Line data Source code
1 : /* GRAPHITE2 LICENSING
2 :
3 : Copyright 2010, SIL International
4 : All rights reserved.
5 :
6 : This library is free software; you can redistribute it and/or modify
7 : it under the terms of the GNU Lesser General Public License as published
8 : by the Free Software Foundation; either version 2.1 of License, or
9 : (at your option) any later version.
10 :
11 : This program is distributed in the hope that it will be useful,
12 : but WITHOUT ANY WARRANTY; without even the implied warranty of
13 : MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 : Lesser General Public License for more details.
15 :
16 : You should also have received a copy of the GNU Lesser General Public
17 : License along with this library in the file named "LICENSE".
18 : If not, write to the Free Software Foundation, 51 Franklin Street,
19 : Suite 500, Boston, MA 02110-1335, USA or visit their web page on the
20 : internet at http://www.fsf.org/licenses/lgpl.html.
21 :
22 : Alternatively, the contents of this file may be used under the terms of the
23 : Mozilla Public License (http://mozilla.org/MPL) or the GNU General Public
24 : License, as published by the Free Software Foundation, either version 2
25 : of the License or (at your option) any later version.
26 : */
27 : #include "inc/Main.h"
28 : #include "inc/debug.h"
29 : #include "inc/Endian.h"
30 : #include "inc/Pass.h"
31 : #include <cstring>
32 : #include <cstdlib>
33 : #include <cassert>
34 : #include <cmath>
35 : #include "inc/Segment.h"
36 : #include "inc/Code.h"
37 : #include "inc/Rule.h"
38 : #include "inc/Error.h"
39 : #include "inc/Collider.h"
40 :
41 : using namespace graphite2;
42 : using vm::Machine;
43 : typedef Machine::Code Code;
44 :
45 : enum KernCollison
46 : {
47 : None = 0,
48 : CrossSpace = 1,
49 : InWord = 2,
50 : reserved = 3
51 : };
52 :
53 0 : Pass::Pass()
54 : : m_silf(0),
55 : m_cols(0),
56 : m_rules(0),
57 : m_ruleMap(0),
58 : m_startStates(0),
59 : m_transitions(0),
60 : m_states(0),
61 : m_codes(0),
62 : m_progs(0),
63 : m_numCollRuns(0),
64 : m_kernColls(0),
65 : m_iMaxLoop(0),
66 : m_numGlyphs(0),
67 : m_numRules(0),
68 : m_numStates(0),
69 : m_numTransition(0),
70 : m_numSuccess(0),
71 : m_successStart(0),
72 : m_numColumns(0),
73 : m_minPreCtxt(0),
74 : m_maxPreCtxt(0),
75 : m_colThreshold(0),
76 0 : m_isReverseDir(false)
77 : {
78 0 : }
79 :
80 0 : Pass::~Pass()
81 : {
82 0 : free(m_cols);
83 0 : free(m_startStates);
84 0 : free(m_transitions);
85 0 : free(m_states);
86 0 : free(m_ruleMap);
87 :
88 0 : if (m_rules) delete [] m_rules;
89 0 : if (m_codes) delete [] m_codes;
90 0 : free(m_progs);
91 0 : }
92 :
93 0 : bool Pass::readPass(const byte * const pass_start, size_t pass_length, size_t subtable_base,
94 : GR_MAYBE_UNUSED Face & face, passtype pt, GR_MAYBE_UNUSED uint32 version, Error &e)
95 : {
96 0 : const byte * p = pass_start,
97 0 : * const pass_end = p + pass_length;
98 : size_t numRanges;
99 :
100 0 : if (e.test(pass_length < 40, E_BADPASSLENGTH)) return face.error(e);
101 : // Read in basic values
102 0 : const byte flags = be::read<byte>(p);
103 0 : if (e.test((flags & 0x1f) &&
104 0 : (pt < PASS_TYPE_POSITIONING || !m_silf->aCollision() || !face.glyphs().hasBoxes() || !(m_silf->flags() & 0x20)),
105 : E_BADCOLLISIONPASS))
106 0 : return face.error(e);
107 0 : m_numCollRuns = flags & 0x7;
108 0 : m_kernColls = (flags >> 3) & 0x3;
109 0 : m_isReverseDir = (flags >> 5) & 0x1;
110 0 : m_iMaxLoop = be::read<byte>(p);
111 0 : if (m_iMaxLoop < 1) m_iMaxLoop = 1;
112 0 : be::skip<byte>(p,2); // skip maxContext & maxBackup
113 0 : m_numRules = be::read<uint16>(p);
114 0 : if (e.test(!m_numRules && m_numCollRuns == 0, E_BADEMPTYPASS)) return face.error(e);
115 0 : be::skip<uint16>(p); // fsmOffset - not sure why we would want this
116 0 : const byte * const pcCode = pass_start + be::read<uint32>(p) - subtable_base,
117 0 : * const rcCode = pass_start + be::read<uint32>(p) - subtable_base,
118 0 : * const aCode = pass_start + be::read<uint32>(p) - subtable_base;
119 0 : be::skip<uint32>(p);
120 0 : m_numStates = be::read<uint16>(p);
121 0 : m_numTransition = be::read<uint16>(p);
122 0 : m_numSuccess = be::read<uint16>(p);
123 0 : m_numColumns = be::read<uint16>(p);
124 0 : numRanges = be::read<uint16>(p);
125 0 : be::skip<uint16>(p, 3); // skip searchRange, entrySelector & rangeShift.
126 0 : assert(p - pass_start == 40);
127 : // Perform some sanity checks.
128 0 : if ( e.test(m_numTransition > m_numStates, E_BADNUMTRANS)
129 0 : || e.test(m_numSuccess > m_numStates, E_BADNUMSUCCESS)
130 0 : || e.test(m_numSuccess + m_numTransition < m_numStates, E_BADNUMSTATES)
131 0 : || e.test(m_numRules && numRanges == 0, E_NORANGES)
132 0 : || e.test(m_numColumns > 0x7FFF, E_BADNUMCOLUMNS))
133 0 : return face.error(e);
134 :
135 0 : m_successStart = m_numStates - m_numSuccess;
136 : // test for beyond end - 1 to account for reading uint16
137 0 : if (e.test(p + numRanges * 6 - 2 > pass_end, E_BADPASSLENGTH)) return face.error(e);
138 0 : m_numGlyphs = be::peek<uint16>(p + numRanges * 6 - 4) + 1;
139 : // Calculate the start of various arrays.
