LCOV - code coverage report
Current view: top level - gfx/cairo/cairo/src - cairo-wideint.c (source / functions) Hit Total Coverage
Test: output.info Lines: 0 200 0.0 %
Date: 2017-07-14 16:53:18 Functions: 0 23 0.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /* cairo - a vector graphics library with display and print output
       2             :  *
       3             :  * Copyright © 2004 Keith Packard
       4             :  *
       5             :  * This library is free software; you can redistribute it and/or
       6             :  * modify it either under the terms of the GNU Lesser General Public
       7             :  * License version 2.1 as published by the Free Software Foundation
       8             :  * (the "LGPL") or, at your option, under the terms of the Mozilla
       9             :  * Public License Version 1.1 (the "MPL"). If you do not alter this
      10             :  * notice, a recipient may use your version of this file under either
      11             :  * the MPL or the LGPL.
      12             :  *
      13             :  * You should have received a copy of the LGPL along with this library
      14             :  * in the file COPYING-LGPL-2.1; if not, write to the Free Software
      15             :  * Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA
      16             :  * You should have received a copy of the MPL along with this library
      17             :  * in the file COPYING-MPL-1.1
      18             :  *
      19             :  * The contents of this file are subject to the Mozilla Public License
      20             :  * Version 1.1 (the "License"); you may not use this file except in
      21             :  * compliance with the License. You may obtain a copy of the License at
      22             :  * http://www.mozilla.org/MPL/
      23             :  *
      24             :  * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
      25             :  * OF ANY KIND, either express or implied. See the LGPL or the MPL for
      26             :  * the specific language governing rights and limitations.
      27             :  *
      28             :  * The Original Code is the cairo graphics library.
      29             :  *
      30             :  * The Initial Developer of the Original Code is Keith Packard
      31             :  *
      32             :  * Contributor(s):
      33             :  *      Keith R. Packard <keithp@keithp.com>
      34             :  */
      35             : 
      36             : #include "cairoint.h"
      37             : 
      38             : #if HAVE_UINT64_T
      39             : 
      40             : #define uint64_lo32(i)  ((i) & 0xffffffff)
      41             : #define uint64_hi32(i)  ((i) >> 32)
      42             : #define uint64_lo(i)    ((i) & 0xffffffff)
      43             : #define uint64_hi(i)    ((i) >> 32)
      44             : #define uint64_shift32(i)   ((i) << 32)
      45             : #define uint64_carry32  (((uint64_t) 1) << 32)
      46             : 
      47             : #define _cairo_uint32s_to_uint64(h,l) ((uint64_t) (h) << 32 | (l))
      48             : 
      49             : #else
      50             : 
      51             : #define uint64_lo32(i)  ((i).lo)
      52             : #define uint64_hi32(i)  ((i).hi)
      53             : 
      54             : static cairo_uint64_t
      55             : uint64_lo (cairo_uint64_t i)
      56             : {
      57             :     cairo_uint64_t  s;
      58             : 
      59             :     s.lo = i.lo;
      60             :     s.hi = 0;
      61             :     return s;
      62             : }
      63             : 
      64             : static cairo_uint64_t
      65             : uint64_hi (cairo_uint64_t i)
      66             : {
      67             :     cairo_uint64_t  s;
      68             : 
      69             :     s.lo = i.hi;
      70             :     s.hi = 0;
      71             :     return s;
      72             : }
      73             : 
      74             : static cairo_uint64_t
      75             : uint64_shift32 (cairo_uint64_t i)
      76             : {
      77             :     cairo_uint64_t  s;
      78             : 
      79             :     s.lo = 0;
      80             :     s.hi = i.lo;
      81             :     return s;
      82             : }
      83             : 
      84             : static const cairo_uint64_t uint64_carry32 = { 0, 1 };
      85             : 
      86             : cairo_uint64_t
      87             : _cairo_uint32_to_uint64 (uint32_t i)
      88             : {
      89             :     cairo_uint64_t      q;
