Line data Source code
1 : /* GRAPHITE2 LICENSING
2 :
3 : Copyright 2010, SIL International
4 : All rights reserved.
5 :
6 : This library is free software; you can redistribute it and/or modify
7 : it under the terms of the GNU Lesser General Public License as published
8 : by the Free Software Foundation; either version 2.1 of License, or
9 : (at your option) any later version.
10 :
11 : This program is distributed in the hope that it will be useful,
12 : but WITHOUT ANY WARRANTY; without even the implied warranty of
13 : MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 : Lesser General Public License for more details.
15 :
16 : You should also have received a copy of the GNU Lesser General Public
17 : License along with this library in the file named "LICENSE".
18 : If not, write to the Free Software Foundation, 51 Franklin Street,
19 : Suite 500, Boston, MA 02110-1335, USA or visit their web page on the
20 : internet at http://www.fsf.org/licenses/lgpl.html.
21 :
22 : Alternatively, the contents of this file may be used under the terms of the
23 : Mozilla Public License (http://mozilla.org/MPL) or the GNU General Public
24 : License, as published by the Free Software Foundation, either version 2
25 : of the License or (at your option) any later version.
26 : */
27 : /*--------------------------------------------------------------------*//*:Ignore this sentence.
28 :
29 : File: TtfUtil.cpp
30 : Responsibility: Alan Ward
31 : Last reviewed: Not yet.
32 :
33 : Description
34 : Implements the methods for TtfUtil class. This file should remain portable to any C++
35 : environment by only using standard C++ and the TTF structurs defined in Tt.h.
36 : -------------------------------------------------------------------------------*//*:End Ignore*/
37 :
38 :
39 : /***********************************************************************************************
40 : Include files
41 : ***********************************************************************************************/
42 : // Language headers
43 : //#include <algorithm>
44 : #include <cassert>
45 : #include <cstddef>
46 : #include <cstring>
47 : #include <climits>
48 : #include <cwchar>
49 : //#include <stdexcept>
50 : // Platform headers
51 : // Module headers
52 : #include "inc/TtfUtil.h"
53 : #include "inc/TtfTypes.h"
54 : #include "inc/Endian.h"
55 :
56 : /***********************************************************************************************
57 : Forward declarations
58 : ***********************************************************************************************/
59 :
60 : /***********************************************************************************************
61 : Local Constants and static variables
62 : ***********************************************************************************************/
63 : namespace
64 : {
65 : #ifdef ALL_TTFUTILS
66 : // max number of components allowed in composite glyphs
67 : const int kMaxGlyphComponents = 8;
68 : #endif
69 :
70 : template <int R, typename T>
71 : inline float fixed_to_float(const T f) {
72 : return float(f)/float(2^R);
73 : }
74 :
75 : /*----------------------------------------------------------------------------------------------
76 : Table of standard Postscript glyph names. From Martin Hosken. Disagress with ttfdump.exe
77 : ---------------------------------------------------------------------------------------------*/
78 : #ifdef ALL_TTFUTILS
79 : const int kcPostNames = 258;
80 :
81 : const char * rgPostName[kcPostNames] = {
82 : ".notdef", ".null", "nonmarkingreturn", "space", "exclam", "quotedbl", "numbersign",
83 : "dollar", "percent", "ampersand", "quotesingle", "parenleft",
84 : "parenright", "asterisk", "plus", "comma", "hyphen", "period", "slash",
85 : "zero", "one", "two", "three", "four", "five", "six", "seven", "eight",
86 : "nine", "colon", "semicolon", "less", "equal", "greater", "question",
87 : "at", "A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K", "L", "M",
88 : "N", "O", "P", "Q", "R", "S", "T", "U", "V", "W", "X", "Y", "Z",
89 : "bracketleft", "backslash", "bracketright", "asciicircum",
90 : "underscore", "grave", "a", "b", "c", "d", "e", "f", "g", "h", "i",
91 : "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w",
92 : "x", "y", "z", "braceleft", "bar", "braceright", "asciitilde",
93 : "Adieresis", "Aring", "Ccedilla", "Eacute", "Ntilde", "Odieresis",
94 : "Udieresis", "aacute", "agrave", "acircumflex", "adieresis", "atilde",
95 : "aring", "ccedilla", "eacute", "egrave", "ecircumflex", "edieresis",
96 : "iacute", "igrave", "icircumflex", "idieresis", "ntilde", "oacute",
97 : "ograve", "ocircumflex", "odieresis", "otilde", "uacute", "ugrave",
98 : "ucircumflex", "udieresis", "dagger", "degree", "cent", "sterling",
99 : "section", "bullet", "paragraph", "germandbls", "registered",
100 : "copyright", "trademark", "acute", "dieresis", "notequal", "AE",
101 : "Oslash", "infinity", "plusminus", "lessequal", "greaterequal", "yen",
102 : "mu", "partialdiff", "summation", "product", "pi", "integral",
103 : "ordfeminine", "ordmasculine", "Omega", "ae", "oslash", "questiondown",
104 : "exclamdown", "logicalnot", "radical", "florin", "approxequal",
105 : "Delta", "guillemotleft", "guillemotright", "ellipsis", "nonbreakingspace",
106 : "Agrave", "Atilde", "Otilde", "OE", "oe", "endash", "emdash",
107 : "quotedblleft", "quotedblright", "quoteleft", "quoteright", "divide",
108 : "lozenge", "ydieresis", "Ydieresis", "fraction", "currency",
109 : "guilsinglleft", "guilsinglright", "fi", "fl", "daggerdbl", "periodcentered",
110 : "quotesinglbase", "quotedblbase", "perthousand", "Acircumflex",
111 : "Ecircumflex", "Aacute", "Edieresis", "Egrave", "Iacute",
112 : "Icircumflex", "Idieresis", "Igrave", "Oacute", "Ocircumflex",
113 : "apple", "Ograve", "Uacute", "Ucircumflex", "Ugrave", "dotlessi",
114 : "circumflex", "tilde", "macron", "breve", "dotaccent", "ring",
115 : "cedilla", "hungarumlaut", "ogonek", "caron", "Lslash", "lslash",
116 : "Scaron", "scaron", "Zcaron", "zcaron", "brokenbar", "Eth", "eth",
117 : "Yacute", "yacute", "Thorn", "thorn", "minus", "multiply",
118 : "onesuperior", "twosuperior", "threesuperior", "onehalf", "onequarter",
119 : "threequarters", "franc", "Gbreve", "gbreve", "Idotaccent", "Scedilla",
120 : "scedilla", "Cacute", "cacute", "Ccaron", "ccaron",
121 : "dcroat" };
122 : #endif
123 :
124 : } // end of namespace
125 :
126 : /***********************************************************************************************
127 : Methods
128 : ***********************************************************************************************/
129 :
130 : /* Note on error processing: The code guards against bad glyph ids being used to look up data
131 : in open ended tables (loca, hmtx). If the glyph id comes from a cmap this shouldn't happen
132 : but it seems prudent to check for user errors here. The code does assume that data obtained
133 : from the TTF file is valid otherwise (though the CheckTable method seeks to check for
134 : obvious problems that might accompany a change in table versions). For example an invalid
135 : offset in the loca table which could exceed the size of the glyf table is NOT trapped.
136 : Likewise if numberOf_LongHorMetrics in the hhea table is wrong, this will NOT be trapped,
137 : which could cause a lookup in the hmtx table to exceed the table length. Of course, TTF tables
138 : that are completely corrupt will cause unpredictable results. */
139 :
140 : /* Note on composite glyphs: Glyphs that have components that are themselves composites
141 : are not supported. IsDeepComposite can be used to test for this. False is returned from many
142 : of the methods in this cases. It is unclear how to build composite glyphs in some cases,
143 : so this code represents my best guess until test cases can be found. See notes on the high-
144 : level GlyfPoints method. */
145 : namespace graphite2
146 : {
147 : namespace TtfUtil
148 : {
149 :
150 :
151 : /*----------------------------------------------------------------------------------------------
152 : Get offset and size of the offset table needed to find table directory.
153 : Return true if success, false otherwise.
154 : lSize excludes any table directory entries.
155 : ----------------------------------------------------------------------------------------------*/
156 0 : bool GetHeaderInfo(size_t & lOffset, size_t & lSize)
157 : {
158 0 : lOffset = 0;
159 0 : lSize = offsetof(Sfnt::OffsetSubTable, table_directory);
160 0 : assert(sizeof(uint32) + 4*sizeof (uint16) == lSize);
161 0 : return true;
162 : }
163 :
164 : /*----------------------------------------------------------------------------------------------
165 : Check the offset table for expected data.
166 : Return true if success, false otherwise.
167 : ----------------------------------------------------------------------------------------------*/
168 0 : bool CheckHeader(const void * pHdr)
169 : {
170 : const Sfnt::OffsetSubTable * pOffsetTable
171 0 : = reinterpret_cast<const Sfnt::OffsetSubTable *>(pHdr);
172 :
173 0 : return pHdr && be::swap(pOffsetTable->scaler_type) == Sfnt::OffsetSubTable::TrueTypeWin;
174 : }
175 :
176 : /*----------------------------------------------------------------------------------------------
177 : Get offset and size of the table directory.
178 : Return true if successful, false otherwise.
179 : ----------------------------------------------------------------------------------------------*/
180 0 : bool GetTableDirInfo(const void * pHdr, size_t & lOffset, size_t & lSize)
181 : {
182 : const Sfnt::OffsetSubTable * pOffsetTable
183 0 : = reinterpret_cast<const Sfnt::OffsetSubTable *>(pHdr);
184 :
185 0 : lOffset = offsetof(Sfnt::OffsetSubTable, table_directory);
186 0 : lSize = be::swap(pOffsetTable->num_tables)
187 0 : * sizeof(Sfnt::OffsetSubTable::Entry);
188 :
189 0 : return true;
190 : }
191 :
192 :
193 : /*----------------------------------------------------------------------------------------------
194 : Get offset and size of the specified table.
195 : Return true if successful, false otherwise. On false, offset and size will be 0.
196 : ----------------------------------------------------------------------------------------------*/
197 0 : bool GetTableInfo(const Tag TableTag, const void * pHdr, const void * pTableDir,
198 : size_t & lOffset, size_t & lSize)
199 : {
200 : const Sfnt::OffsetSubTable * pOffsetTable
201 0 : = reinterpret_cast<const Sfnt::OffsetSubTable *>(pHdr);
202 0 : const size_t num_tables = be::swap(pOffsetTable->num_tables);
203 : const Sfnt::OffsetSubTable::Entry
204 : * entry_itr = reinterpret_cast<const Sfnt::OffsetSubTable::Entry *>(
205 0 : pTableDir),
206 0 : * const dir_end = entry_itr + num_tables;
207 :
208 0 : if (num_tables > 40)
209 0 : return false;
210 :
211 0 : for (;entry_itr != dir_end; ++entry_itr) // 40 - safe guard
212 : {
213 0 : if (be::swap(entry_itr->tag) == TableTag)
214 : {
215 0 : lOffset = be::swap(entry_itr->offset);
216 0 : lSize = be::swap(entry_itr->length);
217 0 : return true;
218 : }
219 : }
220 :
221 0 : return false;
222 : }
223 :
224 : /*----------------------------------------------------------------------------------------------
225 : Check the specified table. Tests depend on the table type.
226 : Return true if successful, false otherwise.