140 0 : const byte * const ranges = p;
141 0 : be::skip<uint16>(p, numRanges*3);
142 0 : const byte * const o_rule_map = p;
143 0 : be::skip<uint16>(p, m_numSuccess + 1);
144 :
145 : // More sanity checks
146 0 : if (e.test(reinterpret_cast<const byte *>(o_rule_map + m_numSuccess*sizeof(uint16)) > pass_end
147 0 : || p > pass_end, E_BADRULEMAPLEN))
148 0 : return face.error(e);
149 0 : const size_t numEntries = be::peek<uint16>(o_rule_map + m_numSuccess*sizeof(uint16));
150 0 : const byte * const rule_map = p;
151 0 : be::skip<uint16>(p, numEntries);
152 :
153 0 : if (e.test(p + 2*sizeof(uint8) > pass_end, E_BADPASSLENGTH)) return face.error(e);
154 0 : m_minPreCtxt = be::read<uint8>(p);
155 0 : m_maxPreCtxt = be::read<uint8>(p);
156 0 : if (e.test(m_minPreCtxt > m_maxPreCtxt, E_BADCTXTLENBOUNDS)) return face.error(e);
157 0 : const byte * const start_states = p;
158 0 : be::skip<int16>(p, m_maxPreCtxt - m_minPreCtxt + 1);
159 0 : const uint16 * const sort_keys = reinterpret_cast<const uint16 *>(p);
160 0 : be::skip<uint16>(p, m_numRules);
161 0 : const byte * const precontext = p;
162 0 : be::skip<byte>(p, m_numRules);
163 :
164 0 : if (e.test(p + sizeof(uint16) + sizeof(uint8) > pass_end, E_BADCTXTLENS)) return face.error(e);
165 0 : m_colThreshold = be::read<uint8>(p);
166 0 : if (m_colThreshold == 0) m_colThreshold = 10; // A default
167 0 : const size_t pass_constraint_len = be::read<uint16>(p);
168 :
169 0 : const uint16 * const o_constraint = reinterpret_cast<const uint16 *>(p);
170 0 : be::skip<uint16>(p, m_numRules + 1);
171 0 : const uint16 * const o_actions = reinterpret_cast<const uint16 *>(p);
172 0 : be::skip<uint16>(p, m_numRules + 1);
173 0 : const byte * const states = p;
174 0 : if (e.test(2u*m_numTransition*m_numColumns >= (unsigned)(pass_end - p), E_BADPASSLENGTH)) return face.error(e);
175 0 : be::skip<int16>(p, m_numTransition*m_numColumns);
176 0 : be::skip<uint8>(p);
177 0 : if (e.test(p != pcCode, E_BADPASSCCODEPTR)) return face.error(e);
178 0 : be::skip<byte>(p, pass_constraint_len);
179 0 : if (e.test(p != rcCode, E_BADRULECCODEPTR)
180 0 : || e.test(size_t(rcCode - pcCode) != pass_constraint_len, E_BADCCODELEN)) return face.error(e);
181 0 : be::skip<byte>(p, be::peek<uint16>(o_constraint + m_numRules));
182 0 : if (e.test(p != aCode, E_BADACTIONCODEPTR)) return face.error(e);
183 0 : be::skip<byte>(p, be::peek<uint16>(o_actions + m_numRules));
184 :
185 : // We should be at the end or within the pass
186 0 : if (e.test(p > pass_end, E_BADPASSLENGTH)) return face.error(e);
187 :
188 : // Load the pass constraint if there is one.
189 0 : if (pass_constraint_len)
190 : {
191 0 : face.error_context(face.error_context() + 1);
192 0 : m_cPConstraint = vm::Machine::Code(true, pcCode, pcCode + pass_constraint_len,
193 0 : precontext[0], be::peek<uint16>(sort_keys), *m_silf, face, PASS_TYPE_UNKNOWN);
194 0 : if (e.test(!m_cPConstraint, E_OUTOFMEM)
195 0 : || e.test(m_cPConstraint.status() != Code::loaded, m_cPConstraint.status() + E_CODEFAILURE))
196 0 : return face.error(e);
197 0 : face.error_context(face.error_context() - 1);
198 : }
199 0 : if (m_numRules)
200 : {
201 0 : if (!readRanges(ranges, numRanges, e)) return face.error(e);
202 0 : if (!readRules(rule_map, numEntries, precontext, sort_keys,
203 0 : o_constraint, rcCode, o_actions, aCode, face, pt, e)) return false;
204 : }
205 : #ifdef GRAPHITE2_TELEMETRY
206 : telemetry::category _states_cat(face.tele.states);
207 : #endif
208 0 : return m_numRules ? readStates(start_states, states, o_rule_map, face, e) : true;
209 : }
210 :
211 :
212 0 : bool Pass::readRules(const byte * rule_map, const size_t num_entries,
213 : const byte *precontext, const uint16 * sort_key,
214 : const uint16 * o_constraint, const byte *rc_data,
215 : const uint16 * o_action, const byte * ac_data,
216 : Face & face, passtype pt, Error &e)
217 : {
218 0 : const byte * const ac_data_end = ac_data + be::peek<uint16>(o_action + m_numRules);
219 0 : const byte * const rc_data_end = rc_data + be::peek<uint16>(o_constraint + m_numRules);
220 :
221 0 : precontext += m_numRules;
222 0 : sort_key += m_numRules;
223 0 : o_constraint += m_numRules;
224 0 : o_action += m_numRules;
225 :
226 : // Load rules.
