Line data Source code
1 : /* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*-
2 : * This Source Code Form is subject to the terms of the Mozilla Public
3 : * License, v. 2.0. If a copy of the MPL was not distributed with this
4 : * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
5 :
6 : #ifndef MOZILLA_GFX_PATHHELPERS_H_
7 : #define MOZILLA_GFX_PATHHELPERS_H_
8 :
9 : #include "2D.h"
10 : #include "UserData.h"
11 :
12 : #include <cmath>
13 :
14 : namespace mozilla {
15 : namespace gfx {
16 :
17 : // Kappa constant for 90-degree angle
18 : const Float kKappaFactor = 0.55191497064665766025f;
19 :
20 : // Calculate kappa constant for partial curve. The sign of angle in the
21 : // tangent will actually ensure this is negative for a counter clockwise
22 : // sweep, so changing signs later isn't needed.
23 0 : inline Float ComputeKappaFactor(Float aAngle)
24 : {
25 0 : return (4.0f / 3.0f) * tanf(aAngle / 4.0f);
26 : }
27 :
28 : /**
29 : * Draws a partial arc <= 90 degrees given exact start and end points.
30 : * Assumes that it is continuing from an already specified start point.
31 : */
32 : template <typename T>
33 0 : inline void PartialArcToBezier(T* aSink,
34 : const Point& aStartOffset, const Point& aEndOffset,
35 : const Matrix& aTransform,
36 : Float aKappaFactor = kKappaFactor)
37 : {
38 : Point cp1 =
39 0 : aStartOffset + Point(-aStartOffset.y, aStartOffset.x) * aKappaFactor;
40 :
41 : Point cp2 =
42 0 : aEndOffset + Point(aEndOffset.y, -aEndOffset.x) * aKappaFactor;
43 :
44 0 : aSink->BezierTo(aTransform.TransformPoint(cp1),
45 0 : aTransform.TransformPoint(cp2),
46 0 : aTransform.TransformPoint(aEndOffset));
47 0 : }
48 :
49 : /**
50 : * Draws an acute arc (<= 90 degrees) given exact start and end points.
51 : * Specialized version avoiding kappa calculation.
52 : */
53 : template <typename T>
54 0 : inline void AcuteArcToBezier(T* aSink,
55 : const Point& aOrigin, const Size& aRadius,
56 : const Point& aStartPoint, const Point& aEndPoint,
57 : Float aKappaFactor = kKappaFactor)
58 : {
59 0 : aSink->LineTo(aStartPoint);
60 0 : if (!aRadius.IsEmpty()) {
61 0 : Float kappaX = aKappaFactor * aRadius.width / aRadius.height;
62 0 : Float kappaY = aKappaFactor * aRadius.height / aRadius.width;
63 0 : Point startOffset = aStartPoint - aOrigin;
64 0 : Point endOffset = aEndPoint - aOrigin;
65 0 : aSink->BezierTo(aStartPoint + Point(-startOffset.y * kappaX, startOffset.x * kappaY),
66 0 : aEndPoint + Point(endOffset.y * kappaX, -endOffset.x * kappaY),
67 : aEndPoint);
68 0 : } else if (aEndPoint != aStartPoint) {
69 0 : aSink->LineTo(aEndPoint);
70 : }
71 0 : }
72 :
73 : /**
74 : * Draws an acute arc (<= 90 degrees) given exact start and end points.
75 : */
76 : template <typename T>
77 0 : inline void AcuteArcToBezier(T* aSink,
78 : const Point& aOrigin, const Size& aRadius,
79 : const Point& aStartPoint, const Point& aEndPoint,
80 : Float aStartAngle, Float aEndAngle)
81 : {
82 0 : AcuteArcToBezier(aSink, aOrigin, aRadius, aStartPoint, aEndPoint,
83 : ComputeKappaFactor(aEndAngle - aStartAngle));
84 0 : }
85 :
86 : template <typename T>
87 0 : void ArcToBezier(T* aSink, const Point &aOrigin, const Size &aRadius,
88 : float aStartAngle, float aEndAngle, bool aAntiClockwise,
89 : float aRotation = 0.0f)
90 : {
91 0 : Float sweepDirection = aAntiClockwise ? -1.0f : 1.0f;
92 :
93 : // Calculate the total arc we're going to sweep.