227 : ----------------------------------------------------------------------------------------------*/
228 0 : bool CheckTable(const Tag TableId, const void * pTable, size_t lTableSize)
229 : {
230 : using namespace Sfnt;
231 :
232 0 : if (pTable == 0 || lTableSize < 4) return false;
233 :
234 0 : switch(TableId)
235 : {
236 : case Tag::cmap: // cmap
237 : {
238 : const Sfnt::CharacterCodeMap * const pCmap
239 0 : = reinterpret_cast<const Sfnt::CharacterCodeMap *>(pTable);
240 0 : if (lTableSize < sizeof(Sfnt::CharacterCodeMap))
241 0 : return false;
242 0 : return be::swap(pCmap->version) == 0;
243 : }
244 :
245 : case Tag::head: // head
246 : {
247 : const Sfnt::FontHeader * const pHead
248 0 : = reinterpret_cast<const Sfnt::FontHeader *>(pTable);
249 0 : if (lTableSize < sizeof(Sfnt::FontHeader))
250 0 : return false;
251 0 : bool r = be::swap(pHead->version) == OneFix
252 0 : && be::swap(pHead->magic_number) == FontHeader::MagicNumber
253 0 : && be::swap(pHead->glyph_data_format)
254 : == FontHeader::GlypDataFormat
255 0 : && (be::swap(pHead->index_to_loc_format)
256 : == FontHeader::ShortIndexLocFormat
257 0 : || be::swap(pHead->index_to_loc_format)
258 : == FontHeader::LongIndexLocFormat)
259 0 : && sizeof(FontHeader) <= lTableSize;
260 0 : return r;
261 : }
262 :
263 : case Tag::post: // post
264 : {
265 : const Sfnt::PostScriptGlyphName * const pPost
266 0 : = reinterpret_cast<const Sfnt::PostScriptGlyphName *>(pTable);
267 0 : if (lTableSize < sizeof(Sfnt::PostScriptGlyphName))
268 0 : return false;
269 0 : const fixed format = be::swap(pPost->format);
270 : bool r = format == PostScriptGlyphName::Format1
271 0 : || format == PostScriptGlyphName::Format2
272 0 : || format == PostScriptGlyphName::Format3
273 0 : || format == PostScriptGlyphName::Format25;
274 0 : return r;
275 : }
276 :
277 : case Tag::hhea: // hhea
278 : {
279 : const Sfnt::HorizontalHeader * pHhea =
280 0 : reinterpret_cast<const Sfnt::HorizontalHeader *>(pTable);
281 0 : if (lTableSize < sizeof(Sfnt::HorizontalHeader))
282 0 : return false;
283 0 : bool r = be::swap(pHhea->version) == OneFix
284 0 : && be::swap(pHhea->metric_data_format) == 0
285 0 : && sizeof (Sfnt::HorizontalHeader) <= lTableSize;
286 0 : return r;
287 : }
288 :
289 : case Tag::maxp: // maxp
290 : {
291 : const Sfnt::MaximumProfile * pMaxp =
292 0 : reinterpret_cast<const Sfnt::MaximumProfile *>(pTable);
293 0 : if (lTableSize < sizeof(Sfnt::MaximumProfile))
294 0 : return false;
295 0 : bool r = be::swap(pMaxp->version) == OneFix
296 0 : && sizeof(Sfnt::MaximumProfile) <= lTableSize;
297 0 : return r;
298 : }
299 :
300 : case Tag::OS_2: // OS/2
301 : {
302 : const Sfnt::Compatibility * pOs2
303 0 : = reinterpret_cast<const Sfnt::Compatibility *>(pTable);
304 0 : if (be::swap(pOs2->version) == 0)
305 : { // OS/2 table version 1 size
306 : // if (sizeof(Sfnt::Compatibility)
307 : // - sizeof(uint32)*2 - sizeof(int16)*2
308 : // - sizeof(uint16)*3 <= lTableSize)
309 0 : if (sizeof(Sfnt::Compatibility0) <= lTableSize)
310 0 : return true;
311 : }
312 0 : else if (be::swap(pOs2->version) == 1)
313 : { // OS/2 table version 2 size
314 : // if (sizeof(Sfnt::Compatibility)
315 : // - sizeof(int16) *2
316 : // - sizeof(uint16)*3 <= lTableSize)
317 0 : if (sizeof(Sfnt::Compatibility1) <= lTableSize)
318 0 : return true;
319 : }
320 0 : else if (be::swap(pOs2->version) == 2)
321 : { // OS/2 table version 3 size
322 0 : if (sizeof(Sfnt::Compatibility2) <= lTableSize)
323 0 : return true;
324 : }
325 0 : else if (be::swap(pOs2->version) == 3 || be::swap(pOs2->version) == 4)
326 : { // OS/2 table version 4 size - version 4 changed the meaning of some fields which we don't use
327 0 : if (sizeof(Sfnt::Compatibility3) <= lTableSize)
328 0 : return true;
329 : }
330 : else
331 0 : return false;
332 0 : break;
333 : }
334 :
335 : case Tag::name:
336 : {
337 : const Sfnt::FontNames * pName
338 0 : = reinterpret_cast<const Sfnt::FontNames *>(pTable);
339 0 : if (lTableSize < sizeof(Sfnt::FontNames))
340 0 : return false;
341 0 : return be::swap(pName->format) == 0;
342 : }
343 :
344 : default:
345 0 : break;
346 : }
347 :
348 0 : return true;
349 : }
350 :
351 : /*----------------------------------------------------------------------------------------------
352 : Return the number of glyphs in the font. Should never be less than zero.
353 :
354 : Note: this method is not currently used by the Graphite engine.
355 : ----------------------------------------------------------------------------------------------*/
356 0 : size_t GlyphCount(const void * pMaxp)
357 : {
358 : const Sfnt::MaximumProfile * pTable =
359 0 : reinterpret_cast<const Sfnt::MaximumProfile *>(pMaxp);
360 0 : return be::swap(pTable->num_glyphs);
361 : }
362 :
363 : #ifdef ALL_TTFUTILS
364 : /*----------------------------------------------------------------------------------------------
365 : Return the maximum number of components for any composite glyph in the font.
366 :
367 : Note: this method is not currently used by the Graphite engine.
368 : ----------------------------------------------------------------------------------------------*/
369 : size_t MaxCompositeComponentCount(const void * pMaxp)
370 : {
371 : const Sfnt::MaximumProfile * pTable =
372 : reinterpret_cast<const Sfnt::MaximumProfile *>(pMaxp);
373 : return be::swap(pTable->max_component_elements);
374 : }
375 :
376 : /*----------------------------------------------------------------------------------------------
377 : Composite glyphs can be composed of glyphs that are themselves composites.
378 : This method returns the maximum number of levels like this for any glyph in the font.
379 : A non-composite glyph has a level of 1.
380 :
381 : Note: this method is not currently used by the Graphite engine.
382 : ----------------------------------------------------------------------------------------------*/
383 : size_t MaxCompositeLevelCount(const void * pMaxp)
384 : {
385 : const Sfnt::MaximumProfile * pTable =
386 : reinterpret_cast<const Sfnt::MaximumProfile *>(pMaxp);
387 : return be::swap(pTable->max_component_depth);
388 : }
389 :
390 : /*----------------------------------------------------------------------------------------------
391 : Return the number of glyphs in the font according to a differt source.
392 : Should never be less than zero. Return -1 on failure.
393 :
394 : Note: this method is not currently used by the Graphite engine.
395 : ----------------------------------------------------------------------------------------------*/
396 : size_t LocaGlyphCount(size_t lLocaSize, const void * pHead) //throw(std::domain_error)
397 : {
398 :
399 : const Sfnt::FontHeader * pTable
400 : = reinterpret_cast<const Sfnt::FontHeader *>(pHead);
401 :
402 : if (be::swap(pTable->index_to_loc_format)
403 : == Sfnt::FontHeader::ShortIndexLocFormat)
404 : // loca entries are two bytes and have been divided by two
405 : return (lLocaSize >> 1) - 1;
406 :
407 : if (be::swap(pTable->index_to_loc_format)
408 : == Sfnt::FontHeader::LongIndexLocFormat)
409 : // loca entries are four bytes
410 : return (lLocaSize >> 2) - 1;
411 :
412 : return -1;
413 : //throw std::domain_error("head table in inconsistent state. The font may be corrupted");
414 : }
415 : #endif
416 :
417 : /*----------------------------------------------------------------------------------------------
418 : Return the design units the font is designed with
419 : ----------------------------------------------------------------------------------------------*/
420 0 : int DesignUnits(const void * pHead)
421 : {
422 : const Sfnt::FontHeader * pTable =
423 0 : reinterpret_cast<const Sfnt::FontHeader *>(pHead);
424 :
425 0 : return be::swap(pTable->units_per_em);
426 : }
427 :
428 : #ifdef ALL_TTFUTILS
429 : /*----------------------------------------------------------------------------------------------
430 : Return the checksum from the head table, which serves as a unique identifer for the font.
431 : ----------------------------------------------------------------------------------------------*/
432 : int HeadTableCheckSum(const void * pHead)
433 : {
434 : const Sfnt::FontHeader * pTable =
435 : reinterpret_cast<const Sfnt::FontHeader *>(pHead);
436 :
437 : return be::swap(pTable->check_sum_adjustment);
438 : }
439 :
440 : /*----------------------------------------------------------------------------------------------
441 : Return the create time from the head table. This consists of a 64-bit integer, which
442 : we return here as two 32-bit integers.
443 :
444 : Note: this method is not currently used by the Graphite engine.
445 : ----------------------------------------------------------------------------------------------*/
446 : void HeadTableCreateTime(const void * pHead,
447 : unsigned int * pnDateBC, unsigned int * pnDateAD)
448 : {
449 : const Sfnt::FontHeader * pTable =
450 : reinterpret_cast<const Sfnt::FontHeader *>(pHead);
451 :
452 : *pnDateBC = be::swap(pTable->created[0]);
453 : *pnDateAD = be::swap(pTable->created[1]);
454 : }
455 :
456 : /*----------------------------------------------------------------------------------------------
457 : Return the modify time from the head table.This consists of a 64-bit integer, which
458 : we return here as two 32-bit integers.
459 :
460 : Note: this method is not currently used by the Graphite engine.
461 : ----------------------------------------------------------------------------------------------*/
462 : void HeadTableModifyTime(const void * pHead,
463 : unsigned int * pnDateBC, unsigned int *pnDateAD)
464 : {
465 : const Sfnt::FontHeader * pTable =
466 : reinterpret_cast<const Sfnt::FontHeader *>(pHead);
467 :
468 : *pnDateBC = be::swap(pTable->modified[0]);
469 : *pnDateAD = be::swap(pTable->modified[1]);
470 : }
471 :
472 : /*----------------------------------------------------------------------------------------------
473 : Return true if the font is italic.
474 : ----------------------------------------------------------------------------------------------*/
475 : bool IsItalic(const void * pHead)
476 : {
477 : const Sfnt::FontHeader * pTable =
478 : reinterpret_cast<const Sfnt::FontHeader *>(pHead);
479 :
480 : return ((be::swap(pTable->mac_style) & 0x00000002) != 0);
481 : }
482 :
483 : /*----------------------------------------------------------------------------------------------
484 : Return the ascent for the font
485 : ----------------------------------------------------------------------------------------------*/
486 : int FontAscent(const void * pOs2)
487 : {
488 : const Sfnt::Compatibility * pTable = reinterpret_cast<const Sfnt::Compatibility *>(pOs2);
489 :
490 : return be::swap(pTable->win_ascent);
491 : }
492 :
493 : /*----------------------------------------------------------------------------------------------
494 : Return the descent for the font
495 : ----------------------------------------------------------------------------------------------*/
496 : int FontDescent(const void * pOs2)
497 : {
498 : const Sfnt::Compatibility * pTable = reinterpret_cast<const Sfnt::Compatibility *>(pOs2);
499 :
500 : return be::swap(pTable->win_descent);
501 : }
502 :
503 : /*----------------------------------------------------------------------------------------------
504 : Get the bold and italic style bits.