227 0 : const byte * ac_begin = 0, * rc_begin = 0,
228 0 : * ac_end = ac_data + be::peek<uint16>(o_action),
229 0 : * rc_end = rc_data + be::peek<uint16>(o_constraint);
230 :
231 : // Allocate pools
232 0 : m_rules = new Rule [m_numRules];
233 0 : m_codes = new Code [m_numRules*2];
234 0 : int totalSlots = 0;
235 0 : const uint16 *tsort = sort_key;
236 0 : for (int i = 0; i < m_numRules; ++i)
237 0 : totalSlots += be::peek<uint16>(--tsort);
238 0 : const size_t prog_pool_sz = vm::Machine::Code::estimateCodeDataOut(ac_end - ac_data + rc_end - rc_data, 2 * m_numRules, totalSlots);
239 0 : m_progs = gralloc<byte>(prog_pool_sz);
240 0 : byte * prog_pool_free = m_progs,
241 0 : * prog_pool_end = m_progs + prog_pool_sz;
242 0 : if (e.test(!(m_rules && m_codes && m_progs), E_OUTOFMEM)) return face.error(e);
243 :
244 0 : Rule * r = m_rules + m_numRules - 1;
245 0 : for (size_t n = m_numRules; r >= m_rules; --n, --r, ac_end = ac_begin, rc_end = rc_begin)
246 : {
247 0 : face.error_context((face.error_context() & 0xFFFF00) + EC_ARULE + ((n - 1) << 24));
248 0 : r->preContext = *--precontext;
249 0 : r->sort = be::peek<uint16>(--sort_key);
250 : #ifndef NDEBUG
251 0 : r->rule_idx = n - 1;
252 : #endif
253 0 : if (r->sort > 63 || r->preContext >= r->sort || r->preContext > m_maxPreCtxt || r->preContext < m_minPreCtxt)
254 0 : return false;
255 0 : ac_begin = ac_data + be::peek<uint16>(--o_action);
256 0 : --o_constraint;
257 0 : rc_begin = be::peek<uint16>(o_constraint) ? rc_data + be::peek<uint16>(o_constraint) : rc_end;
258 :
259 0 : if (ac_begin > ac_end || ac_begin > ac_data_end || ac_end > ac_data_end
260 0 : || rc_begin > rc_end || rc_begin > rc_data_end || rc_end > rc_data_end
261 0 : || vm::Machine::Code::estimateCodeDataOut(ac_end - ac_begin + rc_end - rc_begin, 2, r->sort) > size_t(prog_pool_end - prog_pool_free))
262 0 : return false;
263 0 : r->action = new (m_codes+n*2-2) vm::Machine::Code(false, ac_begin, ac_end, r->preContext, r->sort, *m_silf, face, pt, &prog_pool_free);
264 0 : r->constraint = new (m_codes+n*2-1) vm::Machine::Code(true, rc_begin, rc_end, r->preContext, r->sort, *m_silf, face, pt, &prog_pool_free);
265 :
266 0 : if (e.test(!r->action || !r->constraint, E_OUTOFMEM)
267 0 : || e.test(r->action->status() != Code::loaded, r->action->status() + E_CODEFAILURE)
268 0 : || e.test(r->constraint->status() != Code::loaded, r->constraint->status() + E_CODEFAILURE)
269 0 : || e.test(!r->constraint->immutable(), E_MUTABLECCODE))
270 0 : return face.error(e);
271 : }
272 :
273 0 : byte * moved_progs = static_cast<byte *>(realloc(m_progs, prog_pool_free - m_progs));
274 0 : if (e.test(!moved_progs, E_OUTOFMEM))
275 : {
276 0 : if (prog_pool_free - m_progs == 0) m_progs = 0;
277 0 : return face.error(e);
278 : }
279 :
280 0 : if (moved_progs != m_progs)
281 : {
282 0 : for (Code * c = m_codes, * const ce = c + m_numRules*2; c != ce; ++c)
283 : {
284 0 : c->externalProgramMoved(moved_progs - m_progs);
285 : }
286 0 : m_progs = moved_progs;
287 : }
288 :
289 : // Load the rule entries map
290 0 : face.error_context((face.error_context() & 0xFFFF00) + EC_APASS);
291 : //TODO: Coverty: 1315804: FORWARD_NULL
292 0 : RuleEntry * re = m_ruleMap = gralloc<RuleEntry>(num_entries);
293 0 : if (e.test(!re, E_OUTOFMEM)) return face.error(e);
294 0 : for (size_t n = num_entries; n; --n, ++re)
295 : {
296 0 : const ptrdiff_t rn = be::read<uint16>(rule_map);
297 0 : if (e.test(rn >= m_numRules, E_BADRULENUM)) return face.error(e);
298 0 : re->rule = m_rules + rn;
299 : }
300 :
301 0 : return true;
302 : }
303 :
304 0 : static int cmpRuleEntry(const void *a, const void *b) { return (*(RuleEntry *)a < *(RuleEntry *)b ? -1 :
305 0 : (*(RuleEntry *)b < *(RuleEntry *)a ? 1 : 0)); }
306 :
307 0 : bool Pass::readStates(const byte * starts, const byte *states, const byte * o_rule_map, GR_MAYBE_UNUSED Face & face, Error &e)
308 : {
309 : #ifdef GRAPHITE2_TELEMETRY
310 : telemetry::category _states_cat(face.tele.starts);
311 : #endif
312 0 : m_startStates = gralloc<uint16>(m_maxPreCtxt - m_minPreCtxt + 1);
313 : #ifdef GRAPHITE2_TELEMETRY
314 : telemetry::set_category(face.tele.states);
315 : #endif
316 0 : m_states = gralloc<State>(m_numStates);
317 : #ifdef GRAPHITE2_TELEMETRY
318 : telemetry::set_category(face.tele.transitions);
319 : #endif
320 0 : m_transitions = gralloc<uint16>(m_numTransition * m_numColumns);
321 :
322 0 : if (e.test(!m_startStates || !m_states || !m_transitions, E_OUTOFMEM)) return face.error(e);
323 : // load start states
324 0 : for (uint16 * s = m_startStates,
325 0 : * const s_end = s + m_maxPreCtxt - m_minPreCtxt + 1; s != s_end; ++s)
326 : {
327 0 : *s = be::read<uint16>(starts);
328 0 : if (e.test(*s >= m_numStates, E_BADSTATE))
329 : {
330 0 : face.error_context((face.error_context() & 0xFFFF00) + EC_ASTARTS + ((s - m_startStates) << 24));
331 0 : return face.error(e); // true;
332 : }
333 : }
334 :
335 : // load state transition table.