      90             : 
      91             :     q.lo = i;
      92             :     q.hi = 0;
      93             :     return q;
      94             : }
      95             : 
      96             : cairo_int64_t
      97             : _cairo_int32_to_int64 (int32_t i)
      98             : {
      99             :     cairo_uint64_t      q;
     100             : 
     101             :     q.lo = i;
     102             :     q.hi = i < 0 ? -1 : 0;
     103             :     return q;
     104             : }
     105             : 
     106             : static cairo_uint64_t
     107             : _cairo_uint32s_to_uint64 (uint32_t h, uint32_t l)
     108             : {
     109             :     cairo_uint64_t      q;
     110             : 
     111             :     q.lo = l;
     112             :     q.hi = h;
     113             :     return q;
     114             : }
     115             : 
     116             : cairo_uint64_t
     117             : _cairo_uint64_add (cairo_uint64_t a, cairo_uint64_t b)
     118             : {
     119             :     cairo_uint64_t      s;
     120             : 
     121             :     s.hi = a.hi + b.hi;
     122             :     s.lo = a.lo + b.lo;
     123             :     if (s.lo < a.lo)
     124             :         s.hi++;
     125             :     return s;
     126             : }
     127             : 
     128             : cairo_uint64_t
     129             : _cairo_uint64_sub (cairo_uint64_t a, cairo_uint64_t b)
     130             : {
     131             :     cairo_uint64_t      s;
     132             : 
     133             :     s.hi = a.hi - b.hi;
     134             :     s.lo = a.lo - b.lo;
     135             :     if (s.lo > a.lo)
     136             :         s.hi--;
     137             :     return s;
     138             : }
     139             : 
     140             : #define uint32_lo(i)    ((i) & 0xffff)
     141             : #define uint32_hi(i)    ((i) >> 16)
     142             : #define uint32_carry16  ((1) << 16)
     143             : 
     144             : cairo_uint64_t
     145             : _cairo_uint32x32_64_mul (uint32_t a, uint32_t b)
     146             : {
     147             :     cairo_uint64_t  s;
     148             : 
     149             :     uint16_t    ah, al, bh, bl;
     150             :     uint32_t    r0, r1, r2, r3;
     151             : 
     152             :     al = uint32_lo (a);
     153             :     ah = uint32_hi (a);
     154             :     bl = uint32_lo (b);
     155             :     bh = uint32_hi (b);
     156             : 
     157             :     r0 = (uint32_t) al * bl;
     158             :     r1 = (uint32_t) al * bh;
     159             :     r2 = (uint32_t) ah * bl;
     160             :     r3 = (uint32_t) ah * bh;
     161             : 
     162             :     r1 += uint32_hi(r0);    /* no carry possible */
     163             :     r1 += r2;               /* but this can carry */
     164             :     if (r1 < r2)         /* check */
     165             :         r3 += uint32_carry16;
     166             : 
     167             :     s.hi = r3 + uint32_hi(r1);
     168             :     s.lo = (uint32_lo (r1) << 16) + uint32_lo (r0);
     169             :     return s;
     170             : }
     171             : 
     172             : cairo_int64_t
     173             : _cairo_int32x32_64_mul (int32_t a, int32_t b)
     174             : {
     175             :     cairo_int64_t s;
     176             :     s = _cairo_uint32x32_64_mul ((uint32_t) a, (uint32_t) b);
     177             :     if (a < 0)
     178             :         s.hi -= b;
     179             :     if (b < 0)
     180             :         s.hi -= a;
     181             :     return s;
     182             : }
     183             : 
     184             : cairo_uint64_t
     185             : _cairo_uint64_mul (cairo_uint64_t a, cairo_uint64_t b)
     186             : {
     187             :     cairo_uint64_t      s;
     188             : 
     189             :     s = _cairo_uint32x32_64_mul (a.lo, b.lo);
     190             :     s.hi += a.lo * b.hi + a.hi * b.lo;
     191             :     return s;
     192             : }
     193             : 
     194             : cairo_uint64_t
     195             : _cairo_uint64_lsl (cairo_uint64_t a, int shift)
     196             : {
     197             :     if (shift >= 32)
     198             :     {
     199             :         a.hi = a.lo;
     200             :         a.lo = 0;
     201             :         shift -= 32;
     202             :     }
     203             :     if (shift)