94 0 : Float arcSweepLeft = (aEndAngle - aStartAngle) * sweepDirection;
95 :
96 : // Clockwise we always sweep from the smaller to the larger angle, ccw
97 : // it's vice versa.
98 0 : if (arcSweepLeft < 0) {
99 : // Rerverse sweep is modulo'd into range rather than clamped.
100 0 : arcSweepLeft = Float(2.0f * M_PI) + fmodf(arcSweepLeft, Float(2.0f * M_PI));
101 : // Recalculate the start angle to land closer to end angle.
102 0 : aStartAngle = aEndAngle - arcSweepLeft * sweepDirection;
103 0 : } else if (arcSweepLeft > Float(2.0f * M_PI)) {
104 : // Sweeping more than 2 * pi is a full circle.
105 0 : arcSweepLeft = Float(2.0f * M_PI);
106 : }
107 :
108 0 : Float currentStartAngle = aStartAngle;
109 0 : Point currentStartOffset(cosf(aStartAngle), sinf(aStartAngle));
110 0 : Matrix transform = Matrix::Scaling(aRadius.width, aRadius.height);
111 0 : if (aRotation != 0.0f) {
112 0 : transform *= Matrix::Rotation(aRotation);
113 : }
114 0 : transform.PostTranslate(aOrigin);
115 0 : aSink->LineTo(transform.TransformPoint(currentStartOffset));
116 :
117 0 : while (arcSweepLeft > 0) {
118 : Float currentEndAngle =
119 0 : currentStartAngle + std::min(arcSweepLeft, Float(M_PI / 2.0f)) * sweepDirection;
120 0 : Point currentEndOffset(cosf(currentEndAngle), sinf(currentEndAngle));
121 :
122 0 : PartialArcToBezier(aSink, currentStartOffset, currentEndOffset, transform,
123 : ComputeKappaFactor(currentEndAngle - currentStartAngle));
124 :
125 : // We guarantee here the current point is the start point of the next
126 : // curve segment.
127 0 : arcSweepLeft -= Float(M_PI / 2.0f);
128 0 : currentStartAngle = currentEndAngle;
129 0 : currentStartOffset = currentEndOffset;
130 : }
131 0 : }
132 :
133 : /* This is basically the ArcToBezier with the parameters for drawing a circle
134 : * inlined which vastly simplifies it and avoids a bunch of transcedental function
135 : * calls which should make it faster. */
136 : template <typename T>
137 0 : void EllipseToBezier(T* aSink, const Point &aOrigin, const Size &aRadius)
138 : {
139 0 : Matrix transform(aRadius.width, 0, 0, aRadius.height, aOrigin.x, aOrigin.y);
140 0 : Point currentStartOffset(1, 0);
141 :
142 0 : aSink->LineTo(transform.TransformPoint(currentStartOffset));
143 :
144 0 : for (int i = 0; i < 4; i++) {
145 : // cos(x+pi/2) == -sin(x)
146 : // sin(x+pi/2) == cos(x)
147 0 : Point currentEndOffset(-currentStartOffset.y, currentStartOffset.x);
148 :
149 0 : PartialArcToBezier(aSink, currentStartOffset, currentEndOffset, transform);
150 :
151 : // We guarantee here the current point is the start point of the next
152 : // curve segment.
153 0 : currentStartOffset = currentEndOffset;
154 : }
155 0 : }
156 :
157 : /**
158 : * Appends a path represending a rectangle to the path being built by
159 : * aPathBuilder.
160 : *
161 : * aRect The rectangle to append.
162 : * aDrawClockwise If set to true, the path will start at the left of the top
163 : * left edge and draw clockwise. If set to false the path will
164 : * start at the right of the top left edge and draw counter-
165 : * clockwise.