336 0 : for (uint16 * t = m_transitions,
337 0 : * const t_end = t + m_numTransition*m_numColumns; t != t_end; ++t)
338 : {
339 0 : *t = be::read<uint16>(states);
340 0 : if (e.test(*t >= m_numStates, E_BADSTATE))
341 : {
342 0 : face.error_context((face.error_context() & 0xFFFF00) + EC_ATRANS + (((t - m_transitions) / m_numColumns) << 8));
343 0 : return face.error(e);
344 : }
345 : }
346 :
347 0 : State * s = m_states,
348 0 : * const success_begin = m_states + m_numStates - m_numSuccess;
349 0 : const RuleEntry * rule_map_end = m_ruleMap + be::peek<uint16>(o_rule_map + m_numSuccess*sizeof(uint16));
350 0 : for (size_t n = m_numStates; n; --n, ++s)
351 : {
352 0 : RuleEntry * const begin = s < success_begin ? 0 : m_ruleMap + be::read<uint16>(o_rule_map),
353 0 : * const end = s < success_begin ? 0 : m_ruleMap + be::peek<uint16>(o_rule_map);
354 :
355 0 : if (e.test(begin >= rule_map_end || end > rule_map_end || begin > end, E_BADRULEMAPPING))
356 : {
357 0 : face.error_context((face.error_context() & 0xFFFF00) + EC_ARULEMAP + (n << 24));
358 0 : return face.error(e);
359 : }
360 0 : s->rules = begin;
361 0 : s->rules_end = (end - begin <= FiniteStateMachine::MAX_RULES)? end :
362 : begin + FiniteStateMachine::MAX_RULES;
363 0 : if (begin) // keep UBSan happy can't call qsort with null begin
364 0 : qsort(begin, end - begin, sizeof(RuleEntry), &cmpRuleEntry);
365 : }
366 :
367 0 : return true;
368 : }
369 :
370 0 : bool Pass::readRanges(const byte * ranges, size_t num_ranges, Error &e)
371 : {
372 0 : m_cols = gralloc<uint16>(m_numGlyphs);
373 0 : if (e.test(!m_cols, E_OUTOFMEM)) return false;
374 0 : memset(m_cols, 0xFF, m_numGlyphs * sizeof(uint16));
375 0 : for (size_t n = num_ranges; n; --n)
376 : {
377 0 : uint16 * ci = m_cols + be::read<uint16>(ranges),
378 0 : * ci_end = m_cols + be::read<uint16>(ranges) + 1,
379 0 : col = be::read<uint16>(ranges);
380 :
381 0 : if (e.test(ci >= ci_end || ci_end > m_cols+m_numGlyphs || col >= m_numColumns, E_BADRANGE))
382 0 : return false;
383 :
384 : // A glyph must only belong to one column at a time
385 0 : while (ci != ci_end && *ci == 0xffff)
386 0 : *ci++ = col;
387 :
388 0 : if (e.test(ci != ci_end, E_BADRANGE))
389 0 : return false;
390 : }
391 0 : return true;
392 : }
393 :
394 :
395 0 : bool Pass::runGraphite(vm::Machine & m, FiniteStateMachine & fsm, bool reverse) const
396 : {
397 0 : Slot *s = m.slotMap().segment.first();
398 0 : if (!s || !testPassConstraint(m)) return true;
399 0 : if (reverse)
400 : {
401 0 : m.slotMap().segment.reverseSlots();
402 0 : s = m.slotMap().segment.first();
403 : }
404 0 : if (m_numRules)
405 : {
406 0 : Slot *currHigh = s->next();
407 :
408 : #if !defined GRAPHITE2_NTRACING
409 : if (fsm.dbgout) *fsm.dbgout << "rules" << json::array;
410 : json::closer rules_array_closer(fsm.dbgout);
411 : #endif
412 :
413 0 : m.slotMap().highwater(currHigh);
414 0 : int lc = m_iMaxLoop;
415 0 : do
416 : {
417 0 : findNDoRule(s, m, fsm);
418 0 : if (m.status() != Machine::finished) return false;
419 0 : if (s && (s == m.slotMap().highwater() || m.slotMap().highpassed() || --lc == 0)) {
420 0 : if (!lc)
421 0 : s = m.slotMap().highwater();
422 0 : lc = m_iMaxLoop;
423 0 : if (s)
424 0 : m.slotMap().highwater(s->next());
425 : }
426 0 : } while (s);
427 : }
428 : //TODO: Use enums for flags
429 0 : const bool collisions = m_numCollRuns || m_kernColls;
430 :
431 0 : if (!collisions || !m.slotMap().segment.hasCollisionInfo())
432 0 : return true;
433 :
434 0 : if (m_numCollRuns)
435 : {
436 0 : if (!(m.slotMap().segment.flags() & Segment::SEG_INITCOLLISIONS))
437 : {
438 0 : m.slotMap().segment.positionSlots(0, 0, 0, m.slotMap().dir(), true);
439 : // m.slotMap().segment.flags(m.slotMap().segment.flags() | Segment::SEG_INITCOLLISIONS);
440 : }
441 0 : if (!collisionShift(&m.slotMap().segment, m.slotMap().dir(), fsm.dbgout))
442 0 : return false;
443 : }
444 0 : if ((m_kernColls) && !collisionKern(&m.slotMap().segment, m.slotMap().dir(), fsm.dbgout))
445 0 : return false;
446 0 : if (collisions && !collisionFinish(&m.slotMap().segment, fsm.dbgout))
447 0 : return false;
448 0 : return true;
449 : }
450 :
451 0 : bool Pass::runFSM(FiniteStateMachine& fsm, Slot * slot) const
452 : {
453 0 : fsm.reset(slot, m_maxPreCtxt);
454 0 : if (fsm.slots.context() < m_minPreCtxt)
455 0 : return false;
456 :
457 0 : uint16 state = m_startStates[m_maxPreCtxt - fsm.slots.context()];
458 0 : uint8 free_slots = SlotMap::MAX_SLOTS;
459 0 : do
460 : {
461 0 : fsm.slots.pushSlot(slot);
462 0 : if (slot->gid() >= m_numGlyphs
463 0 : || m_cols[slot->gid()] == 0xffffU
464 0 : || --free_slots == 0
465 0 : || state >= m_numTransition)
466 0 : return free_slots != 0;
467 :
468 0 : const uint16 * transitions = m_transitions + state*m_numColumns;
469 0 : state = transitions[m_cols[slot->gid()]];
470 0 : if (state >= m_successStart)
471 0 : fsm.rules.accumulate_rules(m_states[state]);
472 :
473 0 : slot = slot->next();
474 0 : } while (state != 0 && slot);
475 :
476 0 : fsm.slots.pushSlot(slot);
477 0 : return true;
478 : }
479 :
480 : #if !defined GRAPHITE2_NTRACING
481 :
482 : inline
483 : Slot * input_slot(const SlotMap & slots, const int n)
484 : {
485 : Slot * s = slots[slots.context() + n];
486 : if (!s->isCopied()) return s;
487 :
488 : return s->prev() ? s->prev()->next() : (s->next() ? s->next()->prev() : slots.segment.last());
489 : }
490 :
491 : inline
492 : Slot * output_slot(const SlotMap & slots, const int n)
493 : {