     204             :     {
     205             :         a.hi = a.hi << shift | a.lo >> (32 - shift);
     206             :         a.lo = a.lo << shift;
     207             :     }
     208             :     return a;
     209             : }
     210             : 
     211             : cairo_uint64_t
     212             : _cairo_uint64_rsl (cairo_uint64_t a, int shift)
     213             : {
     214             :     if (shift >= 32)
     215             :     {
     216             :         a.lo = a.hi;
     217             :         a.hi = 0;
     218             :         shift -= 32;
     219             :     }
     220             :     if (shift)
     221             :     {
     222             :         a.lo = a.lo >> shift | a.hi << (32 - shift);
     223             :         a.hi = a.hi >> shift;
     224             :     }
     225             :     return a;
     226             : }
     227             : 
     228             : #define _cairo_uint32_rsa(a,n)  ((uint32_t) (((int32_t) (a)) >> (n)))
     229             : 
     230             : cairo_int64_t
     231             : _cairo_uint64_rsa (cairo_int64_t a, int shift)
     232             : {
     233             :     if (shift >= 32)
     234             :     {
     235             :         a.lo = a.hi;
     236             :         a.hi = _cairo_uint32_rsa (a.hi, 31);
     237             :         shift -= 32;
     238             :     }
     239             :     if (shift)
     240             :     {
     241             :         a.lo = a.lo >> shift | a.hi << (32 - shift);
     242             :         a.hi = _cairo_uint32_rsa (a.hi, shift);
     243             :     }
     244             :     return a;
     245             : }
     246             : 
     247             : int
     248             : _cairo_uint64_lt (cairo_uint64_t a, cairo_uint64_t b)
     249             : {
     250             :     return (a.hi < b.hi ||
     251             :             (a.hi == b.hi && a.lo < b.lo));
     252             : }
     253             : 
     254             : int
     255             : _cairo_uint64_eq (cairo_uint64_t a, cairo_uint64_t b)
     256             : {
     257             :     return a.hi == b.hi && a.lo == b.lo;
     258             : }
     259             : 
     260             : int
     261             : _cairo_int64_lt (cairo_int64_t a, cairo_int64_t b)
     262             : {
     263             :     if (_cairo_int64_negative (a) && !_cairo_int64_negative (b))
     264             :         return 1;
     265             :     if (!_cairo_int64_negative (a) && _cairo_int64_negative (b))
     266             :         return 0;
     267             :     return _cairo_uint64_lt (a, b);
     268             : }
     269             : 
     270             : int
     271             : _cairo_uint64_cmp (cairo_uint64_t a, cairo_uint64_t b)
     272             : {
     273             :     if (a.hi < b.hi)
     274             :         return -1;
     275             :     else if (a.hi > b.hi)
     276             :         return 1;
     277             :     else if (a.lo < b.lo)
     278             :         return -1;
     279             :     else if (a.lo > b.lo)
     280             :         return 1;
     281             :     else
     282             :         return 0;
     283             : }
     284             : 
     285             : int
     286             : _cairo_int64_cmp (cairo_int64_t a, cairo_int64_t b)
     287             : {
     288             :     if (_cairo_int64_negative (a) && !_cairo_int64_negative (b))
     289             :         return -1;
     290             :     if (!_cairo_int64_negative (a) && _cairo_int64_negative (b))
     291             :         return 1;
     292             : 
     293             :     return _cairo_uint64_cmp (a, b);
     294             : }
     295             : 
     296             : cairo_uint64_t
     297             : _cairo_uint64_not (cairo_uint64_t a)
     298             : {
     299             :     a.lo = ~a.lo;
     300             :     a.hi = ~a.hi;
     301             :     return a;
     302             : }
     303             : 
     304             : cairo_uint64_t
     305             : _cairo_uint64_negate (cairo_uint64_t a)
     306             : {
     307             :     a.lo = ~a.lo;
     308             :     a.hi = ~a.hi;
     309             :     if (++a.lo == 0)
     310             :         ++a.hi;
     311             :     return a;
     312             : }
     313             : 
     314             : /*
     315             :  * Simple bit-at-a-time divide.
