points 0 and 3 must be at the ends of the
66 : // straight segments of the rectangle; points 0, 1, and C must be
67 : // collinear; and points 3, 2, and C must also be collinear. This
68 : // leaves only two free parameters: the ratio of the line segments
69 : // 01 and 0C, and the ratio of the line segments 32 and 3C. See
70 : // the following papers for extensive discussion of how to choose
71 : // these ratios:
72 : //
73 : // Dokken, Tor, et al. "Good approximation of circles by
74 : // curvature-continuous Bezier curves." Computer-Aided
75 : // Geometric Design 7(1990) 33--41.
76 : // Goldapp, Michael. "Approximation of circular arcs by cubic
77 : // polynomials." Computer-Aided Geometric Design 8(1991) 227--238.
78 : // Maisonobe, Luc. "Drawing an elliptical arc using polylines,
79 : // quadratic, or cubic Bezier curves."
80 : // http://www.spaceroots.org/documents/ellipse/elliptical-arc.pdf
81 : //
82 : // We follow the approach in section 2 of Goldapp (least-error,
83 : // Hermite-type approximation) and make both ratios equal to
84 : //
85 : // 2 2 + n - sqrt(2n + 28)
86 : // alpha = - * ---------------------
87 : // 3 n - 4
88 : //
89 : // where n = 3( cbrt(sqrt(2)+1) - cbrt(sqrt(2)-1) ).
90 : //
91 : // This is the result of Goldapp's equation (10b) when the angle
92 : // swept out by the arc is pi/2, and the parameter "a-bar" is the
93 : // expression given immediately below equation (21).
94 : //
95 : // Using this value, the maximum radial error for a circle, as a
96 : // fraction of the radius, is on the order of 0.2 x 10^-3.
97 : // Neither Dokken nor Goldapp discusses error for a general
98 : // ellipse; Maisonobe does, but his choice of control points
99 : // follows different constraints, and Goldapp's expression for
100 : // 'alpha' gives much smaller radial error, even for very flat
101 : // ellipses, than Maisonobe's equivalent.
102 : //
103 : // For the various corners and for each axis, the sign of this
104 : // constant changes, or it might be 0 -- it's multiplied by the
105 : // appropriate multiplier from the list before using.
106 :
107 69 : const Float alpha = Float(0.55191497064665766025);
108 :
109 : typedef struct { Float a, b; } twoFloats;
110 :
111 : twoFloats cwCornerMults[4] = { { -1, 0 }, // cc == clockwise
112 : { 0, -1 },
113 : { +1, 0 },
114 69 : { 0, +1 } };
115 : twoFloats ccwCornerMults[4] = { { +1, 0 }, // ccw == counter-clockwise
116 : { 0, -1 },
117 : { -1, 0 },
118 69 : { 0, +1 } };
119 :
120 69 : twoFloats *cornerMults = aDrawClockwise ? cwCornerMults : ccwCornerMults;
121 :
122 138 : Point cornerCoords[] = { aRect.TopLeft(), aRect.TopRight(),
123 207 : aRect.BottomRight(), aRect.BottomLeft() };
124 :
125 69 : Point pc, p0, p1, p2, p3;
126 :
127 69 : if (aDrawClockwise) {
128 104 : aPathBuilder->MoveTo(Point(aRect.X() + aRadii[eCornerTopLeft].width,
129 104 : aRect.Y()));
130 : } else {
131 34 : aPathBuilder->MoveTo(Point(aRect.X() + aRect.Width() - aRadii[eCornerTopRight].width,
132 34 : aRect.Y()));
133 : }
134 :
135 345 : for (int i = 0; i < 4; ++i) {
136 : // the corner index -- either 1 2 3 0 (cw) or 0 3 2 1 (ccw)
137 276 : int c = aDrawClockwise ? ((i+1) % 4) : ((4-i) % 4);
138 :
139 : // i+2 and i+3 respectively. These are used to index into the corner
140 : // multiplier table, and were deduced by calculating out the long form
141 : // of each corner and finding a pattern in the signs and values.