494 : Slot * s = slots[slots.context() + n - 1];
495 : return s ? s->next() : slots.segment.first();
496 : }
497 :
498 : #endif //!defined GRAPHITE2_NTRACING
499 :
500 0 : void Pass::findNDoRule(Slot * & slot, Machine &m, FiniteStateMachine & fsm) const
501 : {
502 0 : assert(slot);
503 :
504 0 : if (runFSM(fsm, slot))
505 : {
506 : // Search for the first rule which passes the constraint
507 0 : const RuleEntry * r = fsm.rules.begin(),
508 0 : * const re = fsm.rules.end();
509 0 : while (r != re && !testConstraint(*r->rule, m))
510 : {
511 0 : ++r;
512 0 : if (m.status() != Machine::finished)
513 0 : return;
514 : }
515 :
516 : #if !defined GRAPHITE2_NTRACING
517 : if (fsm.dbgout)
518 : {
519 : if (fsm.rules.size() != 0)
520 : {
521 : *fsm.dbgout << json::item << json::object;
522 : dumpRuleEventConsidered(fsm, *r);
523 : if (r != re)
524 : {
525 : const int adv = doAction(r->rule->action, slot, m);
526 : dumpRuleEventOutput(fsm, *r->rule, slot);
527 : if (r->rule->action->deletes()) fsm.slots.collectGarbage(slot);
528 : adjustSlot(adv, slot, fsm.slots);
529 : *fsm.dbgout << "cursor" << objectid(dslot(&fsm.slots.segment, slot))
530 : << json::close; // Close RuelEvent object
531 :
532 : return;
533 : }
534 : else
535 : {
536 : *fsm.dbgout << json::close // close "considered" array
537 : << "output" << json::null
538 : << "cursor" << objectid(dslot(&fsm.slots.segment, slot->next()))
539 : << json::close;
540 : }
541 : }
542 : }
543 : else
544 : #endif
545 : {
546 0 : if (r != re)
547 : {
548 0 : const int adv = doAction(r->rule->action, slot, m);
549 0 : if (m.status() != Machine::finished) return;
550 0 : if (r->rule->action->deletes()) fsm.slots.collectGarbage(slot);
551 0 : adjustSlot(adv, slot, fsm.slots);
552 0 : return;
553 : }
554 : }
555 : }
556 :
557 0 : slot = slot->next();
558 0 : return;
559 : }
560 :
561 : #if !defined GRAPHITE2_NTRACING
562 :
563 : void Pass::dumpRuleEventConsidered(const FiniteStateMachine & fsm, const RuleEntry & re) const
564 : {
565 : *fsm.dbgout << "considered" << json::array;
566 : for (const RuleEntry *r = fsm.rules.begin(); r != &re; ++r)
567 : {
568 : if (r->rule->preContext > fsm.slots.context())
569 : continue;
570 : *fsm.dbgout << json::flat << json::object
571 : << "id" << r->rule - m_rules
572 : << "failed" << true
573 : << "input" << json::flat << json::object
574 : << "start" << objectid(dslot(&fsm.slots.segment, input_slot(fsm.slots, -r->rule->preContext)))
575 : << "length" << r->rule->sort
576 : << json::close // close "input"
577 : << json::close; // close Rule object
578 : }
579 : }
580 :
581 :
582 : void Pass::dumpRuleEventOutput(const FiniteStateMachine & fsm, const Rule & r, Slot * const last_slot) const
583 : {
584 : *fsm.dbgout << json::item << json::flat << json::object
585 : << "id" << &r - m_rules
586 : << "failed" << false
587 : << "input" << json::flat << json::object
588 : << "start" << objectid(dslot(&fsm.slots.segment, input_slot(fsm.slots, 0)))
589 : << "length" << r.sort - r.preContext
590 : << json::close // close "input"
591 : << json::close // close Rule object
592 : << json::close // close considered array
593 : << "output" << json::object
594 : << "range" << json::flat << json::object
595 : << "start" << objectid(dslot(&fsm.slots.segment, input_slot(fsm.slots, 0)))
596 : << "end" << objectid(dslot(&fsm.slots.segment, last_slot))
597 : << json::close // close "input"
598 : << "slots" << json::array;
599 : const Position rsb_prepos = last_slot ? last_slot->origin() : fsm.slots.segment.advance();
600 : fsm.slots.segment.positionSlots(0, 0, 0, fsm.slots.segment.currdir());
601 :
602 : for(Slot * slot = output_slot(fsm.slots, 0); slot != last_slot; slot = slot->next())
603 : *fsm.dbgout << dslot(&fsm.slots.segment, slot);
604 : *fsm.dbgout << json::close // close "slots"
605 : << "postshift" << (last_slot ? last_slot->origin() : fsm.slots.segment.advance()) - rsb_prepos
606 : << json::close; // close "output" object
607 :
608 : }
609 :
610 : #endif
611 :
612 :
613 : inline
614 0 : bool Pass::testPassConstraint(Machine & m) const
615 : {
616 0 : if (!m_cPConstraint) return true;
617 :
618 0 : assert(m_cPConstraint.constraint());
619 :
620 0 : m.slotMap().reset(*m.slotMap().segment.first(), 0);
621 0 : m.slotMap().pushSlot(m.slotMap().segment.first());
622 0 : vm::slotref * map = m.slotMap().begin();
623 0 : const uint32 ret = m_cPConstraint.run(m, map);
624 :
625 : #if !defined GRAPHITE2_NTRACING
626 : json * const dbgout = m.slotMap().segment.getFace()->logger();
627 : if (dbgout)
628 : *dbgout << "constraint" << (ret && m.status() == Machine::finished);
629 : #endif
630 :
631 0 : return ret && m.status() == Machine::finished;
632 : }
633 :
634 :
635 0 : bool Pass::testConstraint(const Rule & r, Machine & m) const
636 : {
637 0 : const uint16 curr_context = m.slotMap().context();
638 0 : if (unsigned(r.sort + curr_context - r.preContext) > m.slotMap().size()
639 0 : || curr_context - r.preContext < 0) return false;
640 :
641 0 : vm::slotref * map = m.slotMap().begin() + curr_context - r.preContext;
642 0 : if (map[r.sort - 1] == 0)
643 0 : return false;
644 :
645 0 : if (!*r.constraint) return true;
646 0 : assert(r.constraint->constraint());
647 0 : for (int n = r.sort; n && map; --n, ++map)
648 : {
649 0 : if (!*map) continue;
650 0 : const int32 ret = r.constraint->run(m, map);
651 0 : if (!ret || m.status() != Machine::finished)
652 0 : return false;
653 : }
654 :
655 0 : return true;
656 : }
657 :
658 :