505 : Return true if successful. false otherwise.
506 : In addition to checking the OS/2 table, one could also check
507 : the head table's macStyle field (overridden by the OS/2 table on Win)
508 : the sub-family name in the name table (though this can contain oblique, dark, etc too)
509 : ----------------------------------------------------------------------------------------------*/
510 : bool FontOs2Style(const void *pOs2, bool & fBold, bool & fItalic)
511 : {
512 : const Sfnt::Compatibility * pTable = reinterpret_cast<const Sfnt::Compatibility *>(pOs2);
513 :
514 : fBold = (be::swap(pTable->fs_selection) & Sfnt::Compatibility::Bold) != 0;
515 : fItalic = (be::swap(pTable->fs_selection) & Sfnt::Compatibility::Italic) != 0;
516 :
517 : return true;
518 : }
519 : #endif
520 :
521 : /*----------------------------------------------------------------------------------------------
522 : Method for searching name table.
523 : ----------------------------------------------------------------------------------------------*/
524 0 : bool GetNameInfo(const void * pName, int nPlatformId, int nEncodingId,
525 : int nLangId, int nNameId, size_t & lOffset, size_t & lSize)
526 : {
527 0 : lOffset = 0;
528 0 : lSize = 0;
529 :
530 0 : const Sfnt::FontNames * pTable = reinterpret_cast<const Sfnt::FontNames *>(pName);
531 0 : uint16 cRecord = be::swap(pTable->count);
532 0 : uint16 nRecordOffset = be::swap(pTable->string_offset);
533 0 : const Sfnt::NameRecord * pRecord = reinterpret_cast<const Sfnt::NameRecord *>(pTable + 1);
534 :
535 0 : for (int i = 0; i < cRecord; ++i)
536 : {
537 0 : if (be::swap(pRecord->platform_id) == nPlatformId &&
538 0 : be::swap(pRecord->platform_specific_id) == nEncodingId &&
539 0 : be::swap(pRecord->language_id) == nLangId &&
540 0 : be::swap(pRecord->name_id) == nNameId)
541 : {
542 0 : lOffset = be::swap(pRecord->offset) + nRecordOffset;
543 0 : lSize = be::swap(pRecord->length);
544 0 : return true;
545 : }
546 0 : pRecord++;
547 : }
548 :
549 0 : return false;
550 : }
551 :
552 : #ifdef ALL_TTFUTILS
553 : /*----------------------------------------------------------------------------------------------
554 : Return all the lang-IDs that have data for the given name-IDs. Assume that there is room
555 : in the return array (langIdList) for 128 items. The purpose of this method is to return
556 : a list of all possible lang-IDs.
557 : ----------------------------------------------------------------------------------------------*/
558 : int GetLangsForNames(const void * pName, int nPlatformId, int nEncodingId,
559 : int * nameIdList, int cNameIds, short * langIdList)
560 : {
561 : const Sfnt::FontNames * pTable = reinterpret_cast<const Sfnt::FontNames *>(pName);
562 : int cLangIds = 0;
563 : uint16 cRecord = be::swap(pTable->count);
564 : if (cRecord > 127) return cLangIds;
565 : //uint16 nRecordOffset = swapw(pTable->stringOffset);
566 : const Sfnt::NameRecord * pRecord = reinterpret_cast<const Sfnt::NameRecord *>(pTable + 1);
567 :
568 : for (int i = 0; i < cRecord; ++i)
569 : {
570 : if (be::swap(pRecord->platform_id) == nPlatformId &&
571 : be::swap(pRecord->platform_specific_id) == nEncodingId)
572 : {
573 : bool fNameFound = false;
574 : int nLangId = be::swap(pRecord->language_id);
575 : int nNameId = be::swap(pRecord->name_id);
576 : for (int j = 0; j < cNameIds; j++)
577 : {
578 : if (nNameId == nameIdList[j])
579 : {
580 : fNameFound = true;
581 : break;
582 : }
583 : }
584 : if (fNameFound)
585 : {
586 : // Add it if it's not there.
587 : int ilang;
588 : for (ilang = 0; ilang < cLangIds; ilang++)
589 : if (langIdList[ilang] == nLangId)
590 : break;
591 : if (ilang >= cLangIds)
592 : {
593 : langIdList[cLangIds] = short(nLangId);
594 : cLangIds++;
595 : }
596 : if (cLangIds == 128)
597 : return cLangIds;
598 : }
599 : }
600 : pRecord++;
601 : }
602 :
603 : return cLangIds;
604 : }
605 :
606 : /*----------------------------------------------------------------------------------------------
607 : Get the offset and size of the font family name in English for the MS Platform with Unicode
608 : writing system. The offset is within the pName data. The string is double byte with MSB
609 : first.
610 : ----------------------------------------------------------------------------------------------*/
611 : bool Get31EngFamilyInfo(const void * pName, size_t & lOffset, size_t & lSize)
612 : {
613 : return GetNameInfo(pName, Sfnt::NameRecord::Microsoft, 1, 1033,
614 : Sfnt::NameRecord::Family, lOffset, lSize);
615 : }
616 :
617 : /*----------------------------------------------------------------------------------------------
618 : Get the offset and size of the full font name in English for the MS Platform with Unicode
619 : writing system. The offset is within the pName data. The string is double byte with MSB
620 : first.
621 :
622 : Note: this method is not currently used by the Graphite engine.
623 : ----------------------------------------------------------------------------------------------*/
624 : bool Get31EngFullFontInfo(const void * pName, size_t & lOffset, size_t & lSize)
625 : {
626 : return GetNameInfo(pName, Sfnt::NameRecord::Microsoft, 1, 1033,
627 : Sfnt::NameRecord::Fullname, lOffset, lSize);
628 : }
629 :
630 : /*----------------------------------------------------------------------------------------------
631 : Get the offset and size of the font family name in English for the MS Platform with Symbol
632 : writing system. The offset is within the pName data. The string is double byte with MSB
633 : first.
634 : ----------------------------------------------------------------------------------------------*/
635 : bool Get30EngFamilyInfo(const void * pName, size_t & lOffset, size_t & lSize)
636 : {
637 : return GetNameInfo(pName, Sfnt::NameRecord::Microsoft, 0, 1033,
638 : Sfnt::NameRecord::Family, lOffset, lSize);
639 : }
640 :
641 : /*----------------------------------------------------------------------------------------------
642 : Get the offset and size of the full font name in English for the MS Platform with Symbol
643 : writing system. The offset is within the pName data. The string is double byte with MSB
644 : first.
645 :
646 : Note: this method is not currently used by the Graphite engine.
647 : ----------------------------------------------------------------------------------------------*/
648 : bool Get30EngFullFontInfo(const void * pName, size_t & lOffset, size_t & lSize)
649 : {
650 : return GetNameInfo(pName, Sfnt::NameRecord::Microsoft, 0, 1033,
651 : Sfnt::NameRecord::Fullname, lOffset, lSize);
652 : }
653 :
654 : /*----------------------------------------------------------------------------------------------
655 : Return the Glyph ID for a given Postscript name. This method finds the first glyph which
656 : matches the requested Postscript name. Ideally every glyph should have a unique Postscript
657 : name (except for special names such as .notdef), but this is not always true.
658 : On failure return value less than zero.
659 : -1 - table search failed
660 : -2 - format 3 table (no Postscript glyph info)
661 : -3 - other failures
662 :
663 : Note: this method is not currently used by the Graphite engine.
664 : ----------------------------------------------------------------------------------------------*/
665 : int PostLookup(const void * pPost, size_t lPostSize, const void * pMaxp,
666 : const char * pPostName)
667 : {
668 : using namespace Sfnt;
669 :
670 : const Sfnt::PostScriptGlyphName * pTable
671 : = reinterpret_cast<const Sfnt::PostScriptGlyphName *>(pPost);
672 : fixed format = be::swap(pTable->format);
673 :
674 : if (format == PostScriptGlyphName::Format3)
675 : { // format 3 - no Postscript glyph info in font
676 : return -2;
677 : }
678 :
679 : // search for given Postscript name among the standard names
680 : int iPostName = -1; // index in standard names
681 : for (int i = 0; i < kcPostNames; i++)
682 : {
683 : if (!strcmp(pPostName, rgPostName[i]))
684 : {
685 : iPostName = i;
686 : break;
687 : }
688 : }
689 :
690 : if (format == PostScriptGlyphName::Format1)
691 : { // format 1 - use standard Postscript names
692 : return iPostName;
693 : }
694 :
695 : if (format == PostScriptGlyphName::Format25)
696 : {
697 : if (iPostName == -1)
698 : return -1;
699 :
700 : const PostScriptGlyphName25 * pTable25
701 : = static_cast<const PostScriptGlyphName25 *>(pTable);
702 : int cnGlyphs = GlyphCount(pMaxp);
703 : for (gid16 nGlyphId = 0; nGlyphId < cnGlyphs && nGlyphId < kcPostNames;
704 : nGlyphId++)
705 : { // glyph_name_index25 contains bytes so no byte swapping needed
706 : // search for first glyph id that uses the standard name
707 : if (nGlyphId + pTable25->offset[nGlyphId] == iPostName)
708 : return nGlyphId;
709 : }
710 : }
711 :
712 : if (format == PostScriptGlyphName::Format2)
713 : { // format 2
714 : const PostScriptGlyphName2 * pTable2
715 : = static_cast<const PostScriptGlyphName2 *>(pTable);
716 :
717 : int cnGlyphs = be::swap(pTable2->number_of_glyphs);
718 :
719 : if (iPostName != -1)
720 : { // did match a standard name, look for first glyph id mapped to that name
721 : for (gid16 nGlyphId = 0; nGlyphId < cnGlyphs; nGlyphId++)
722 : {
723 : if (be::swap(pTable2->glyph_name_index[nGlyphId]) == iPostName)
724 : return nGlyphId;
725 : }
726 : }
727 :
728 : { // did not match a standard name, search font specific names
729 : size_t nStrSizeGoal = strlen(pPostName);
730 : const char * pFirstGlyphName = reinterpret_cast<const char *>(
731 : &pTable2->glyph_name_index[0] + cnGlyphs);
732 : const char * pGlyphName = pFirstGlyphName;
733 : int iInNames = 0; // index in font specific names
734 : bool fFound = false;
735 : const char * const endOfTable
736 : = reinterpret_cast<const char *>(pTable2) + lPostSize;
737 : while (pGlyphName < endOfTable && !fFound)
738 : { // search Pascal strings for first matching name
739 : size_t nStringSize = size_t(*pGlyphName);
740 : if (nStrSizeGoal != nStringSize ||
741 : strncmp(pGlyphName + 1, pPostName, nStringSize))
742 : { // did not match
743 : ++iInNames;
744 : pGlyphName += nStringSize + 1;
745 : }
746 : else
747 : { // did match
748 : fFound = true;
749 : }
750 : }
751 : if (!fFound)
752 : return -1; // no font specific name matches request
753 :
754 : iInNames += kcPostNames;
755 : for (gid16 nGlyphId = 0; nGlyphId < cnGlyphs; nGlyphId++)
756 : { // search for first glyph id that maps to the found string index
757 : if (be::swap(pTable2->glyph_name_index[nGlyphId]) == iInNames)
758 : return nGlyphId;
759 : }
760 : return -1; // no glyph mapped to this index (very strange)
761 : }
762 : }
763 :
764 : return -3;
765 : }
766 :
767 : /*----------------------------------------------------------------------------------------------
768 : Convert a Unicode character string from big endian (MSB first, Motorola) format to little
769 : endian (LSB first, Intel) format.