166 : */
167 : GFX2D_API void AppendRectToPath(PathBuilder* aPathBuilder,
168 : const Rect& aRect,
169 : bool aDrawClockwise = true);
170 :
171 : inline already_AddRefed<Path> MakePathForRect(const DrawTarget& aDrawTarget,
172 : const Rect& aRect,
173 : bool aDrawClockwise = true)
174 : {
175 : RefPtr<PathBuilder> builder = aDrawTarget.CreatePathBuilder();
176 : AppendRectToPath(builder, aRect, aDrawClockwise);
177 : return builder->Finish();
178 : }
179 :
180 : struct RectCornerRadii {
181 : Size radii[eCornerCount];
182 :
183 567 : RectCornerRadii() {}
184 :
185 9 : explicit RectCornerRadii(Float radius) {
186 45 : NS_FOR_CSS_FULL_CORNERS(i) {
187 36 : radii[i].SizeTo(radius, radius);
188 : }
189 9 : }
190 :
191 4 : explicit RectCornerRadii(Float radiusX, Float radiusY) {
192 20 : NS_FOR_CSS_FULL_CORNERS(i) {
193 16 : radii[i].SizeTo(radiusX, radiusY);
194 : }
195 4 : }
196 :
197 : RectCornerRadii(Float tl, Float tr, Float br, Float bl) {
198 : radii[eCornerTopLeft].SizeTo(tl, tl);
199 : radii[eCornerTopRight].SizeTo(tr, tr);
200 : radii[eCornerBottomRight].SizeTo(br, br);
201 : radii[eCornerBottomLeft].SizeTo(bl, bl);
202 : }
203 :
204 : RectCornerRadii(const Size& tl, const Size& tr,
205 : const Size& br, const Size& bl) {
206 : radii[eCornerTopLeft] = tl;
207 : radii[eCornerTopRight] = tr;
208 : radii[eCornerBottomRight] = br;
209 : radii[eCornerBottomLeft] = bl;
210 : }
211 :
212 3559 : const Size& operator[](size_t aCorner) const {
213 3559 : return radii[aCorner];
214 : }
215 :
216 1223 : Size& operator[](size_t aCorner) {
217 1223 : return radii[aCorner];
218 : }
219 :
220 8 : bool operator==(const RectCornerRadii& aOther) const {
221 64 : return TopLeft() == aOther.TopLeft() &&
222 56 : TopRight() == aOther.TopRight() &&
223 88 : BottomRight() == aOther.BottomRight() &&
224 40 : BottomLeft() == aOther.BottomLeft();
225 : }
226 :
227 9 : bool AreRadiiSame() const {
228 72 : return TopLeft() == TopRight() &&
229 90 : TopLeft() == BottomRight() &&
230 45 : TopLeft() == BottomLeft();
231 : }
232 :
233 9 : void Scale(Float aXScale, Float aYScale) {
234 45 : NS_FOR_CSS_FULL_CORNERS(i) {
235 36 : radii[i].Scale(aXScale, aYScale);
236 : }
237 9 : }
238 :
239 472 : const Size TopLeft() const { return radii[eCornerTopLeft]; }
240 0 : Size& TopLeft() { return radii[eCornerTopLeft]; }
241 :
242 310 : const Size TopRight() const { return radii[eCornerTopRight]; }
243 : Size& TopRight() { return radii[eCornerTopRight]; }
244 :
245 310 : const Size BottomRight() const { return radii[eCornerBottomRight]; }
246 : Size& BottomRight() { return radii[eCornerBottomRight]; }
247 :
248 310 : const Size BottomLeft() const { return radii[eCornerBottomLeft]; }
249 : Size& BottomLeft() { return radii[eCornerBottomLeft]; }
250 :
251 429 : bool IsEmpty() const {
252 2571 : return TopLeft().IsEmpty() && TopRight().IsEmpty() &&
253 2571 : BottomRight().IsEmpty() && BottomLeft().IsEmpty();
254 : }
255 : };
256 :
257 : /**
258 : * Appends a path represending a rounded rectangle to the path being built by
259 : * aPathBuilder.
260 : *
261 : * aRect The rectangle to append.
262 : * aCornerRadii Contains the radii of the top-left, top-right, bottom-right
263 : * and bottom-left corners, in that order.
264 : * aDrawClockwise If set to true, the path will start at the left of the top
265 : * left edge and draw clockwise. If set to false the path will
266 : * start at the right of the top left edge and draw counter-
267 : * clockwise.