659 0 : void SlotMap::collectGarbage(Slot * &aSlot)
660 : {
661 0 : for(Slot **s = begin(), *const *const se = end() - 1; s != se; ++s) {
662 0 : Slot *& slot = *s;
663 0 : if(slot && (slot->isDeleted() || slot->isCopied()))
664 : {
665 0 : if (slot == aSlot)
666 0 : aSlot = slot->prev() ? slot->prev() : slot->next();
667 0 : segment.freeSlot(slot);
668 : }
669 : }
670 0 : }
671 :
672 :
673 :
674 0 : int Pass::doAction(const Code *codeptr, Slot * & slot_out, vm::Machine & m) const
675 : {
676 0 : assert(codeptr);
677 0 : if (!*codeptr) return 0;
678 0 : SlotMap & smap = m.slotMap();
679 0 : vm::slotref * map = &smap[smap.context()];
680 0 : smap.highpassed(false);
681 :
682 0 : int32 ret = codeptr->run(m, map);
683 :
684 0 : if (m.status() != Machine::finished)
685 : {
686 0 : slot_out = NULL;
687 0 : smap.highwater(0);
688 0 : return 0;
689 : }
690 :
691 0 : slot_out = *map;
692 0 : return ret;
693 : }
694 :
695 :
696 0 : void Pass::adjustSlot(int delta, Slot * & slot_out, SlotMap & smap) const
697 : {
698 0 : if (!slot_out)
699 : {
700 0 : if (smap.highpassed() || slot_out == smap.highwater())
701 : {
702 0 : slot_out = smap.segment.last();
703 0 : ++delta;
704 0 : if (!smap.highwater())
705 0 : smap.highpassed(false);
706 : }
707 : else
708 : {
709 0 : slot_out = smap.segment.first();
710 0 : --delta;
711 : }
712 : }
713 0 : if (delta < 0)
714 : {
715 0 : while (++delta <= 0 && slot_out)
716 : {
717 0 : if (smap.highpassed() && smap.highwater() == slot_out)
718 0 : smap.highpassed(false);
719 0 : slot_out = slot_out->prev();
720 : }
721 : }
722 0 : else if (delta > 0)
723 : {
724 0 : while (--delta >= 0 && slot_out)
725 : {
726 0 : slot_out = slot_out->next();
727 0 : if (slot_out == smap.highwater() && slot_out)
728 0 : smap.highpassed(true);
729 : }
730 : }
731 0 : }
732 :
733 0 : bool Pass::collisionShift(Segment *seg, int dir, json * const dbgout) const
734 : {
735 0 : ShiftCollider shiftcoll(dbgout);
736 : // bool isfirst = true;
737 0 : bool hasCollisions = false;
738 0 : Slot *start = seg->first(); // turn on collision fixing for the first slot
739 0 : Slot *end = NULL;
740 0 : bool moved = false;
741 :
742 : #if !defined GRAPHITE2_NTRACING
743 : if (dbgout)
744 : *dbgout << "collisions" << json::array
745 : << json::flat << json::object << "num-loops" << m_numCollRuns << json::close;
746 : #endif
747 :
748 0 : while (start)
749 : {
750 : #if !defined GRAPHITE2_NTRACING
751 : if (dbgout) *dbgout << json::object << "phase" << "1" << "moves" << json::array;
752 : #endif
753 0 : hasCollisions = false;
754 0 : end = NULL;
755 : // phase 1 : position shiftable glyphs, ignoring kernable glyphs
756 0 : for (Slot *s = start; s; s = s->next())
757 : {
758 0 : const SlotCollision * c = seg->collisionInfo(s);
759 0 : if (start && (c->flags() & (SlotCollision::COLL_FIX | SlotCollision::COLL_KERN)) == SlotCollision::COLL_FIX
760 0 : && !resolveCollisions(seg, s, start, shiftcoll, false, dir, moved, hasCollisions, dbgout))
761 0 : return false;
762 0 : if (s != start && (c->flags() & SlotCollision::COLL_END))
763 : {
764 0 : end = s->next();
765 0 : break;
766 : }
767 : }
768 :
769 : #if !defined GRAPHITE2_NTRACING
770 : if (dbgout)
771 : *dbgout << json::close << json::close; // phase-1
772 : #endif
773 :
774 : // phase 2 : loop until happy.
775 0 : for (int i = 0; i < m_numCollRuns - 1; ++i)
776 : {
777 0 : if (hasCollisions || moved)
778 : {
779 :
780 : #if !defined GRAPHITE2_NTRACING
781 : if (dbgout)
782 : *dbgout << json::object << "phase" << "2a" << "loop" << i << "moves" << json::array;
783 : #endif
784 : // phase 2a : if any shiftable glyphs are in collision, iterate backwards,
785 : // fixing them and ignoring other non-collided glyphs. Note that this handles ONLY
786 : // glyphs that are actually in collision from phases 1 or 2b, and working backwards
787 : // has the intended effect of breaking logjams.
788 0 : if (hasCollisions)
789 : {
790 0 : hasCollisions = false;
791 : #if 0
792 : moved = true;
793 : for (Slot *s = start; s != end; s = s->next())
794 : {
795 : SlotCollision * c = seg->collisionInfo(s);
796 : c->setShift(Position(0, 0));
797 : }
798 : #endif
799 0 : Slot *lend = end ? end->prev() : seg->last();
800 0 : Slot *lstart = start->prev();
801 0 : for (Slot *s = lend; s != lstart; s = s->prev())
802 : {
803 0 : SlotCollision * c = seg->collisionInfo(s);
804 0 : if (start && (c->flags() & (SlotCollision::COLL_FIX | SlotCollision::COLL_KERN | SlotCollision::COLL_ISCOL))
805 : == (SlotCollision::COLL_FIX | SlotCollision::COLL_ISCOL)) // ONLY if this glyph is still colliding
806 : {
807 0 : if (!resolveCollisions(seg, s, lend, shiftcoll, true, dir, moved, hasCollisions, dbgout))
808 0 : return false;
809 0 : c->setFlags(c->flags() | SlotCollision::COLL_TEMPLOCK);
810 : }
811 : }
812 : }
813 :
814 : #if !defined GRAPHITE2_NTRACING
815 : if (dbgout)
816 : *dbgout << json::close << json::close // phase 2a
817 : << json::object << "phase" << "2b" << "loop" << i << "moves" << json::array;
818 : #endif
819 :
820 : // phase 2b : redo basic diacritic positioning pass for ALL glyphs. Each successive loop adjusts
821 : // glyphs from their current adjusted position, which has the effect of gradually minimizing the
822 : // resulting adjustment; ie, the final result will be gradually closer to the original location.
823 : // Also it allows more flexibility in the final adjustment, since it is moving along the
824 : // possible 8 vectors from successively different starting locations.