770 : nSize is the number of Unicode characters in the string. It should not include any
771 : terminating null. If nSize is 0, it is assumed the string is null terminated. nSize
772 : defaults to 0.
773 : Return true if successful, false otherwise.
774 : ----------------------------------------------------------------------------------------------*/
775 : void SwapWString(void * pWStr, size_t nSize /* = 0 */) //throw (std::invalid_argument)
776 : {
777 : if (pWStr == 0)
778 : {
779 : // throw std::invalid_argument("null pointer given");
780 : return;
781 : }
782 :
783 : uint16 * pStr = reinterpret_cast<uint16 *>(pWStr);
784 : uint16 * const pStrEnd = pStr + (nSize == 0 ? wcslen((const wchar_t*)pStr) : nSize);
785 :
786 : for (; pStr != pStrEnd; ++pStr)
787 : *pStr = be::swap(*pStr);
788 : // std::transform(pStr, pStrEnd, pStr, read<uint16>);
789 :
790 : // for (int i = 0; i < nSize; i++)
791 : // { // swap the wide characters in the string
792 : // pStr[i] = utf16(be::swap(uint16(pStr[i])));
793 : // }
794 : }
795 : #endif
796 :
797 : /*----------------------------------------------------------------------------------------------
798 : Get the left-side bearing and and advance width based on the given tables and Glyph ID
799 : Return true if successful, false otherwise. On false, one or both value could be INT_MIN
800 : ----------------------------------------------------------------------------------------------*/
801 0 : bool HorMetrics(gid16 nGlyphId, const void * pHmtx, size_t lHmtxSize, const void * pHhea,
802 : int & nLsb, unsigned int & nAdvWid)
803 : {
804 : const Sfnt::HorizontalMetric * phmtx =
805 0 : reinterpret_cast<const Sfnt::HorizontalMetric *>(pHmtx);
806 :
807 : const Sfnt::HorizontalHeader * phhea =
808 0 : reinterpret_cast<const Sfnt::HorizontalHeader *>(pHhea);
809 :
810 0 : size_t cLongHorMetrics = be::swap(phhea->num_long_hor_metrics);
811 0 : if (nGlyphId < cLongHorMetrics)
812 : { // glyph id is acceptable
813 0 : if ((nGlyphId + 1) * sizeof(Sfnt::HorizontalMetric) > lHmtxSize) return false;
814 0 : nAdvWid = be::swap(phmtx[nGlyphId].advance_width);
815 0 : nLsb = be::swap(phmtx[nGlyphId].left_side_bearing);
816 : }
817 : else
818 : {
819 : // guard against bad glyph id
820 0 : size_t lLsbOffset = sizeof(Sfnt::HorizontalMetric) * cLongHorMetrics +
821 0 : sizeof(int16) * (nGlyphId - cLongHorMetrics); // offset in bytes
822 : // We test like this as LsbOffset is an offset not a length.
823 0 : if (lLsbOffset >= lHmtxSize - sizeof(int16) || cLongHorMetrics == 0)
824 : {
825 0 : nLsb = 0;
826 0 : return false;
827 : }
828 0 : nAdvWid = be::swap(phmtx[cLongHorMetrics - 1].advance_width);
829 0 : nLsb = be::peek<int16>(reinterpret_cast<const byte *>(phmtx) + lLsbOffset);
830 : }
831 :
832 0 : return true;
833 : }
834 :
835 : /*----------------------------------------------------------------------------------------------
836 : Return a pointer to the requested cmap subtable. By default find the Microsoft Unicode
837 : subtable. Pass nEncoding as -1 to find first table that matches only nPlatformId.
838 : Return NULL if the subtable cannot be found.
839 : ----------------------------------------------------------------------------------------------*/
840 0 : const void * FindCmapSubtable(const void * pCmap, int nPlatformId, /* =3 */ int nEncodingId, /* = 1 */ size_t length)
841 : {
842 0 : const Sfnt::CharacterCodeMap * pTable = reinterpret_cast<const Sfnt::CharacterCodeMap *>(pCmap);
843 0 : uint16 csuPlatforms = be::swap(pTable->num_subtables);
844 0 : if (length && (sizeof(Sfnt::CharacterCodeMap) + 8 * (csuPlatforms - 1) > length))
845 0 : return NULL;
846 0 : for (int i = 0; i < csuPlatforms; i++)
847 : {
848 0 : if (be::swap(pTable->encoding[i].platform_id) == nPlatformId &&
849 0 : (nEncodingId == -1 || be::swap(pTable->encoding[i].platform_specific_id) == nEncodingId))
850 : {
851 0 : uint32 offset = be::swap(pTable->encoding[i].offset);
852 0 : const uint8 * pRtn = reinterpret_cast<const uint8 *>(pCmap) + offset;
853 0 : if (length)
854 : {
855 0 : if (offset > length - 2) return NULL;
856 0 : uint16 format = be::read<uint16>(pRtn);
857 0 : if (format == 4)
858 : {
859 0 : if (offset > length - 4) return NULL;
860 0 : uint16 subTableLength = be::peek<uint16>(pRtn);
861 0 : if (i + 1 == csuPlatforms)
862 : {
863 0 : if (subTableLength > length - offset)
864 0 : return NULL;
865 : }
866 0 : else if (subTableLength > be::swap(pTable->encoding[i+1].offset))
867 0 : return NULL;
868 : }
869 0 : if (format == 12)
870 : {
871 0 : if (offset > length - 6) return NULL;
872 0 : uint32 subTableLength = be::peek<uint32>(pRtn);
873 0 : if (i + 1 == csuPlatforms)
874 : {
875 0 : if (subTableLength > length - offset)
876 0 : return NULL;
877 : }
878 0 : else if (subTableLength > be::swap(pTable->encoding[i+1].offset))
879 0 : return NULL;
880 : }
881 : }
882 0 : return reinterpret_cast<const uint8 *>(pCmap) + offset;
883 : }
884 : }
885 :
886 0 : return 0;
887 : }
888 :
889 : /*----------------------------------------------------------------------------------------------
890 : Check the Microsoft Unicode subtable for expected values
891 : ----------------------------------------------------------------------------------------------*/
892 0 : bool CheckCmapSubtable4(const void * pCmapSubtable4, const void * pCmapEnd /*, unsigned int maxgid*/)
893 : {
894 0 : size_t table_len = (const byte *)pCmapEnd - (const byte *)pCmapSubtable4;
895 0 : if (!pCmapSubtable4) return false;
896 0 : const Sfnt::CmapSubTable * pTable = reinterpret_cast<const Sfnt::CmapSubTable *>(pCmapSubtable4);
897 : // Bob H say some freeware TT fonts have version 1 (eg, CALIGULA.TTF)
898 : // so don't check subtable version. 21 Mar 2002 spec changes version to language.
899 0 : if (table_len < sizeof(*pTable) || be::swap(pTable->format) != 4) return false;
900 0 : const Sfnt::CmapSubTableFormat4 * pTable4 = reinterpret_cast<const Sfnt::CmapSubTableFormat4 *>(pCmapSubtable4);
901 0 : if (table_len < sizeof(*pTable4))
902 0 : return false;
903 0 : uint16 length = be::swap(pTable4->length);
904 0 : if (length > table_len)
905 0 : return false;
906 0 : if (length < sizeof(Sfnt::CmapSubTableFormat4))
907 0 : return false;
908 0 : uint16 nRanges = be::swap(pTable4->seg_count_x2) >> 1;
909 0 : if (!nRanges || length < sizeof(Sfnt::CmapSubTableFormat4) + 4 * nRanges * sizeof(uint16))
910 0 : return false;
911 : // check last range is properly terminated
912 0 : uint16 chEnd = be::peek<uint16>(pTable4->end_code + nRanges - 1);
913 0 : if (chEnd != 0xFFFF)
914 0 : return false;
915 : #if 0
916 : int lastend = -1;
917 : for (int i = 0; i < nRanges; ++i)
918 : {
919 : uint16 end = be::peek<uint16>(pTable4->end_code + i);
920 : uint16 start = be::peek<uint16>(pTable4->end_code + nRanges + 1 + i);
921 : int16 delta = be::peek<int16>(pTable4->end_code + 2*nRanges + 1 + i);
922 : uint16 offset = be::peek<uint16>(pTable4->end_code + 3*nRanges + 1 + i);
923 : if (lastend >= end || lastend >= start)
924 : return false;
925 : if (offset)
926 : {
927 : const uint16 *gstart = pTable4->end_code + 3*nRanges + 1 + i + (offset >> 1);
928 : const uint16 *gend = gstart + end - start;
929 : if ((char *)gend >= (char *)pCmapSubtable4 + length)
930 : return false;
931 : while (gstart <= gend)
932 : {
933 : uint16 g = be::peek<uint16>(gstart++);
934 : if (g && ((g + delta) & 0xFFFF) > maxgid)
935 : return false;
936 : }
937 : }
938 : else if (((delta + end) & 0xFFFF) > maxgid)
939 : return false;
940 : lastend = end;
941 : }
942 : #endif
943 0 : return true;
944 : }
945 :
946 : /*----------------------------------------------------------------------------------------------
947 : Return the Glyph ID for the given Unicode ID in the Microsoft Unicode subtable.
948 : (Actually this code only depends on subtable being format 4.)
949 : Return 0 if the Unicode ID is not in the subtable.
950 : ----------------------------------------------------------------------------------------------*/
951 0 : gid16 CmapSubtable4Lookup(const void * pCmapSubtabel4, unsigned int nUnicodeId, int rangeKey)
952 : {
953 0 : const Sfnt::CmapSubTableFormat4 * pTable = reinterpret_cast<const Sfnt::CmapSubTableFormat4 *>(pCmapSubtabel4);
954 :
955 0 : uint16 nSeg = be::swap(pTable->seg_count_x2) >> 1;
956 :
957 : uint16 n;
958 : const uint16 * pLeft, * pMid;
959 : uint16 cMid, chStart, chEnd;
960 :
961 0 : if (rangeKey)
962 : {
963 0 : pMid = &(pTable->end_code[rangeKey]);
964 0 : chEnd = be::peek<uint16>(pMid);
965 : }
966 : else
967 : {
968 : // Binary search of the endCode[] array
969 0 : pLeft = &(pTable->end_code[0]);
970 0 : n = nSeg;
971 0 : while (n > 0)
972 : {
973 0 : cMid = n >> 1; // Pick an element in the middle
974 0 : pMid = pLeft + cMid;
975 0 : chEnd = be::peek<uint16>(pMid);
976 0 : if (nUnicodeId <= chEnd)
977 : {
978 0 : if (cMid == 0 || nUnicodeId > be::peek<uint16>(pMid -1))
979 0 : break; // Must be this seg or none!
980 0 : n = cMid; // Continue on left side, omitting mid point
981 : }
982 : else
983 : {
984 0 : pLeft = pMid + 1; // Continue on right side, omitting mid point
985 0 : n -= (cMid + 1);
986 : }
987 : }
988 :
989 0 : if (!n)
990 0 : return 0;
991 : }
992 :
993 : // Ok, we're down to one segment and pMid points to the endCode element
994 : // Either this is it or none is.