     316             :  */
     317             : cairo_uquorem64_t
     318             : _cairo_uint64_divrem (cairo_uint64_t num, cairo_uint64_t den)
     319             : {
     320             :     cairo_uquorem64_t   qr;
     321             :     cairo_uint64_t      bit;
     322             :     cairo_uint64_t      quo;
     323             : 
     324             :     bit = _cairo_uint32_to_uint64 (1);
     325             : 
     326             :     /* normalize to make den >= num, but not overflow */
     327             :     while (_cairo_uint64_lt (den, num) && (den.hi & 0x80000000) == 0)
     328             :     {
     329             :         bit = _cairo_uint64_lsl (bit, 1);
     330             :         den = _cairo_uint64_lsl (den, 1);
     331             :     }
     332             :     quo = _cairo_uint32_to_uint64 (0);
     333             : 
     334             :     /* generate quotient, one bit at a time */
     335             :     while (bit.hi | bit.lo)
     336             :     {
     337             :         if (_cairo_uint64_le (den, num))
     338             :         {
     339             :             num = _cairo_uint64_sub (num, den);
     340             :             quo = _cairo_uint64_add (quo, bit);
     341             :         }
     342             :         bit = _cairo_uint64_rsl (bit, 1);
     343             :         den = _cairo_uint64_rsl (den, 1);
     344             :     }
     345             :     qr.quo = quo;
     346             :     qr.rem = num;
     347             :     return qr;
     348             : }
     349             : 
     350             : #endif /* !HAVE_UINT64_T */
     351             : 
     352             : #if HAVE_UINT128_T
     353             : cairo_uquorem128_t
     354             : _cairo_uint128_divrem (cairo_uint128_t num, cairo_uint128_t den)
     355             : {
     356             :     cairo_uquorem128_t  qr;
     357             : 
     358             :     qr.quo = num / den;
     359             :     qr.rem = num % den;
     360             :     return qr;
     361             : }
     362             : 
     363             : #else
     364             : 
     365             : cairo_uint128_t
     366           0 : _cairo_uint32_to_uint128 (uint32_t i)
     367             : {
     368             :     cairo_uint128_t     q;
     369             : 
     370           0 :     q.lo = _cairo_uint32_to_uint64 (i);
     371           0 :     q.hi = _cairo_uint32_to_uint64 (0);
     372           0 :     return q;
     373             : }
     374             : 
     375             : cairo_int128_t
     376           0 : _cairo_int32_to_int128 (int32_t i)
     377             : {
     378             :     cairo_int128_t      q;
     379             : 
     380           0 :     q.lo = _cairo_int32_to_int64 (i);
     381           0 :     q.hi = _cairo_int32_to_int64 (i < 0 ? -1 : 0);
     382           0 :     return q;
     383             : }
     384             : 
     385             : cairo_uint128_t
     386           0 : _cairo_uint64_to_uint128 (cairo_uint64_t i)
     387             : {
     388             :     cairo_uint128_t     q;
     389             : 
     390           0 :     q.lo = i;
     391           0 :     q.hi = _cairo_uint32_to_uint64 (0);
     392           0 :     return q;
     393             : }
     394             : 
     395             : cairo_int128_t
     396           0 : _cairo_int64_to_int128 (cairo_int64_t i)
     397             : {
     398             :     cairo_int128_t      q;
     399             : 
     400           0 :     q.lo = i;
     401           0 :     q.hi = _cairo_int32_to_int64 (_cairo_int64_negative(i) ? -1 : 0);
     402           0 :     return q;
     403             : }
     404             : 
     405             : cairo_uint128_t
     406           0 : _cairo_uint128_add (cairo_uint128_t a, cairo_uint128_t b)
     407             : {
     408             :     cairo_uint128_t     s;
     409             : 
     410           0 :     s.hi = _cairo_uint64_add (a.hi, b.hi);
     411           0 :     s.lo = _cairo_uint64_add (a.lo, b.lo);
     412           0 :     if (_cairo_uint64_lt (s.lo, a.lo))
     413           0 :         s.hi = _cairo_uint64_add (s.hi, _cairo_uint32_to_uint64 (1));
     414           0 :     return s;
     415             : }
     416             : 
     417             : cairo_uint128_t
     418           0 : _cairo_uint128_sub (cairo_uint128_t a, cairo_uint128_t b)
     419             : {
     420             :     cairo_uint128_t     s;
     421             : 
     422           0 :     s.hi = _cairo_uint64_sub (a.hi, b.hi);
     423           0 :     s.lo = _cairo_uint64_sub (a.lo, b.lo);
     424           0 :     if (_cairo_uint64_gt (s.lo, a.lo))
     425           0 :         s.hi = _cairo_uint64_sub (s.hi, _cairo_uint32_to_uint64(1));
     426           0 :     return s;
     427             : }
     428             : 
     429             : cairo_uint128_t
     430           0 : _cairo_uint64x64_128_mul (cairo_uint64_t a, cairo_uint64_t b)