268 : */
269 : GFX2D_API void AppendRoundedRectToPath(PathBuilder* aPathBuilder,
270 : const Rect& aRect,
271 : const RectCornerRadii& aRadii,
272 : bool aDrawClockwise = true);
273 :
274 22 : inline already_AddRefed<Path> MakePathForRoundedRect(const DrawTarget& aDrawTarget,
275 : const Rect& aRect,
276 : const RectCornerRadii& aRadii,
277 : bool aDrawClockwise = true)
278 : {
279 44 : RefPtr<PathBuilder> builder = aDrawTarget.CreatePathBuilder();
280 22 : AppendRoundedRectToPath(builder, aRect, aRadii, aDrawClockwise);
281 44 : return builder->Finish();
282 : }
283 :
284 : /**
285 : * Appends a path represending an ellipse to the path being built by
286 : * aPathBuilder.
287 : *
288 : * The ellipse extends aDimensions.width / 2.0 in the horizontal direction
289 : * from aCenter, and aDimensions.height / 2.0 in the vertical direction.
290 : */
291 : GFX2D_API void AppendEllipseToPath(PathBuilder* aPathBuilder,
292 : const Point& aCenter,
293 : const Size& aDimensions);
294 :
295 0 : inline already_AddRefed<Path> MakePathForEllipse(const DrawTarget& aDrawTarget,
296 : const Point& aCenter,
297 : const Size& aDimensions)
298 : {
299 0 : RefPtr<PathBuilder> builder = aDrawTarget.CreatePathBuilder();
300 0 : AppendEllipseToPath(builder, aCenter, aDimensions);
301 0 : return builder->Finish();
302 : }
303 :
304 : /**
305 : * If aDrawTarget's transform only contains a translation, and if this line is
306 : * a horizontal or vertical line, this function will snap the line's vertices
307 : * to align with the device pixel grid so that stroking the line with a one
308 : * pixel wide stroke will result in a crisp line that is not antialiased over
309 : * two pixels across its width.
310 : *
311 : * @return Returns true if this function snaps aRect's vertices, else returns
312 : * false.
313 : */
314 : GFX2D_API bool SnapLineToDevicePixelsForStroking(Point& aP1, Point& aP2,
315 : const DrawTarget& aDrawTarget,
316 : Float aLineWidth);
317 :
318 : /**
319 : * This function paints each edge of aRect separately, snapping the edges using
320 : * SnapLineToDevicePixelsForStroking. Stroking the edges as separate paths
321 : * helps ensure not only that the stroke spans a single row of device pixels if
322 : * possible, but also that the ends of stroke dashes start and end on device
323 : * pixels too.
324 : */
325 : GFX2D_API void StrokeSnappedEdgesOfRect(const Rect& aRect,
326 : DrawTarget& aDrawTarget,
327 : const ColorPattern& aColor,
328 : const StrokeOptions& aStrokeOptions);
329 :
330 : /**
331 : * Return the margin, in device space, by which a stroke can extend beyond the
332 : * rendered shape.
333 : * @param aStrokeOptions The stroke options that the stroke is drawn with.
334 : * @param aTransform The user space to device space transform.
335 : * @return The stroke margin.
336 : */
337 : GFX2D_API Margin MaxStrokeExtents(const StrokeOptions& aStrokeOptions,
338 : const Matrix& aTransform);
339 :
340 : extern UserDataKey sDisablePixelSnapping;
341 :
342 : /**
343 : * If aDrawTarget's transform only contains a translation or, if
344 : * aAllowScaleOr90DegreeRotate is true, and/or a scale/90 degree rotation, this
345 : * function will convert aRect to device space and snap it to device pixels.
346 : * This function returns true if aRect is modified, otherwise it returns false.
347 : *
348 : * Note that the snapping is such that filling the rect using a DrawTarget
349 : * which has the identity matrix as its transform will result in crisp edges.
350 : * (That is, aRect will have integer values, aligning its edges between pixel
351 : * boundaries.) If on the other hand you stroking the rect with an odd valued
352 : * stroke width then the edges of the stroke will be antialiased (assuming an
353 : * AntialiasMode that does antialiasing).