825 0 : if (moved)
826 : {
827 0 : moved = false;
828 0 : for (Slot *s = start; s != end; s = s->next())
829 : {
830 0 : SlotCollision * c = seg->collisionInfo(s);
831 0 : if (start && (c->flags() & (SlotCollision::COLL_FIX | SlotCollision::COLL_TEMPLOCK
832 : | SlotCollision::COLL_KERN)) == SlotCollision::COLL_FIX
833 0 : && !resolveCollisions(seg, s, start, shiftcoll, false, dir, moved, hasCollisions, dbgout))
834 0 : return false;
835 0 : else if (c->flags() & SlotCollision::COLL_TEMPLOCK)
836 0 : c->setFlags(c->flags() & ~SlotCollision::COLL_TEMPLOCK);
837 : }
838 : }
839 : // if (!hasCollisions) // no, don't leave yet because phase 2b will continue to improve things
840 : // break;
841 : #if !defined GRAPHITE2_NTRACING
842 : if (dbgout)
843 : *dbgout << json::close << json::close; // phase 2
844 : #endif
845 : }
846 : }
847 0 : if (!end)
848 0 : break;
849 0 : start = NULL;
850 0 : for (Slot *s = end->prev(); s; s = s->next())
851 : {
852 0 : if (seg->collisionInfo(s)->flags() & SlotCollision::COLL_START)
853 : {
854 0 : start = s;
855 0 : break;
856 : }
857 : }
858 : }
859 0 : return true;
860 : }
861 :
862 0 : bool Pass::collisionKern(Segment *seg, int dir, json * const dbgout) const
863 : {
864 0 : Slot *start = seg->first();
865 0 : float ymin = 1e38f;
866 0 : float ymax = -1e38f;
867 0 : const GlyphCache &gc = seg->getFace()->glyphs();
868 :
869 : // phase 3 : handle kerning of clusters
870 : #if !defined GRAPHITE2_NTRACING
871 : if (dbgout)
872 : *dbgout << json::object << "phase" << "3" << "moves" << json::array;
873 : #endif
874 :
875 0 : for (Slot *s = seg->first(); s; s = s->next())
876 : {
877 0 : if (!gc.check(s->gid()))
878 0 : return false;
879 0 : const SlotCollision * c = seg->collisionInfo(s);
880 0 : const Rect &bbox = seg->theGlyphBBoxTemporary(s->gid());
881 0 : float y = s->origin().y + c->shift().y;
882 0 : if (!(c->flags() & SlotCollision::COLL_ISSPACE))
883 : {
884 0 : ymax = max(y + bbox.tr.y, ymax);
885 0 : ymin = min(y + bbox.bl.y, ymin);
886 : }
887 0 : if (start && (c->flags() & (SlotCollision::COLL_KERN | SlotCollision::COLL_FIX))
888 : == (SlotCollision::COLL_KERN | SlotCollision::COLL_FIX))
889 0 : resolveKern(seg, s, start, dir, ymin, ymax, dbgout);
890 0 : if (c->flags() & SlotCollision::COLL_END)
891 0 : start = NULL;
892 0 : if (c->flags() & SlotCollision::COLL_START)
893 0 : start = s;
894 : }
895 :
896 : #if !defined GRAPHITE2_NTRACING
897 : if (dbgout)
898 : *dbgout << json::close << json::close; // phase 3
899 : #endif
900 0 : return true;
901 : }
902 :
903 0 : bool Pass::collisionFinish(Segment *seg, GR_MAYBE_UNUSED json * const dbgout) const
904 : {
905 0 : for (Slot *s = seg->first(); s; s = s->next())
906 : {
907 0 : SlotCollision *c = seg->collisionInfo(s);
908 0 : if (c->shift().x != 0 || c->shift().y != 0)
909 : {
910 0 : const Position newOffset = c->shift();
911 0 : const Position nullPosition(0, 0);
912 0 : c->setOffset(newOffset + c->offset());
913 0 : c->setShift(nullPosition);
914 : }
915 : }
916 : // seg->positionSlots();
917 :
918 : #if !defined GRAPHITE2_NTRACING
919 : if (dbgout)
920 : *dbgout << json::close;
921 : #endif
922 0 : return true;
923 : }
924 :
925 : // Can slot s be kerned, or is it attached to something that can be kerned?
926 0 : static bool inKernCluster(Segment *seg, Slot *s)
927 : {
928 0 : SlotCollision *c = seg->collisionInfo(s);
929 0 : if (c->flags() & SlotCollision::COLL_KERN /** && c->flags() & SlotCollision::COLL_FIX **/ )
930 0 : return true;
931 0 : while (s->attachedTo())
932 : {
933 0 : s = s->attachedTo();
934 0 : c = seg->collisionInfo(s);
935 0 : if (c->flags() & SlotCollision::COLL_KERN /** && c->flags() & SlotCollision::COLL_FIX **/ )
936 0 : return true;
937 : }
938 0 : return false;
939 : }
940 :
941 : // Fix collisions for the given slot.
942 : // Return true if everything was fixed, false if there are still collisions remaining.
943 : // isRev means be we are processing backwards.
944 0 : bool Pass::resolveCollisions(Segment *seg, Slot *slotFix, Slot *start,
945 : ShiftCollider &coll, GR_MAYBE_UNUSED bool isRev, int dir, bool &moved, bool &hasCol,
946 : json * const dbgout) const
947 : {
948 : Slot * nbor; // neighboring slot
949 0 : SlotCollision *cFix = seg->collisionInfo(slotFix);
950 0 : if (!coll.initSlot(seg, slotFix, cFix->limit(), cFix->margin(), cFix->marginWt(),
951 : cFix->shift(), cFix->offset(), dir, dbgout))
952 0 : return false;
953 0 : bool collides = false;
954 : // When we're processing forward, ignore kernable glyphs that preceed the target glyph.
955 : // When processing backward, don't ignore these until we pass slotFix.
956 0 : bool ignoreForKern = !isRev;
957 0 : bool rtl = dir & 1;
958 0 : Slot *base = slotFix;
959 0 : while (base->attachedTo())
960 0 : base = base->attachedTo();
961 0 : Position zero(0., 0.);
962 :
963 : // Look for collisions with the neighboring glyphs.