     431             : {
     432             :     cairo_uint128_t     s;
     433             :     uint32_t            ah, al, bh, bl;
     434             :     cairo_uint64_t      r0, r1, r2, r3;
     435             : 
     436           0 :     al = uint64_lo32 (a);
     437           0 :     ah = uint64_hi32 (a);
     438           0 :     bl = uint64_lo32 (b);
     439           0 :     bh = uint64_hi32 (b);
     440             : 
     441           0 :     r0 = _cairo_uint32x32_64_mul (al, bl);
     442           0 :     r1 = _cairo_uint32x32_64_mul (al, bh);
     443           0 :     r2 = _cairo_uint32x32_64_mul (ah, bl);
     444           0 :     r3 = _cairo_uint32x32_64_mul (ah, bh);
     445             : 
     446           0 :     r1 = _cairo_uint64_add (r1, uint64_hi (r0));    /* no carry possible */
     447           0 :     r1 = _cairo_uint64_add (r1, r2);                /* but this can carry */
     448           0 :     if (_cairo_uint64_lt (r1, r2))                  /* check */
     449           0 :         r3 = _cairo_uint64_add (r3, uint64_carry32);
     450             : 
     451           0 :     s.hi = _cairo_uint64_add (r3, uint64_hi(r1));
     452           0 :     s.lo = _cairo_uint64_add (uint64_shift32 (r1),
     453             :                                 uint64_lo (r0));
     454           0 :     return s;
     455             : }
     456             : 
     457             : cairo_int128_t
     458           0 : _cairo_int64x64_128_mul (cairo_int64_t a, cairo_int64_t b)
     459             : {
     460             :     cairo_int128_t  s;
     461           0 :     s = _cairo_uint64x64_128_mul (_cairo_int64_to_uint64(a),
     462             :                                   _cairo_int64_to_uint64(b));
     463           0 :     if (_cairo_int64_negative (a))
     464           0 :         s.hi = _cairo_uint64_sub (s.hi,
     465             :                                   _cairo_int64_to_uint64 (b));
     466           0 :     if (_cairo_int64_negative (b))
     467           0 :         s.hi = _cairo_uint64_sub (s.hi,
     468             :                                   _cairo_int64_to_uint64 (a));
     469           0 :     return s;
     470             : }
     471             : 
     472             : cairo_uint128_t
     473           0 : _cairo_uint128_mul (cairo_uint128_t a, cairo_uint128_t b)
     474             : {
     475             :     cairo_uint128_t     s;
     476             : 
     477           0 :     s = _cairo_uint64x64_128_mul (a.lo, b.lo);
     478           0 :     s.hi = _cairo_uint64_add (s.hi,
     479             :                                 _cairo_uint64_mul (a.lo, b.hi));
     480           0 :     s.hi = _cairo_uint64_add (s.hi,
     481             :                                 _cairo_uint64_mul (a.hi, b.lo));
     482           0 :     return s;
     483             : }
     484             : 
     485             : cairo_uint128_t
     486           0 : _cairo_uint128_lsl (cairo_uint128_t a, int shift)
     487             : {
     488           0 :     if (shift >= 64)
     489             :     {
     490           0 :         a.hi = a.lo;
     491           0 :         a.lo = _cairo_uint32_to_uint64 (0);
     492           0 :         shift -= 64;
     493             :     }
     494           0 :     if (shift)
     495             :     {
     496           0 :         a.hi = _cairo_uint64_add (_cairo_uint64_lsl (a.hi, shift),
     497             :                                     _cairo_uint64_rsl (a.lo, (64 - shift)));
     498           0 :         a.lo = _cairo_uint64_lsl (a.lo, shift);
     499             :     }
     500           0 :     return a;
     501             : }
     502             : 
     503             : cairo_uint128_t
     504           0 : _cairo_uint128_rsl (cairo_uint128_t a, int shift)
     505             : {
     506           0 :     if (shift >= 64)
     507             :     {
     508           0 :         a.lo = a.hi;
     509           0 :         a.hi = _cairo_uint32_to_uint64 (0);
     510           0 :         shift -= 64;
     511             :     }
     512           0 :     if (shift)
     513             :     {
     514           0 :         a.lo = _cairo_uint64_add (_cairo_uint64_rsl (a.lo, shift),
     515             :                                     _cairo_uint64_lsl (a.hi, (64 - shift)));
     516           0 :         a.hi = _cairo_uint64_rsl (a.hi, shift);
     517             :     }
     518           0 :     return a;
     519             : }
     520             : 
     521             : cairo_uint128_t
     522           0 : _cairo_uint128_rsa (cairo_int128_t a, int shift)
     523             : {
     524           0 :     if (shift >= 64)
     525             :     {
     526           0 :         a.lo = a.hi;
     527           0 :         a.hi = _cairo_uint64_rsa (a.hi, 64-1);
     528           0 :         shift -= 64;
     529             :     }
     530           0 :     if (shift)
     531             :     {
     532           0 :         a.lo = _cairo_uint64_add (_cairo_uint64_rsl (a.lo, shift),