995 :
996 0 : chStart = be::peek<uint16>(pMid += nSeg + 1);
997 0 : if (chEnd >= nUnicodeId && nUnicodeId >= chStart)
998 : {
999 : // Found correct segment. Find Glyph Id
1000 0 : int16 idDelta = be::peek<uint16>(pMid += nSeg);
1001 0 : uint16 idRangeOffset = be::peek<uint16>(pMid += nSeg);
1002 :
1003 0 : if (idRangeOffset == 0)
1004 0 : return (uint16)(idDelta + nUnicodeId); // must use modulus 2^16
1005 :
1006 : // Look up value in glyphIdArray
1007 0 : const ptrdiff_t offset = (nUnicodeId - chStart) + (idRangeOffset >> 1) +
1008 0 : (pMid - reinterpret_cast<const uint16 *>(pTable));
1009 0 : if (offset * 2 + 1 >= be::swap<uint16>(pTable->length))
1010 0 : return 0;
1011 0 : gid16 nGlyphId = be::peek<uint16>(reinterpret_cast<const uint16 *>(pTable)+offset);
1012 : // If this value is 0, return 0. Else add the idDelta
1013 0 : return nGlyphId ? nGlyphId + idDelta : 0;
1014 : }
1015 :
1016 0 : return 0;
1017 : }
1018 :
1019 : /*----------------------------------------------------------------------------------------------
1020 : Return the next Unicode value in the cmap. Pass 0 to obtain the first item.
1021 : Returns 0xFFFF as the last item.
1022 : pRangeKey is an optional key that is used to optimize the search; its value is the range
1023 : in which the character is found.
1024 : ----------------------------------------------------------------------------------------------*/
1025 0 : unsigned int CmapSubtable4NextCodepoint(const void *pCmap31, unsigned int nUnicodeId, int * pRangeKey)
1026 : {
1027 0 : const Sfnt::CmapSubTableFormat4 * pTable = reinterpret_cast<const Sfnt::CmapSubTableFormat4 *>(pCmap31);
1028 :
1029 0 : uint16 nRange = be::swap(pTable->seg_count_x2) >> 1;
1030 :
1031 0 : uint32 nUnicodePrev = (uint32)nUnicodeId;
1032 :
1033 0 : const uint16 * pStartCode = &(pTable->end_code[0])
1034 : + nRange // length of end code array
1035 0 : + 1; // reserved word
1036 :
1037 0 : if (nUnicodePrev == 0)
1038 : {
1039 : // return the first codepoint.
1040 0 : if (pRangeKey)
1041 0 : *pRangeKey = 0;
1042 0 : return be::peek<uint16>(pStartCode);
1043 : }
1044 0 : else if (nUnicodePrev >= 0xFFFF)
1045 : {
1046 0 : if (pRangeKey)
1047 0 : *pRangeKey = nRange - 1;
1048 0 : return 0xFFFF;
1049 : }
1050 :
1051 0 : int iRange = (pRangeKey) ? *pRangeKey : 0;
1052 : // Just in case we have a bad key:
1053 0 : while (iRange > 0 && be::peek<uint16>(pStartCode + iRange) > nUnicodePrev)
1054 0 : iRange--;
1055 0 : while (iRange < nRange - 1 && be::peek<uint16>(pTable->end_code + iRange) < nUnicodePrev)
1056 0 : iRange++;
1057 :
1058 : // Now iRange is the range containing nUnicodePrev.
1059 0 : unsigned int nStartCode = be::peek<uint16>(pStartCode + iRange);
1060 0 : unsigned int nEndCode = be::peek<uint16>(pTable->end_code + iRange);
1061 :
1062 0 : if (nStartCode > nUnicodePrev)
1063 : // Oops, nUnicodePrev is not in the cmap! Adjust so we get a reasonable
1064 : // answer this time around.
1065 0 : nUnicodePrev = nStartCode - 1;
1066 :
1067 0 : if (nEndCode > nUnicodePrev)
1068 : {
1069 : // Next is in the same range; it is the next successive codepoint.
1070 0 : if (pRangeKey)
1071 0 : *pRangeKey = iRange;
1072 0 : return nUnicodePrev + 1;
1073 : }
1074 :
1075 : // Otherwise the next codepoint is the first one in the next range.
1076 : // There is guaranteed to be a next range because there must be one that
1077 : // ends with 0xFFFF.
1078 0 : if (pRangeKey)
1079 0 : *pRangeKey = iRange + 1;
1080 0 : return (iRange + 1 >= nRange) ? 0xFFFF : be::peek<uint16>(pStartCode + iRange + 1);
1081 : }
1082 :
1083 : /*----------------------------------------------------------------------------------------------
1084 : Check the Microsoft UCS-4 subtable for expected values.
1085 : ----------------------------------------------------------------------------------------------*/
1086 0 : bool CheckCmapSubtable12(const void *pCmapSubtable12, const void *pCmapEnd /*, unsigned int maxgid*/)
1087 : {
1088 0 : size_t table_len = (const byte *)pCmapEnd - (const byte *)pCmapSubtable12;
1089 0 : if (!pCmapSubtable12) return false;
1090 0 : const Sfnt::CmapSubTable * pTable = reinterpret_cast<const Sfnt::CmapSubTable *>(pCmapSubtable12);
1091 0 : if (table_len < sizeof(*pTable) || be::swap(pTable->format) != 12)
1092 0 : return false;
1093 0 : const Sfnt::CmapSubTableFormat12 * pTable12 = reinterpret_cast<const Sfnt::CmapSubTableFormat12 *>(pCmapSubtable12);
1094 0 : if (table_len < sizeof(*pTable12))
1095 0 : return false;
1096 0 : uint32 length = be::swap(pTable12->length);
1097 0 : if (length > table_len)
1098 0 : return false;
1099 0 : if (length < sizeof(Sfnt::CmapSubTableFormat12))
1100 0 : return false;
1101 0 : uint32 num_groups = be::swap(pTable12->num_groups);
1102 0 : if (num_groups > 0x10000000 || length != (sizeof(Sfnt::CmapSubTableFormat12) + (num_groups - 1) * sizeof(uint32) * 3))
1103 0 : return false;
1104 : #if 0
1105 : for (unsigned int i = 0; i < num_groups; ++i)
1106 : {
1107 : if (be::swap(pTable12->group[i].end_char_code) - be::swap(pTable12->group[i].start_char_code) + be::swap(pTable12->group[i].start_glyph_id) > maxgid)
1108 : return false;
1109 : if (i > 0 && be::swap(pTable12->group[i].start_char_code) <= be::swap(pTable12->group[i-1].end_char_code))
1110 : return false;
1111 : }
1112 : #endif
1113 0 : return true;
1114 : }
1115 :
1116 : /*----------------------------------------------------------------------------------------------
1117 : Return the Glyph ID for the given Unicode ID in the Microsoft UCS-4 subtable.
1118 : (Actually this code only depends on subtable being format 12.)
1119 : Return 0 if the Unicode ID is not in the subtable.
1120 : ----------------------------------------------------------------------------------------------*/
1121 0 : gid16 CmapSubtable12Lookup(const void * pCmap310, unsigned int uUnicodeId, int rangeKey)
1122 : {
1123 0 : const Sfnt::CmapSubTableFormat12 * pTable = reinterpret_cast<const Sfnt::CmapSubTableFormat12 *>(pCmap310);
1124 :
1125 : //uint32 uLength = be::swap(pTable->length); //could use to test for premature end of table
1126 0 : uint32 ucGroups = be::swap(pTable->num_groups);
1127 :
1128 0 : for (unsigned int i = rangeKey; i < ucGroups; i++)
1129 : {
1130 0 : uint32 uStartCode = be::swap(pTable->group[i].start_char_code);
1131 0 : uint32 uEndCode = be::swap(pTable->group[i].end_char_code);
1132 0 : if (uUnicodeId >= uStartCode && uUnicodeId <= uEndCode)
1133 : {
1134 0 : uint32 uDiff = uUnicodeId - uStartCode;
1135 0 : uint32 uStartGid = be::swap(pTable->group[i].start_glyph_id);
1136 0 : return static_cast<gid16>(uStartGid + uDiff);
1137 : }
1138 : }
1139 :
1140 0 : return 0;
1141 : }
1142 :
1143 : /*----------------------------------------------------------------------------------------------
1144 : Return the next Unicode value in the cmap. Pass 0 to obtain the first item.
1145 : Returns 0x10FFFF as the last item.
1146 : pRangeKey is an optional key that is used to optimize the search; its value is the range
1147 : in which the character is found.
1148 : ----------------------------------------------------------------------------------------------*/
1149 0 : unsigned int CmapSubtable12NextCodepoint(const void *pCmap310, unsigned int nUnicodeId, int * pRangeKey)
1150 : {
1151 0 : const Sfnt::CmapSubTableFormat12 * pTable = reinterpret_cast<const Sfnt::CmapSubTableFormat12 *>(pCmap310);
1152 :
1153 0 : int nRange = be::swap(pTable->num_groups);
1154 :
1155 0 : uint32 nUnicodePrev = (uint32)nUnicodeId;
1156 :
1157 0 : if (nUnicodePrev == 0)
1158 : {
1159 : // return the first codepoint.
1160 0 : if (pRangeKey)
1161 0 : *pRangeKey = 0;
1162 0 : return be::swap(pTable->group[0].start_char_code);
1163 : }
1164 0 : else if (nUnicodePrev >= 0x10FFFF)
1165 : {
1166 0 : if (pRangeKey)
1167 0 : *pRangeKey = nRange;
1168 0 : return 0x10FFFF;
1169 : }
1170 :
1171 0 : int iRange = (pRangeKey) ? *pRangeKey : 0;
1172 : // Just in case we have a bad key:
1173 0 : while (iRange > 0 && be::swap(pTable->group[iRange].start_char_code) > nUnicodePrev)
1174 0 : iRange--;
1175 0 : while (iRange < nRange - 1 && be::swap(pTable->group[iRange].end_char_code) < nUnicodePrev)
1176 0 : iRange++;
1177 :
1178 : // Now iRange is the range containing nUnicodePrev.
1179 :
1180 0 : unsigned int nStartCode = be::swap(pTable->group[iRange].start_char_code);
1181 0 : unsigned int nEndCode = be::swap(pTable->group[iRange].end_char_code);
1182 :
1183 0 : if (nStartCode > nUnicodePrev)
1184 : // Oops, nUnicodePrev is not in the cmap! Adjust so we get a reasonable
1185 : // answer this time around.
1186 0 : nUnicodePrev = nStartCode - 1;
1187 :
1188 0 : if (nEndCode > nUnicodePrev)
1189 : {
1190 : // Next is in the same range; it is the next successive codepoint.
1191 0 : if (pRangeKey)
1192 0 : *pRangeKey = iRange;
1193 0 : return nUnicodePrev + 1;
1194 : }
1195 :
1196 : // Otherwise the next codepoint is the first one in the next range, or 10FFFF if we're done.
1197 0 : if (pRangeKey)
1198 0 : *pRangeKey = iRange + 1;
1199 0 : return (iRange + 1 >= nRange) ? 0x10FFFF : be::swap(pTable->group[iRange + 1].start_char_code);
1200 : }
1201 :
1202 : /*----------------------------------------------------------------------------------------------
1203 : Return the offset stored in the loca table for the given Glyph ID.
1204 : (This offset is into the glyf table.)
1205 : Return -1 if the lookup failed.
1206 : Technically this method should return an unsigned long but it is unlikely the offset will
1207 : exceed 2^31.