142 276 : int i2 = (i+2) % 4;
143 276 : int i3 = (i+3) % 4;
144 :
145 276 : pc = cornerCoords[c];
146 :
147 276 : if (aRadii[c].width > 0.0 && aRadii[c].height > 0.0) {
148 276 : p0.x = pc.x + cornerMults[i].a * aRadii[c].width;
149 276 : p0.y = pc.y + cornerMults[i].b * aRadii[c].height;
150 :
151 276 : p3.x = pc.x + cornerMults[i3].a * aRadii[c].width;
152 276 : p3.y = pc.y + cornerMults[i3].b * aRadii[c].height;
153 :
154 276 : p1.x = p0.x + alpha * cornerMults[i2].a * aRadii[c].width;
155 276 : p1.y = p0.y + alpha * cornerMults[i2].b * aRadii[c].height;
156 :
157 276 : p2.x = p3.x - alpha * cornerMults[i3].a * aRadii[c].width;
158 276 : p2.y = p3.y - alpha * cornerMults[i3].b * aRadii[c].height;
159 :
160 276 : aPathBuilder->LineTo(p0);
161 276 : aPathBuilder->BezierTo(p1, p2, p3);
162 : } else {
163 0 : aPathBuilder->LineTo(pc);
164 : }
165 : }
166 :
167 69 : aPathBuilder->Close();
168 69 : }
169 :
170 : void
171 0 : AppendEllipseToPath(PathBuilder* aPathBuilder,
172 : const Point& aCenter,
173 : const Size& aDimensions)
174 : {
175 0 : Size halfDim = aDimensions / 2.f;
176 0 : Rect rect(aCenter - Point(halfDim.width, halfDim.height), aDimensions);
177 0 : RectCornerRadii radii(halfDim.width, halfDim.height);
178 :
179 0 : AppendRoundedRectToPath(aPathBuilder, rect, radii);
180 0 : }
181 :
182 : bool
183 0 : SnapLineToDevicePixelsForStroking(Point& aP1, Point& aP2,
184 : const DrawTarget& aDrawTarget,
185 : Float aLineWidth)
186 : {
187 0 : Matrix mat = aDrawTarget.GetTransform();
188 0 : if (mat.HasNonTranslation()) {
189 0 : return false;
190 : }
191 0 : if (aP1.x != aP2.x && aP1.y != aP2.y) {
192 0 : return false; // not a horizontal or vertical line
193 : }
194 0 : Point p1 = aP1 + mat.GetTranslation(); // into device space
195 0 : Point p2 = aP2 + mat.GetTranslation();
196 0 : p1.Round();
197 0 : p2.Round();
198 0 : p1 -= mat.GetTranslation(); // back into user space
199 0 : p2 -= mat.GetTranslation();
200 :
201 0 : aP1 = p1;
202 0 : aP2 = p2;
203 :
204 0 : bool lineWidthIsOdd = (int(aLineWidth) % 2) == 1;
205 0 : if (lineWidthIsOdd) {
206 0 : if (aP1.x == aP2.x) {
207 : // snap vertical line, adding 0.5 to align it to be mid-pixel:
208 0 : aP1 += Point(0.5, 0);
209 0 : aP2 += Point(0.5, 0);
210 : } else {
211 : // snap horizontal line, adding 0.5 to align it to be mid-pixel:
212 0 : aP1 += Point(0, 0.5);
213 0 : aP2 += Point(0, 0.5);
214 : }
215 : }
216 0 : return true;
217 : }
218 :
219 : void
220 0 : StrokeSnappedEdgesOfRect(const Rect& aRect, DrawTarget& aDrawTarget,
221 : const ColorPattern& aColor,
222 : const StrokeOptions& aStrokeOptions)
223 : {
224 0 : if (aRect.IsEmpty()) {
225 0 : return;
226 : }
227 :
228 0 : Point p1 = aRect.TopLeft();
229 0 : Point p2 = aRect.BottomLeft();
230 : SnapLineToDevicePixelsForStroking(p1, p2, aDrawTarget,
231 0 : aStrokeOptions.mLineWidth);
232 0 : aDrawTarget.StrokeLine(p1, p2, aColor, aStrokeOptions);
233 :
234 0 : p1 = aRect.BottomLeft();
235 0 : p2 = aRect.BottomRight();
236 : SnapLineToDevicePixelsForStroking(p1, p2, aDrawTarget,
237 0 : aStrokeOptions.mLineWidth);
238 0 : aDrawTarget.StrokeLine(p1, p2, aColor, aStrokeOptions);
239 :
240 0 : p1 = aRect.TopLeft();
241 0 : p2 = aRect.TopRight();
242 : SnapLineToDevicePixelsForStroking(p1, p2, aDrawTarget,
243 0 : aStrokeOptions.mLineWidth);
244 0 : aDrawTarget.StrokeLine(p1, p2, aColor, aStrokeOptions);
245 :
246 0 : p1 = aRect.TopRight();
247 0 : p2 = aRect.BottomRight();
248 : SnapLineToDevicePixelsForStroking(p1, p2, aDrawTarget,
249 0 : aStrokeOptions.mLineWidth);
250 0 : aDrawTarget.StrokeLine(p1, p2, aColor, aStrokeOptions);
251 : }
252 :
253 : // The logic for this comes from _cairo_stroke_style_max_distance_from_path
254 : Margin
255 0 : MaxStrokeExtents(const StrokeOptions& aStrokeOptions,
256 : const Matrix& aTransform)
257 : {
258 0 : double styleExpansionFactor = 0.5f;
259 :
260 0 : if (aStrokeOptions.mLineCap == CapStyle::SQUARE) {
261 0 : styleExpansionFactor = M_SQRT1_2;
262 : }
263 :
264 0 : if (aStrokeOptions.mLineJoin == JoinStyle::MITER &&
265 0 : styleExpansionFactor < M_SQRT2 * aStrokeOptions.mMiterLimit) {
266 0 : styleExpansionFactor = M_SQRT2 * aStrokeOptions.mMiterLimit;
267 : }
268 :
269 0 : styleExpansionFactor *= aStrokeOptions.mLineWidth;
270 :
271 0 : double dx = styleExpansionFactor * hypot(aTransform._11, aTransform._21);
272 0 : double dy = styleExpansionFactor * hypot(aTransform._22, aTransform._12);
273 :
274 : // Even if the stroke only partially covers a pixel, it must still render to
275 : // full pixels. Round up to compensate for this.
276 0 : dx = ceil(dx);
277 0 : dy = ceil(dy);
278 :
279 0 : return Margin(dy, dx, dy, dx);
280 : }
281 :
282 : } // namespace gfx
283 : } // namespace mozilla
|