     533             :                                     _cairo_uint64_lsl (a.hi, (64 - shift)));
     534           0 :         a.hi = _cairo_uint64_rsa (a.hi, shift);
     535             :     }
     536           0 :     return a;
     537             : }
     538             : 
     539             : int
     540           0 : _cairo_uint128_lt (cairo_uint128_t a, cairo_uint128_t b)
     541             : {
     542           0 :     return (_cairo_uint64_lt (a.hi, b.hi) ||
     543           0 :             (_cairo_uint64_eq (a.hi, b.hi) &&
     544           0 :              _cairo_uint64_lt (a.lo, b.lo)));
     545             : }
     546             : 
     547             : int
     548           0 : _cairo_int128_lt (cairo_int128_t a, cairo_int128_t b)
     549             : {
     550           0 :     if (_cairo_int128_negative (a) && !_cairo_int128_negative (b))
     551           0 :         return 1;
     552           0 :     if (!_cairo_int128_negative (a) && _cairo_int128_negative (b))
     553           0 :         return 0;
     554           0 :     return _cairo_uint128_lt (a, b);
     555             : }
     556             : 
     557             : int
     558           0 : _cairo_uint128_cmp (cairo_uint128_t a, cairo_uint128_t b)
     559             : {
     560             :     int cmp;
     561             : 
     562           0 :     cmp = _cairo_uint64_cmp (a.hi, b.hi);
     563           0 :     if (cmp)
     564           0 :         return cmp;
     565           0 :     return _cairo_uint64_cmp (a.lo, b.lo);
     566             : }
     567             : 
     568             : int
     569           0 : _cairo_int128_cmp (cairo_int128_t a, cairo_int128_t b)
     570             : {
     571           0 :     if (_cairo_int128_negative (a) && !_cairo_int128_negative (b))
     572           0 :         return -1;
     573           0 :     if (!_cairo_int128_negative (a) && _cairo_int128_negative (b))
     574           0 :         return 1;
     575             : 
     576           0 :     return _cairo_uint128_cmp (a, b);
     577             : }
     578             : 
     579             : int
     580           0 : _cairo_uint128_eq (cairo_uint128_t a, cairo_uint128_t b)
     581             : {
     582           0 :     return (_cairo_uint64_eq (a.hi, b.hi) &&
     583           0 :             _cairo_uint64_eq (a.lo, b.lo));
     584             : }
     585             : 
     586             : #if HAVE_UINT64_T
     587             : #define _cairo_msbset64(q)  (q & ((uint64_t) 1 << 63))
     588             : #else
     589             : #define _cairo_msbset64(q)  (q.hi & ((uint32_t) 1 << 31))
     590             : #endif
     591             : 
     592             : cairo_uquorem128_t
     593           0 : _cairo_uint128_divrem (cairo_uint128_t num, cairo_uint128_t den)
     594             : {
     595             :     cairo_uquorem128_t  qr;
     596             :     cairo_uint128_t     bit;
     597             :     cairo_uint128_t     quo;
     598             : 
     599           0 :     bit = _cairo_uint32_to_uint128 (1);
     600             : 
     601             :     /* normalize to make den >= num, but not overflow */
     602           0 :     while (_cairo_uint128_lt (den, num) && !_cairo_msbset64(den.hi))
     603             :     {
     604           0 :         bit = _cairo_uint128_lsl (bit, 1);
     605           0 :         den = _cairo_uint128_lsl (den, 1);
     606             :     }
     607           0 :     quo = _cairo_uint32_to_uint128 (0);
     608             : 
     609             :     /* generate quotient, one bit at a time */
     610           0 :     while (_cairo_uint128_ne (bit, _cairo_uint32_to_uint128(0)))
     611             :     {
     612           0 :         if (_cairo_uint128_le (den, num))
     613             :         {
     614           0 :             num = _cairo_uint128_sub (num, den);
     615           0 :             quo = _cairo_uint128_add (quo, bit);
     616             :         }
     617           0 :         bit = _cairo_uint128_rsl (bit, 1);
     618           0 :         den = _cairo_uint128_rsl (den, 1);
     619             :     }
     620           0 :     qr.quo = quo;
     621           0 :     qr.rem = num;
     622           0 :     return qr;
     623             : }
     624             : 
     625             : cairo_int128_t
     626           0 : _cairo_int128_negate (cairo_int128_t a)
     627             : {
     628           0 :     a.lo = _cairo_uint64_not (a.lo);
     629           0 :     a.hi = _cairo_uint64_not (a.hi);
     630           0 :     return _cairo_uint128_add (a, _cairo_uint32_to_uint128 (1));
     631             : }
     632             : 
     633             : cairo_int128_t
     634           0 : _cairo_int128_not (cairo_int128_t a)
     635             : {
     636           0 :     a.lo = _cairo_uint64_not (a.lo);
     637           0 :     a.hi = _cairo_uint64_not (a.hi);
     638           0 :     return a;
     639             : }
     640             : 
     641             : #endif /* !HAVE_UINT128_T */