964 0 : for (nbor = start; nbor; nbor = isRev ? nbor->prev() : nbor->next())
965 : {
966 0 : SlotCollision *cNbor = seg->collisionInfo(nbor);
967 0 : bool sameCluster = nbor->isChildOf(base);
968 0 : if (nbor != slotFix // don't process if this is the slot of interest
969 0 : && !(cNbor->ignore()) // don't process if ignoring
970 0 : && (nbor == base || sameCluster // process if in the same cluster as slotFix
971 0 : || !inKernCluster(seg, nbor) // or this cluster is not to be kerned
972 0 : || (rtl ^ ignoreForKern)) // or it comes before(ltr) or after(rtl)
973 0 : && (!isRev // if processing forwards then good to merge otherwise only:
974 0 : || !(cNbor->flags() & SlotCollision::COLL_FIX) // merge in immovable stuff
975 0 : || ((cNbor->flags() & SlotCollision::COLL_KERN) && !sameCluster) // ignore other kernable clusters
976 0 : || (cNbor->flags() & SlotCollision::COLL_ISCOL)) // test against other collided glyphs
977 0 : && !coll.mergeSlot(seg, nbor, cNbor, cNbor->shift(), !ignoreForKern, sameCluster, collides, false, dbgout))
978 0 : return false;
979 0 : else if (nbor == slotFix)
980 : // Switching sides of this glyph - if we were ignoring kernable stuff before, don't anymore.
981 0 : ignoreForKern = !ignoreForKern;
982 :
983 0 : if (nbor != start && (cNbor->flags() & (isRev ? SlotCollision::COLL_START : SlotCollision::COLL_END)))
984 0 : break;
985 : }
986 0 : bool isCol = false;
987 0 : if (collides || cFix->shift().x != 0.f || cFix->shift().y != 0.f)
988 : {
989 0 : Position shift = coll.resolve(seg, isCol, dbgout);
990 : // isCol has been set to true if a collision remains.
991 0 : if (std::fabs(shift.x) < 1e38f && std::fabs(shift.y) < 1e38f)
992 : {
993 0 : if (sqr(shift.x-cFix->shift().x) + sqr(shift.y-cFix->shift().y) >= m_colThreshold * m_colThreshold)
994 0 : moved = true;
995 0 : cFix->setShift(shift);
996 0 : if (slotFix->firstChild())
997 : {
998 0 : Rect bbox;
999 0 : Position here = slotFix->origin() + shift;
1000 0 : float clusterMin = here.x;
1001 0 : slotFix->firstChild()->finalise(seg, NULL, here, bbox, 0, clusterMin, rtl, false);
1002 : }
1003 : }
1004 : }
1005 : else
1006 : {
1007 : // This glyph is not colliding with anything.
1008 : #if !defined GRAPHITE2_NTRACING
1009 : if (dbgout)
1010 : {
1011 : *dbgout << json::object
1012 : << "missed" << objectid(dslot(seg, slotFix));
1013 : coll.outputJsonDbg(dbgout, seg, -1);
1014 : *dbgout << json::close;
1015 : }
1016 : #endif
1017 : }
1018 :
1019 : // Set the is-collision flag bit.
1020 0 : if (isCol)
1021 0 : { cFix->setFlags(cFix->flags() | SlotCollision::COLL_ISCOL | SlotCollision::COLL_KNOWN); }
1022 : else
1023 0 : { cFix->setFlags((cFix->flags() & ~SlotCollision::COLL_ISCOL) | SlotCollision::COLL_KNOWN); }
1024 0 : hasCol |= isCol;
1025 0 : return true;
1026 : }
1027 :
1028 0 : float Pass::resolveKern(Segment *seg, Slot *slotFix, GR_MAYBE_UNUSED Slot *start, int dir,
1029 : float &ymin, float &ymax, json *const dbgout) const
1030 : {
1031 : Slot *nbor; // neighboring slot
1032 0 : float currSpace = 0.;
1033 0 : bool collides = false;
1034 0 : unsigned int space_count = 0;
1035 0 : Slot *base = slotFix;
1036 0 : while (base->attachedTo())
1037 0 : base = base->attachedTo();
1038 0 : SlotCollision *cFix = seg->collisionInfo(base);
1039 0 : const GlyphCache &gc = seg->getFace()->glyphs();
1040 :
1041 0 : if (base != slotFix)
1042 : {
1043 0 : cFix->setFlags(cFix->flags() | SlotCollision::COLL_KERN | SlotCollision::COLL_FIX);
1044 0 : return 0;
1045 : }
1046 0 : bool seenEnd = (cFix->flags() & SlotCollision::COLL_END) != 0;
1047 0 : bool isInit = false;
1048 0 : KernCollider coll(dbgout);
1049 :
1050 0 : for (nbor = slotFix->next(); nbor; nbor = nbor->next())
1051 : {
1052 0 : if (nbor->isChildOf(base))
1053 0 : continue;
1054 0 : if (!gc.check(nbor->gid()))
1055 0 : return 0.;
1056 0 : const Rect &bb = seg->theGlyphBBoxTemporary(nbor->gid());
1057 0 : SlotCollision *cNbor = seg->collisionInfo(nbor);
1058 0 : if ((bb.bl.y == 0.f && bb.tr.y == 0.f) || (cNbor->flags() & SlotCollision::COLL_ISSPACE))
1059 : {
1060 0 : if (m_kernColls == InWord)
1061 0 : break;
1062 : // Add space for a space glyph.
1063 0 : currSpace += nbor->advance();
1064 0 : ++space_count;
1065 : }
1066 : else
1067 : {
1068 0 : space_count = 0;
1069 0 : float y = nbor->origin().y + cNbor->shift().y;
1070 0 : ymax = max(y + bb.tr.y, ymax);
1071 0 : ymin = min(y + bb.bl.y, ymin);
1072 0 : if (nbor != slotFix && !cNbor->ignore())
1073 : {
1074 0 : seenEnd = true;
1075 0 : if (!isInit)
1076 : {
1077 0 : if (!coll.initSlot(seg, slotFix, cFix->limit(), cFix->margin(),
1078 : cFix->shift(), cFix->offset(), dir, ymin, ymax, dbgout))
1079 0 : return 0.;
1080 0 : isInit = true;
1081 : }
1082 0 : collides |= coll.mergeSlot(seg, nbor, cNbor->shift(), currSpace, dir, dbgout);
1083 : }
1084 : }
1085 0 : if (cNbor->flags() & SlotCollision::COLL_END)
1086 : {
1087 0 : if (seenEnd && space_count < 2)
1088 : break;
1089 : else
1090 0 : seenEnd = true;
1091 : }
1092 : }
1093 0 : if (collides)
1094 : {
1095 0 : Position mv = coll.resolve(seg, slotFix, dir, dbgout);
1096 0 : coll.shift(mv, dir);
1097 0 : Position delta = slotFix->advancePos() + mv - cFix->shift();
1098 0 : slotFix->advance(delta);
1099 0 : cFix->setShift(mv);
1100 0 : return mv.x;
1101 : }
1102 0 : return 0.;
1103 : }
1104 :
|