1208 : ----------------------------------------------------------------------------------------------*/
1209 0 : size_t LocaLookup(gid16 nGlyphId,
1210 : const void * pLoca, size_t lLocaSize,
1211 : const void * pHead) // throw (std::out_of_range)
1212 : {
1213 0 : const Sfnt::FontHeader * pTable = reinterpret_cast<const Sfnt::FontHeader *>(pHead);
1214 0 : size_t res = -2;
1215 :
1216 : // CheckTable verifies the index_to_loc_format is valid
1217 0 : if (be::swap(pTable->index_to_loc_format) == Sfnt::FontHeader::ShortIndexLocFormat)
1218 : { // loca entries are two bytes and have been divided by two
1219 0 : if (lLocaSize > 1 && nGlyphId + 1u < lLocaSize >> 1) // allow sentinel value to be accessed
1220 : {
1221 0 : const uint16 * pShortTable = reinterpret_cast<const uint16 *>(pLoca);
1222 0 : res = be::peek<uint16>(pShortTable + nGlyphId) << 1;
1223 0 : if (res == static_cast<size_t>(be::peek<uint16>(pShortTable + nGlyphId + 1) << 1))
1224 0 : return -1;
1225 : }
1226 : }
1227 0 : else if (be::swap(pTable->index_to_loc_format) == Sfnt::FontHeader::LongIndexLocFormat)
1228 : { // loca entries are four bytes
1229 0 : if (lLocaSize > 3 && nGlyphId + 1u < lLocaSize >> 2)
1230 : {
1231 0 : const uint32 * pLongTable = reinterpret_cast<const uint32 *>(pLoca);
1232 0 : res = be::peek<uint32>(pLongTable + nGlyphId);
1233 0 : if (res == static_cast<size_t>(be::peek<uint32>(pLongTable + nGlyphId + 1)))
1234 0 : return -1;
1235 : }
1236 : }
1237 :
1238 : // only get here if glyph id was bad
1239 0 : return res;
1240 : //throw std::out_of_range("glyph id out of range for font");
1241 : }
1242 :
1243 : /*----------------------------------------------------------------------------------------------
1244 : Return a pointer into the glyf table based on the given offset (from LocaLookup).
1245 : Return NULL on error.
1246 : ----------------------------------------------------------------------------------------------*/
1247 0 : void * GlyfLookup(const void * pGlyf, size_t nGlyfOffset, size_t nTableLen)
1248 : {
1249 0 : const uint8 * pByte = reinterpret_cast<const uint8 *>(pGlyf);
1250 0 : if (nGlyfOffset + pByte < pByte || nGlyfOffset + sizeof(Sfnt::Glyph) >= nTableLen)
1251 0 : return NULL;
1252 0 : return const_cast<uint8 *>(pByte + nGlyfOffset);
1253 : }
1254 :
1255 : /*----------------------------------------------------------------------------------------------
1256 : Get the bounding box coordinates for a simple glyf entry (non-composite).
1257 : Return true if successful, false otherwise.
1258 : ----------------------------------------------------------------------------------------------*/
1259 0 : bool GlyfBox(const void * pSimpleGlyf, int & xMin, int & yMin,
1260 : int & xMax, int & yMax)
1261 : {
1262 0 : const Sfnt::Glyph * pGlyph = reinterpret_cast<const Sfnt::Glyph *>(pSimpleGlyf);
1263 :
1264 0 : xMin = be::swap(pGlyph->x_min);
1265 0 : yMin = be::swap(pGlyph->y_min);
1266 0 : xMax = be::swap(pGlyph->x_max);
1267 0 : yMax = be::swap(pGlyph->y_max);
1268 :
1269 0 : return true;
1270 : }
1271 :
1272 : #ifdef ALL_TTFUTILS
1273 : /*----------------------------------------------------------------------------------------------
1274 : Return the number of contours for a simple glyf entry (non-composite)
1275 : Returning -1 means this is a composite glyph
1276 : ----------------------------------------------------------------------------------------------*/
1277 : int GlyfContourCount(const void * pSimpleGlyf)
1278 : {
1279 : const Sfnt::Glyph * pGlyph = reinterpret_cast<const Sfnt::Glyph *>(pSimpleGlyf);
1280 : return be::swap(pGlyph->number_of_contours); // -1 means composite glyph
1281 : }
1282 :
1283 : /*----------------------------------------------------------------------------------------------
1284 : Get the point numbers for the end points of the glyph contours for a simple
1285 : glyf entry (non-composite).
1286 : cnPointsTotal - count of contours from GlyfContourCount(); (same as number of end points)
1287 : prgnContourEndPoints - should point to a buffer large enough to hold cnPoints integers
1288 : cnPoints - count of points placed in above range
1289 : Return true if successful, false otherwise.
1290 : False could indicate a multi-level composite glyphs.
1291 : ----------------------------------------------------------------------------------------------*/
1292 : bool GlyfContourEndPoints(const void * pSimpleGlyf, int * prgnContourEndPoint,
1293 : int cnPointsTotal, int & cnPoints)
1294 : {
1295 : const Sfnt::SimpleGlyph * pGlyph = reinterpret_cast<const Sfnt::SimpleGlyph *>(pSimpleGlyf);
1296 :
1297 : int cContours = be::swap(pGlyph->number_of_contours);
1298 : if (cContours < 0)
1299 : return false; // this method isn't supposed handle composite glyphs
1300 :
1301 : for (int i = 0; i < cContours && i < cnPointsTotal; i++)
1302 : {
1303 : prgnContourEndPoint[i] = be::swap(pGlyph->end_pts_of_contours[i]);
1304 : }
1305 :
1306 : cnPoints = cContours;
1307 : return true;
1308 : }
1309 :
1310 : /*----------------------------------------------------------------------------------------------
1311 : Get the points for a simple glyf entry (non-composite)
1312 : cnPointsTotal - count of points from largest end point obtained from GlyfContourEndPoints
1313 : prgnX & prgnY - should point to buffers large enough to hold cnPointsTotal integers
1314 : The ranges are parallel so that coordinates for point(n) are found at offset n in both
1315 : ranges. This is raw point data with relative coordinates.
1316 : prgbFlag - should point to a buffer a large enough to hold cnPointsTotal bytes
1317 : This range is parallel to the prgnX & prgnY
1318 : cnPoints - count of points placed in above ranges
1319 : Return true if successful, false otherwise.
1320 : False could indicate a composite glyph
1321 : ----------------------------------------------------------------------------------------------*/
1322 : bool GlyfPoints(const void * pSimpleGlyf, int * prgnX, int * prgnY,
1323 : char * prgbFlag, int cnPointsTotal, int & cnPoints)
1324 : {
1325 : using namespace Sfnt;
1326 :
1327 : const Sfnt::SimpleGlyph * pGlyph = reinterpret_cast<const Sfnt::SimpleGlyph *>(pSimpleGlyf);
1328 : int cContours = be::swap(pGlyph->number_of_contours);
1329 : // return false for composite glyph
1330 : if (cContours <= 0)
1331 : return false;
1332 : int cPts = be::swap(pGlyph->end_pts_of_contours[cContours - 1]) + 1;
1333 : if (cPts > cnPointsTotal)
1334 : return false;
1335 :
1336 : // skip over bounding box data & point to byte count of instructions (hints)
1337 : const uint8 * pbGlyph = reinterpret_cast<const uint8 *>
1338 : (&pGlyph->end_pts_of_contours[cContours]);
1339 :
1340 : // skip over hints & point to first flag
1341 : int cbHints = be::swap(*(uint16 *)pbGlyph);
1342 : pbGlyph += sizeof(uint16);
1343 : pbGlyph += cbHints;
1344 :
1345 : // load flags & point to first x coordinate
1346 : int iFlag = 0;
1347 : while (iFlag < cPts)
1348 : {
1349 : if (!(*pbGlyph & SimpleGlyph::Repeat))
1350 : { // flag isn't repeated
1351 : prgbFlag[iFlag] = (char)*pbGlyph;
1352 : pbGlyph++;
1353 : iFlag++;
1354 : }
1355 : else
1356 : { // flag is repeated; count specified by next byte
1357 : char chFlag = (char)*pbGlyph;
1358 : pbGlyph++;
1359 : int cFlags = (int)*pbGlyph;
1360 : pbGlyph++;
1361 : prgbFlag[iFlag] = chFlag;
1362 : iFlag++;
1363 : for (int i = 0; i < cFlags; i++)
1364 : {
1365 : prgbFlag[iFlag + i] = chFlag;
1366 : }
1367 : iFlag += cFlags;
1368 : }
1369 : }
1370 : if (iFlag != cPts)
1371 : return false;
1372 :
1373 : // load x coordinates
1374 : iFlag = 0;
1375 : while (iFlag < cPts)
1376 : {
1377 : if (prgbFlag[iFlag] & SimpleGlyph::XShort)
1378 : {
1379 : prgnX[iFlag] = *pbGlyph;
1380 : if (!(prgbFlag[iFlag] & SimpleGlyph::XIsPos))
1381 : {
1382 : prgnX[iFlag] = -prgnX[iFlag];
1383 : }
1384 : pbGlyph++;
1385 : }
1386 : else
1387 : {
1388 : if (prgbFlag[iFlag] & SimpleGlyph::XIsSame)
1389 : {
1390 : prgnX[iFlag] = 0;
1391 : // do NOT increment pbGlyph
1392 : }
1393 : else
1394 : {
1395 : prgnX[iFlag] = be::swap(*(int16 *)pbGlyph);
1396 : pbGlyph += sizeof(int16);
1397 : }
1398 : }
1399 : iFlag++;
1400 : }
1401 :
1402 : // load y coordinates
1403 : iFlag = 0;
1404 : while (iFlag < cPts)
1405 : {
1406 : if (prgbFlag[iFlag] & SimpleGlyph::YShort)
1407 : {
1408 : prgnY[iFlag] = *pbGlyph;
1409 : if (!(prgbFlag[iFlag] & SimpleGlyph::YIsPos))
1410 : {
1411 : prgnY[iFlag] = -prgnY[iFlag];
1412 : }
1413 : pbGlyph++;
1414 : }
1415 : else
1416 : {
1417 : if (prgbFlag[iFlag] & SimpleGlyph::YIsSame)
1418 : {
1419 : prgnY[iFlag] = 0;
1420 : // do NOT increment pbGlyph
1421 : }
1422 : else
1423 : {
1424 : prgnY[iFlag] = be::swap(*(int16 *)pbGlyph);
1425 : pbGlyph += sizeof(int16);
1426 : }
1427 : }
1428 : iFlag++;
1429 : }
1430 :
1431 : cnPoints = cPts;
1432 : return true;
1433 : }
1434 :
1435 : /*----------------------------------------------------------------------------------------------
1436 : Fill prgnCompId with the component Glyph IDs from pSimpleGlyf.
1437 : Client must allocate space before calling.