     642             : 
     643             : cairo_quorem128_t
     644           0 : _cairo_int128_divrem (cairo_int128_t num, cairo_int128_t den)
     645             : {
     646           0 :     int                 num_neg = _cairo_int128_negative (num);
     647           0 :     int                 den_neg = _cairo_int128_negative (den);
     648             :     cairo_uquorem128_t  uqr;
     649             :     cairo_quorem128_t   qr;
     650             : 
     651           0 :     if (num_neg)
     652           0 :         num = _cairo_int128_negate (num);
     653           0 :     if (den_neg)
     654           0 :         den = _cairo_int128_negate (den);
     655           0 :     uqr = _cairo_uint128_divrem (num, den);
     656           0 :     if (num_neg)
     657           0 :         qr.rem = _cairo_int128_negate (uqr.rem);
     658             :     else
     659           0 :         qr.rem = uqr.rem;
     660           0 :     if (num_neg != den_neg)
     661           0 :         qr.quo = _cairo_int128_negate (uqr.quo);
     662             :     else
     663           0 :         qr.quo = uqr.quo;
     664           0 :     return qr;
     665             : }
     666             : 
     667             : /**
     668             :  * _cairo_uint_96by64_32x64_divrem:
     669             :  *
     670             :  * Compute a 32 bit quotient and 64 bit remainder of a 96 bit unsigned
     671             :  * dividend and 64 bit divisor.  If the quotient doesn't fit into 32
     672             :  * bits then the returned remainder is equal to the divisor, and the
     673             :  * quotient is the largest representable 64 bit integer.  It is an
     674             :  * error to call this function with the high 32 bits of @num being
     675             :  * non-zero. */
     676             : cairo_uquorem64_t
     677           0 : _cairo_uint_96by64_32x64_divrem (cairo_uint128_t num,
     678             :                                  cairo_uint64_t den)
     679             : {
     680             :     cairo_uquorem64_t result;
     681           0 :     cairo_uint64_t B = _cairo_uint32s_to_uint64 (1, 0);
     682             : 
     683             :     /* These are the high 64 bits of the *96* bit numerator.  We're
     684             :      * going to represent the numerator as xB + y, where x is a 64,
     685             :      * and y is a 32 bit number. */
     686           0 :     cairo_uint64_t x = _cairo_uint128_to_uint64 (_cairo_uint128_rsl(num, 32));
     687             : 
     688             :     /* Initialise the result to indicate overflow. */
     689           0 :     result.quo = _cairo_uint32s_to_uint64 (-1U, -1U);
     690           0 :     result.rem = den;
     691             : 
     692             :     /* Don't bother if the quotient is going to overflow. */
     693           0 :     if (_cairo_uint64_ge (x, den)) {
     694           0 :         return /* overflow */ result;
     695             :     }
     696             : 
     697           0 :     if (_cairo_uint64_lt (x, B)) {
     698             :         /* When the final quotient is known to fit in 32 bits, then
     699             :          * num < 2^64 if and only if den < 2^32. */
     700           0 :         return _cairo_uint64_divrem (_cairo_uint128_to_uint64 (num), den);
     701             :     }
     702             :     else {
     703             :         /* Denominator is >= 2^32. the numerator is >= 2^64, and the
     704             :          * division won't overflow: need two divrems.  Write the
     705             :          * numerator and denominator as
     706             :          *
     707             :          *      num = xB + y            x : 64 bits, y : 32 bits
     708             :          *      den = uB + v            u, v : 32 bits
     709             :          */
     710           0 :         uint32_t y = _cairo_uint128_to_uint32 (num);
     711           0 :         uint32_t u = uint64_hi32 (den);
     712           0 :         uint32_t v = _cairo_uint64_to_uint32 (den);
     713             : 
     714             :         /* Compute a lower bound approximate quotient of num/den
     715             :          * from x/(u+1).  Then we have
     716             :          *
     717             :          * x    = q(u+1) + r    ; q : 32 bits, r <= u : 32 bits.
     718             :          *
     719             :          * xB + y       = q(u+1)B       + (rB+y)
     720             :          *              = q(uB + B + v - v) + (rB+y)
     721             :          *              = q(uB + v)     + qB - qv + (rB+y)
     722             :          *              = q(uB + v)     + q(B-v) + (rB+y)
     723             :          *
     724             :          * The true quotient of num/den then is q plus the
     725             :          * contribution of q(B-v) + (rB+y).  The main contribution
     726             :          * comes from the term q(B-v), with the term (rB+y) only
     727             :          * contributing at most one part.