354 : *
355 : * Empty snaps are those which result in a rectangle of 0 area. If they are
356 : * disallowed, an axis is left unsnapped if the rounding process results in a
357 : * length of 0.
358 : */
359 59 : inline bool UserToDevicePixelSnapped(Rect& aRect, const DrawTarget& aDrawTarget,
360 : bool aAllowScaleOr90DegreeRotate = false,
361 : bool aAllowEmptySnaps = true)
362 : {
363 59 : if (aDrawTarget.GetUserData(&sDisablePixelSnapping)) {
364 0 : return false;
365 : }
366 :
367 59 : Matrix mat = aDrawTarget.GetTransform();
368 :
369 59 : const Float epsilon = 0.0000001f;
370 : #define WITHIN_E(a,b) (fabs((a)-(b)) < epsilon)
371 59 : if (!aAllowScaleOr90DegreeRotate &&
372 0 : (!WITHIN_E(mat._11, 1.f) || !WITHIN_E(mat._22, 1.f) ||
373 0 : !WITHIN_E(mat._12, 0.f) || !WITHIN_E(mat._21, 0.f))) {
374 : // We have non-translation, but only translation is allowed.
375 0 : return false;
376 : }
377 : #undef WITHIN_E
378 :
379 59 : Point p1 = mat.TransformPoint(aRect.TopLeft());
380 59 : Point p2 = mat.TransformPoint(aRect.TopRight());
381 59 : Point p3 = mat.TransformPoint(aRect.BottomRight());
382 :
383 : // Check that the rectangle is axis-aligned. For an axis-aligned rectangle,
384 : // two opposite corners define the entire rectangle. So check if
385 : // the axis-aligned rectangle with opposite corners p1 and p3
386 : // define an axis-aligned rectangle whose other corners are p2 and p4.
387 : // We actually only need to check one of p2 and p4, since an affine
388 : // transform maps parallelograms to parallelograms.
389 59 : if (p2 == Point(p1.x, p3.y) || p2 == Point(p3.x, p1.y)) {
390 59 : Point p1r = p1;
391 59 : Point p3r = p3;
392 59 : p1r.Round();
393 59 : p3r.Round();
394 59 : if (aAllowEmptySnaps || p1r.x != p3r.x) {
395 59 : p1.x = p1r.x;
396 59 : p3.x = p3r.x;
397 : }
398 59 : if (aAllowEmptySnaps || p1r.y != p3r.y) {
399 59 : p1.y = p1r.y;
400 59 : p3.y = p3r.y;
401 : }
402 :
403 59 : aRect.MoveTo(Point(std::min(p1.x, p3.x), std::min(p1.y, p3.y)));
404 118 : aRect.SizeTo(Size(std::max(p1.x, p3.x) - aRect.X(),
405 118 : std::max(p1.y, p3.y) - aRect.Y()));
406 59 : return true;
407 : }
408 :
409 0 : return false;
410 : }
411 :
412 : /**
413 : * This function has the same behavior as UserToDevicePixelSnapped except that
414 : * aRect is not transformed to device space.
415 : */
416 59 : inline bool MaybeSnapToDevicePixels(Rect& aRect, const DrawTarget& aDrawTarget,
417 : bool aAllowScaleOr90DegreeRotate = false,
418 : bool aAllowEmptySnaps = true)
419 : {
420 59 : if (UserToDevicePixelSnapped(aRect, aDrawTarget,
421 : aAllowScaleOr90DegreeRotate, aAllowEmptySnaps)) {
422 : // Since UserToDevicePixelSnapped returned true we know there is no
423 : // rotation/skew in 'mat', so we can just use TransformBounds() here.
424 59 : Matrix mat = aDrawTarget.GetTransform();
425 59 : mat.Invert();
426 59 : aRect = mat.TransformBounds(aRect);
427 59 : return true;
428 : }
429 0 : return false;
430 : }
431 :
432 : } // namespace gfx
433 : } // namespace mozilla
434 :
435 : #endif /* MOZILLA_GFX_PATHHELPERS_H_ */
|