1438 : pSimpleGlyf - assumed to point to a composite glyph
1439 : cCompIdTotal - the number of elements in prgnCompId
1440 : cCompId - the total number of Glyph IDs stored in prgnCompId
1441 : Return true if successful, false otherwise
1442 : False could indicate a non-composite glyph or the input array was not big enough
1443 : ----------------------------------------------------------------------------------------------*/
1444 : bool GetComponentGlyphIds(const void * pSimpleGlyf, int * prgnCompId,
1445 : size_t cnCompIdTotal, size_t & cnCompId)
1446 : {
1447 : using namespace Sfnt;
1448 :
1449 : if (GlyfContourCount(pSimpleGlyf) >= 0)
1450 : return false;
1451 :
1452 : const Sfnt::SimpleGlyph * pGlyph = reinterpret_cast<const Sfnt::SimpleGlyph *>(pSimpleGlyf);
1453 : // for a composite glyph, the special data begins here
1454 : const uint8 * pbGlyph = reinterpret_cast<const uint8 *>(&pGlyph->end_pts_of_contours[0]);
1455 :
1456 : uint16 GlyphFlags;
1457 : size_t iCurrentComp = 0;
1458 : do
1459 : {
1460 : GlyphFlags = be::swap(*((uint16 *)pbGlyph));
1461 : pbGlyph += sizeof(uint16);
1462 : prgnCompId[iCurrentComp++] = be::swap(*((uint16 *)pbGlyph));
1463 : pbGlyph += sizeof(uint16);
1464 : if (iCurrentComp >= cnCompIdTotal)
1465 : return false;
1466 : int nOffset = 0;
1467 : nOffset += GlyphFlags & CompoundGlyph::Arg1Arg2Words ? 4 : 2;
1468 : nOffset += GlyphFlags & CompoundGlyph::HaveScale ? 2 : 0;
1469 : nOffset += GlyphFlags & CompoundGlyph::HaveXAndYScale ? 4 : 0;
1470 : nOffset += GlyphFlags & CompoundGlyph::HaveTwoByTwo ? 8 : 0;
1471 : pbGlyph += nOffset;
1472 : } while (GlyphFlags & CompoundGlyph::MoreComponents);
1473 :
1474 : cnCompId = iCurrentComp;
1475 :
1476 : return true;
1477 : }
1478 :
1479 : /*----------------------------------------------------------------------------------------------
1480 : Return info on how a component glyph is to be placed
1481 : pSimpleGlyph - assumed to point to a composite glyph
1482 : nCompId - glyph id for component of interest
1483 : bOffset - if true, a & b are the x & y offsets for this component
1484 : if false, b is the point on this component that is attaching to point a on the
1485 : preceding glyph
1486 : Return true if successful, false otherwise
1487 : False could indicate a non-composite glyph or that component wasn't found
1488 : ----------------------------------------------------------------------------------------------*/
1489 : bool GetComponentPlacement(const void * pSimpleGlyf, int nCompId,
1490 : bool fOffset, int & a, int & b)
1491 : {
1492 : using namespace Sfnt;
1493 :
1494 : if (GlyfContourCount(pSimpleGlyf) >= 0)
1495 : return false;
1496 :
1497 : const Sfnt::SimpleGlyph * pGlyph = reinterpret_cast<const Sfnt::SimpleGlyph *>(pSimpleGlyf);
1498 : // for a composite glyph, the special data begins here
1499 : const uint8 * pbGlyph = reinterpret_cast<const uint8 *>(&pGlyph->end_pts_of_contours[0]);
1500 :
1501 : uint16 GlyphFlags;
1502 : do
1503 : {
1504 : GlyphFlags = be::swap(*((uint16 *)pbGlyph));
1505 : pbGlyph += sizeof(uint16);
1506 : if (be::swap(*((uint16 *)pbGlyph)) == nCompId)
1507 : {
1508 : pbGlyph += sizeof(uint16); // skip over glyph id of component
1509 : fOffset = (GlyphFlags & CompoundGlyph::ArgsAreXYValues) == CompoundGlyph::ArgsAreXYValues;
1510 :
1511 : if (GlyphFlags & CompoundGlyph::Arg1Arg2Words )
1512 : {
1513 : a = be::swap(*(int16 *)pbGlyph);
1514 : pbGlyph += sizeof(int16);
1515 : b = be::swap(*(int16 *)pbGlyph);
1516 : pbGlyph += sizeof(int16);
1517 : }
1518 : else
1519 : { // args are signed bytes
1520 : a = *pbGlyph++;
1521 : b = *pbGlyph++;
1522 : }
1523 : return true;
1524 : }
1525 : pbGlyph += sizeof(uint16); // skip over glyph id of component
1526 : int nOffset = 0;
1527 : nOffset += GlyphFlags & CompoundGlyph::Arg1Arg2Words ? 4 : 2;
1528 : nOffset += GlyphFlags & CompoundGlyph::HaveScale ? 2 : 0;
1529 : nOffset += GlyphFlags & CompoundGlyph::HaveXAndYScale ? 4 : 0;
1530 : nOffset += GlyphFlags & CompoundGlyph::HaveTwoByTwo ? 8 : 0;
1531 : pbGlyph += nOffset;
1532 : } while (GlyphFlags & CompoundGlyph::MoreComponents);
1533 :
1534 : // didn't find requested component
1535 : fOffset = true;
1536 : a = 0;
1537 : b = 0;
1538 : return false;
1539 : }
1540 :
1541 : /*----------------------------------------------------------------------------------------------
1542 : Return info on how a component glyph is to be transformed
1543 : pSimpleGlyph - assumed to point to a composite glyph
1544 : nCompId - glyph id for component of interest
1545 : flt11, flt11, flt11, flt11 - a 2x2 matrix giving the transform
1546 : bTransOffset - whether to transform the offset from above method
1547 : The spec is unclear about the meaning of this flag
1548 : Currently - initialize to true for MS rasterizer and false for Mac rasterizer, then
1549 : on return it will indicate whether transform should apply to offset (MSDN CD 10/99)
1550 : Return true if successful, false otherwise
1551 : False could indicate a non-composite glyph or that component wasn't found
1552 : ----------------------------------------------------------------------------------------------*/
1553 : bool GetComponentTransform(const void * pSimpleGlyf, int nCompId,
1554 : float & flt11, float & flt12, float & flt21, float & flt22,
1555 : bool & fTransOffset)
1556 : {
1557 : using namespace Sfnt;
1558 :
1559 : if (GlyfContourCount(pSimpleGlyf) >= 0)
1560 : return false;
1561 :
1562 : const Sfnt::SimpleGlyph * pGlyph = reinterpret_cast<const Sfnt::SimpleGlyph *>(pSimpleGlyf);
1563 : // for a composite glyph, the special data begins here
1564 : const uint8 * pbGlyph = reinterpret_cast<const uint8 *>(&pGlyph->end_pts_of_contours[0]);
1565 :
1566 : uint16 GlyphFlags;
1567 : do
1568 : {
1569 : GlyphFlags = be::swap(*((uint16 *)pbGlyph));
1570 : pbGlyph += sizeof(uint16);
1571 : if (be::swap(*((uint16 *)pbGlyph)) == nCompId)
1572 : {
1573 : pbGlyph += sizeof(uint16); // skip over glyph id of component
1574 : pbGlyph += GlyphFlags & CompoundGlyph::Arg1Arg2Words ? 4 : 2; // skip over placement data
1575 :
1576 : if (fTransOffset) // MS rasterizer
1577 : fTransOffset = !(GlyphFlags & CompoundGlyph::UnscaledOffset);
1578 : else // Apple rasterizer
1579 : fTransOffset = (GlyphFlags & CompoundGlyph::ScaledOffset) != 0;
1580 :
1581 : if (GlyphFlags & CompoundGlyph::HaveScale)
1582 : {
1583 : flt11 = fixed_to_float<14>(be::swap(*(uint16 *)pbGlyph));
1584 : pbGlyph += sizeof(uint16);
1585 : flt12 = 0;
1586 : flt21 = 0;
1587 : flt22 = flt11;
1588 : }
1589 : else if (GlyphFlags & CompoundGlyph::HaveXAndYScale)
1590 : {
1591 : flt11 = fixed_to_float<14>(be::swap(*(uint16 *)pbGlyph));
1592 : pbGlyph += sizeof(uint16);
1593 : flt12 = 0;
1594 : flt21 = 0;
1595 : flt22 = fixed_to_float<14>(be::swap(*(uint16 *)pbGlyph));
1596 : pbGlyph += sizeof(uint16);
1597 : }
1598 : else if (GlyphFlags & CompoundGlyph::HaveTwoByTwo)
1599 : {
1600 : flt11 = fixed_to_float<14>(be::swap(*(uint16 *)pbGlyph));
1601 : pbGlyph += sizeof(uint16);
1602 : flt12 = fixed_to_float<14>(be::swap(*(uint16 *)pbGlyph));
1603 : pbGlyph += sizeof(uint16);
1604 : flt21 = fixed_to_float<14>(be::swap(*(uint16 *)pbGlyph));
1605 : pbGlyph += sizeof(uint16);
1606 : flt22 = fixed_to_float<14>(be::swap(*(uint16 *)pbGlyph));
1607 : pbGlyph += sizeof(uint16);
1608 : }
1609 : else
1610 : { // identity transform
1611 : flt11 = 1.0;
1612 : flt12 = 0.0;
1613 : flt21 = 0.0;
1614 : flt22 = 1.0;
1615 : }
1616 : return true;
1617 : }
1618 : pbGlyph += sizeof(uint16); // skip over glyph id of component
1619 : int nOffset = 0;
1620 : nOffset += GlyphFlags & CompoundGlyph::Arg1Arg2Words ? 4 : 2;
1621 : nOffset += GlyphFlags & CompoundGlyph::HaveScale ? 2 : 0;
1622 : nOffset += GlyphFlags & CompoundGlyph::HaveXAndYScale ? 4 : 0;
1623 : nOffset += GlyphFlags & CompoundGlyph::HaveTwoByTwo ? 8 : 0;
1624 : pbGlyph += nOffset;
1625 : } while (GlyphFlags & CompoundGlyph::MoreComponents);
1626 :
1627 : // didn't find requested component
1628 : fTransOffset = false;
1629 : flt11 = 1;
1630 : flt12 = 0;
1631 : flt21 = 0;
1632 : flt22 = 1;
1633 : return false;
1634 : }
1635 : #endif
1636 :
1637 : /*----------------------------------------------------------------------------------------------
1638 : Return a pointer into the glyf table based on the given tables and Glyph ID
1639 : Since this method doesn't check for spaces, it is good to call IsSpace before using it.
1640 : Return NULL on error.
1641 : ----------------------------------------------------------------------------------------------*/
1642 0 : void * GlyfLookup(gid16 nGlyphId, const void * pGlyf, const void * pLoca,
1643 : size_t lGlyfSize, size_t lLocaSize, const void * pHead)
1644 : {
1645 : // test for valid glyph id
1646 : // CheckTable verifies the index_to_loc_format is valid
1647 :
1648 : const Sfnt::FontHeader * pTable
1649 0 : = reinterpret_cast<const Sfnt::FontHeader *>(pHead);
1650 :
1651 0 : if (be::swap(pTable->index_to_loc_format) == Sfnt::FontHeader::ShortIndexLocFormat)
1652 : { // loca entries are two bytes (and have been divided by two)
1653 0 : if (nGlyphId >= (lLocaSize >> 1) - 1) // don't allow nGlyphId to access sentinel
1654 : {
1655 : // throw std::out_of_range("glyph id out of range for font");
1656 0 : return NULL;
1657 : }
1658 : }
1659 0 : if (be::swap(pTable->index_to_loc_format) == Sfnt::FontHeader::LongIndexLocFormat)
1660 : { // loca entries are four bytes
1661 0 : if (nGlyphId >= (lLocaSize >> 2) - 1)
1662 : {
1663 : // throw std::out_of_range("glyph id out of range for font");
1664 0 : return NULL;
1665 : }
1666 : }
1667 :
1668 0 : long lGlyfOffset = LocaLookup(nGlyphId, pLoca, lLocaSize, pHead);
1669 0 : void * pSimpleGlyf = GlyfLookup(pGlyf, lGlyfOffset, lGlyfSize); // invalid loca offset returns null
1670 0 : return pSimpleGlyf;
1671 : }
1672 :
1673 : #ifdef ALL_TTFUTILS
1674 : /*----------------------------------------------------------------------------------------------
1675 : Determine if a particular Glyph ID has any data in the glyf table. If it is white space,
1676 : there will be no glyf data, though there will be metric data in hmtx, etc.