     728             :          *
     729             :          * The term q(B-v) must fit into 64 bits, since q fits into 32
     730             :          * bits on account of being a lower bound to the true
     731             :          * quotient, and as B-v <= 2^32, we may safely use a single
     732             :          * 64/64 bit division to find its contribution. */
     733             : 
     734             :         cairo_uquorem64_t quorem;
     735             :         cairo_uint64_t remainder; /* will contain final remainder */
     736             :         uint32_t quotient;      /* will contain final quotient. */
     737             :         uint32_t q;
     738             :         uint32_t r;
     739             : 
     740             :         /* Approximate quotient by dividing the high 64 bits of num by
     741             :          * u+1. Watch out for overflow of u+1. */
     742           0 :         if (u+1) {
     743           0 :             quorem = _cairo_uint64_divrem (x, _cairo_uint32_to_uint64 (u+1));
     744           0 :             q = _cairo_uint64_to_uint32 (quorem.quo);
     745           0 :             r = _cairo_uint64_to_uint32 (quorem.rem);
     746             :         }
     747             :         else {
     748           0 :             q = uint64_hi32 (x);
     749           0 :             r = _cairo_uint64_to_uint32 (x);
     750             :         }
     751           0 :         quotient = q;
     752             : 
     753             :         /* Add the main term's contribution to quotient.  Note B-v =
     754             :          * -v as an uint32 (unless v = 0) */
     755           0 :         if (v)
     756           0 :             quorem = _cairo_uint64_divrem (_cairo_uint32x32_64_mul (q, -v), den);
     757             :         else
     758           0 :             quorem = _cairo_uint64_divrem (_cairo_uint32s_to_uint64 (q, 0), den);
     759           0 :         quotient += _cairo_uint64_to_uint32 (quorem.quo);
     760             : 
     761             :         /* Add the contribution of the subterm and start computing the
     762             :          * true remainder. */
     763           0 :         remainder = _cairo_uint32s_to_uint64 (r, y);
     764           0 :         if (_cairo_uint64_ge (remainder, den)) {
     765           0 :             remainder = _cairo_uint64_sub (remainder, den);
     766           0 :             quotient++;
     767             :         }
     768             : 
     769             :         /* Add the contribution of the main term's remainder. The
     770             :          * funky test here checks that remainder + main_rem >= den,
     771             :          * taking into account overflow of the addition. */
     772           0 :         remainder = _cairo_uint64_add (remainder, quorem.rem);
     773           0 :         if (_cairo_uint64_ge (remainder, den) ||
     774           0 :             _cairo_uint64_lt (remainder, quorem.rem))
     775             :         {
     776           0 :             remainder = _cairo_uint64_sub (remainder, den);
     777           0 :             quotient++;
     778             :         }
     779             : 
     780           0 :         result.quo = _cairo_uint32_to_uint64 (quotient);
     781           0 :         result.rem = remainder;
     782             :     }
     783           0 :     return result;
     784             : }
     785             : 
     786             : cairo_quorem64_t
     787           0 : _cairo_int_96by64_32x64_divrem (cairo_int128_t num, cairo_int64_t den)
     788             : {
     789           0 :     int                 num_neg = _cairo_int128_negative (num);
     790           0 :     int                 den_neg = _cairo_int64_negative (den);
     791             :     cairo_uint64_t      nonneg_den;
     792             :     cairo_uquorem64_t   uqr;
     793             :     cairo_quorem64_t    qr;
     794             : 
     795           0 :     if (num_neg)
     796           0 :         num = _cairo_int128_negate (num);
     797           0 :     if (den_neg)
     798           0 :         nonneg_den = _cairo_int64_negate (den);
     799             :     else
     800           0 :         nonneg_den = den;
     801             : 
     802           0 :     uqr = _cairo_uint_96by64_32x64_divrem (num, nonneg_den);
     803           0 :     if (_cairo_uint64_eq (uqr.rem, nonneg_den)) {
     804             :         /* bail on overflow. */
     805           0 :         qr.quo = _cairo_uint32s_to_uint64 (0x7FFFFFFF, -1U);
     806           0 :         qr.rem = den;
     807           0 :         return qr;
     808             :     }
     809             : 
     810           0 :     if (num_neg)
     811           0 :         qr.rem = _cairo_int64_negate (uqr.rem);
     812             :     else
     813           0 :         qr.rem = uqr.rem;
     814           0 :     if (num_neg != den_neg)
     815           0 :         qr.quo = _cairo_int64_negate (uqr.quo);
     816             :     else
     817           0 :         qr.quo = uqr.quo;
     818           0 :     return qr;
     819             : }

Generated by: LCOV version 1.13