1677 : ----------------------------------------------------------------------------------------------*/
1678 : bool IsSpace(gid16 nGlyphId, const void * pLoca, size_t lLocaSize, const void * pHead)
1679 : {
1680 : size_t lGlyfOffset = LocaLookup(nGlyphId, pLoca, lLocaSize, pHead);
1681 :
1682 : // the +1 should always work because there is a sentinel value at the end of the loca table
1683 : size_t lNextGlyfOffset = LocaLookup(nGlyphId + 1, pLoca, lLocaSize, pHead);
1684 :
1685 : return (lNextGlyfOffset - lGlyfOffset) == 0;
1686 : }
1687 :
1688 : /*----------------------------------------------------------------------------------------------
1689 : Determine if a particular Glyph ID is a multi-level composite.
1690 : ----------------------------------------------------------------------------------------------*/
1691 : bool IsDeepComposite(gid16 nGlyphId, const void * pGlyf, const void * pLoca,
1692 : size_t lGlyfSize, long lLocaSize, const void * pHead)
1693 : {
1694 : if (IsSpace(nGlyphId, pLoca, lLocaSize, pHead)) {return false;}
1695 :
1696 : void * pSimpleGlyf = GlyfLookup(nGlyphId, pGlyf, pLoca, lGlyfSize, lLocaSize, pHead);
1697 : if (pSimpleGlyf == NULL)
1698 : return false; // no way to really indicate an error occured here
1699 :
1700 : if (GlyfContourCount(pSimpleGlyf) >= 0)
1701 : return false;
1702 :
1703 : int rgnCompId[kMaxGlyphComponents]; // assumes only a limited number of glyph components
1704 : size_t cCompIdTotal = kMaxGlyphComponents;
1705 : size_t cCompId = 0;
1706 :
1707 : if (!GetComponentGlyphIds(pSimpleGlyf, rgnCompId, cCompIdTotal, cCompId))
1708 : return false;
1709 :
1710 : for (size_t i = 0; i < cCompId; i++)
1711 : {
1712 : pSimpleGlyf = GlyfLookup(static_cast<gid16>(rgnCompId[i]),
1713 : pGlyf, pLoca, lGlyfSize, lLocaSize, pHead);
1714 : if (pSimpleGlyf == NULL) {return false;}
1715 :
1716 : if (GlyfContourCount(pSimpleGlyf) < 0)
1717 : return true;
1718 : }
1719 :
1720 : return false;
1721 : }
1722 :
1723 : /*----------------------------------------------------------------------------------------------
1724 : Get the bounding box coordinates based on the given tables and Glyph ID
1725 : Handles both simple and composite glyphs.
1726 : Return true if successful, false otherwise. On false, all point values will be INT_MIN
1727 : False may indicate a white space glyph
1728 : ----------------------------------------------------------------------------------------------*/
1729 : bool GlyfBox(gid16 nGlyphId, const void * pGlyf, const void * pLoca,
1730 : size_t lGlyfSize, size_t lLocaSize, const void * pHead, int & xMin, int & yMin, int & xMax, int & yMax)
1731 : {
1732 : xMin = yMin = xMax = yMax = INT_MIN;
1733 :
1734 : if (IsSpace(nGlyphId, pLoca, lLocaSize, pHead)) {return false;}
1735 :
1736 : void * pSimpleGlyf = GlyfLookup(nGlyphId, pGlyf, pLoca, lGlyfSize, lLocaSize, pHead);
1737 : if (pSimpleGlyf == NULL) {return false;}
1738 :
1739 : return GlyfBox(pSimpleGlyf, xMin, yMin, xMax, yMax);
1740 : }
1741 :
1742 : /*----------------------------------------------------------------------------------------------
1743 : Get the number of contours based on the given tables and Glyph ID
1744 : Handles both simple and composite glyphs.
1745 : Return true if successful, false otherwise. On false, cnContours will be INT_MIN
1746 : False may indicate a white space glyph or a multi-level composite glyph.
1747 : ----------------------------------------------------------------------------------------------*/
1748 : bool GlyfContourCount(gid16 nGlyphId, const void * pGlyf, const void * pLoca,
1749 : size_t lGlyfSize, size_t lLocaSize, const void * pHead, size_t & cnContours)
1750 : {
1751 : cnContours = static_cast<size_t>(INT_MIN);
1752 :
1753 : if (IsSpace(nGlyphId, pLoca, lLocaSize, pHead)) {return false;}
1754 :
1755 : void * pSimpleGlyf = GlyfLookup(nGlyphId, pGlyf, pLoca, lGlyfSize, lLocaSize, pHead);
1756 : if (pSimpleGlyf == NULL) {return false;}
1757 :
1758 : int cRtnContours = GlyfContourCount(pSimpleGlyf);
1759 : if (cRtnContours >= 0)
1760 : {
1761 : cnContours = size_t(cRtnContours);
1762 : return true;
1763 : }
1764 :
1765 : //handle composite glyphs
1766 :
1767 : int rgnCompId[kMaxGlyphComponents]; // assumes no glyph will be made of more than 8 components
1768 : size_t cCompIdTotal = kMaxGlyphComponents;
1769 : size_t cCompId = 0;
1770 :
1771 : if (!GetComponentGlyphIds(pSimpleGlyf, rgnCompId, cCompIdTotal, cCompId))
1772 : return false;
1773 :
1774 : cRtnContours = 0;
1775 : int cTmp = 0;
1776 : for (size_t i = 0; i < cCompId; i++)
1777 : {
1778 : if (IsSpace(static_cast<gid16>(rgnCompId[i]), pLoca, lLocaSize, pHead)) {return false;}
1779 : pSimpleGlyf = GlyfLookup(static_cast<gid16>(rgnCompId[i]),
1780 : pGlyf, pLoca, lGlyfSize, lLocaSize, pHead);
1781 : if (pSimpleGlyf == 0) {return false;}
1782 : // return false on multi-level composite
1783 : if ((cTmp = GlyfContourCount(pSimpleGlyf)) < 0)
1784 : return false;
1785 : cRtnContours += cTmp;
1786 : }
1787 :
1788 : cnContours = size_t(cRtnContours);
1789 : return true;
1790 : }
1791 :
1792 : /*----------------------------------------------------------------------------------------------
1793 : Get the point numbers for the end points of the glyph contours based on the given tables
1794 : and Glyph ID
1795 : Handles both simple and composite glyphs.
1796 : cnPoints - count of contours from GlyfContourCount (same as number of end points)
1797 : prgnContourEndPoints - should point to a buffer large enough to hold cnPoints integers
1798 : Return true if successful, false otherwise. On false, all end points are INT_MIN
1799 : False may indicate a white space glyph or a multi-level composite glyph.
1800 : ----------------------------------------------------------------------------------------------*/
1801 : bool GlyfContourEndPoints(gid16 nGlyphId, const void * pGlyf, const void * pLoca,
1802 : size_t lGlyfSize, size_t lLocaSize, const void * pHead,
1803 : int * prgnContourEndPoint, size_t cnPoints)
1804 : {
1805 : memset(prgnContourEndPoint, 0xFF, cnPoints * sizeof(int));
1806 : // std::fill_n(prgnContourEndPoint, cnPoints, INT_MIN);
1807 :
1808 : if (IsSpace(nGlyphId, pLoca, lLocaSize, pHead)) {return false;}
1809 :
1810 : void * pSimpleGlyf = GlyfLookup(nGlyphId, pGlyf, pLoca, lGlyfSize, lLocaSize, pHead);
1811 : if (pSimpleGlyf == NULL) {return false;}
1812 :
1813 : int cContours = GlyfContourCount(pSimpleGlyf);
1814 : int cActualPts = 0;
1815 : if (cContours > 0)
1816 : return GlyfContourEndPoints(pSimpleGlyf, prgnContourEndPoint, cnPoints, cActualPts);
1817 :
1818 : // handle composite glyphs
1819 :
1820 : int rgnCompId[kMaxGlyphComponents]; // assumes no glyph will be made of more than 8 components
1821 : size_t cCompIdTotal = kMaxGlyphComponents;
1822 : size_t cCompId = 0;
1823 :
1824 : if (!GetComponentGlyphIds(pSimpleGlyf, rgnCompId, cCompIdTotal, cCompId))
1825 : return false;
1826 :
1827 : int * prgnCurrentEndPoint = prgnContourEndPoint;
1828 : int cCurrentPoints = cnPoints;
1829 : int nPrevPt = 0;
1830 : for (size_t i = 0; i < cCompId; i++)
1831 : {
1832 : if (IsSpace(static_cast<gid16>(rgnCompId[i]), pLoca, lLocaSize, pHead)) {return false;}
1833 : pSimpleGlyf = GlyfLookup(static_cast<gid16>(rgnCompId[i]), pGlyf, pLoca, lGlyfSize, lLocaSize, pHead);
1834 : if (pSimpleGlyf == NULL) {return false;}
1835 : // returns false on multi-level composite
1836 : if (!GlyfContourEndPoints(pSimpleGlyf, prgnCurrentEndPoint, cCurrentPoints, cActualPts))
1837 : return false;
1838 : // points in composite are numbered sequentially as components are added
1839 : // must adjust end point numbers for new point numbers
1840 : for (int j = 0; j < cActualPts; j++)
1841 : prgnCurrentEndPoint[j] += nPrevPt;
1842 : nPrevPt = prgnCurrentEndPoint[cActualPts - 1] + 1;
1843 :
1844 : prgnCurrentEndPoint += cActualPts;
1845 : cCurrentPoints -= cActualPts;
1846 : }
1847 :
1848 : return true;
1849 : }
1850 :
1851 : /*----------------------------------------------------------------------------------------------
1852 : Get the points for a glyph based on the given tables and Glyph ID
1853 : Handles both simple and composite glyphs.
1854 : cnPoints - count of points from largest end point obtained from GlyfContourEndPoints
1855 : prgnX & prgnY - should point to buffers large enough to hold cnPoints integers
1856 : The ranges are parallel so that coordinates for point(n) are found at offset n in
1857 : both ranges. These points are in absolute coordinates.
1858 : prgfOnCurve - should point to a buffer a large enough to hold cnPoints bytes (bool)
1859 : This range is parallel to the prgnX & prgnY
1860 : Return true if successful, false otherwise. On false, all points may be INT_MIN
1861 : False may indicate a white space glyph, a multi-level composite, or a corrupt font
1862 : It's not clear from the TTF spec when the transforms should be applied. Should the
1863 : transform be done before or after attachment point calcs? (current code - before)
1864 : Should the transform be applied to other offsets? (currently - no; however commented
1865 : out code is in place so that if CompoundGlyph::UnscaledOffset on the MS rasterizer is
1866 : clear (typical) then yes, and if CompoundGlyph::ScaledOffset on the Apple rasterizer is
1867 : clear (typical?) then no). See GetComponentTransform.
1868 : It's also unclear where point numbering with attachment poinst starts
1869 : (currently - first point number is relative to whole glyph, second point number is
1870 : relative to current glyph).
1871 : ----------------------------------------------------------------------------------------------*/
1872 : bool GlyfPoints(gid16 nGlyphId, const void * pGlyf,
1873 : const void * pLoca, size_t lGlyfSize, size_t lLocaSize, const void * pHead,
1874 : const int * /*prgnContourEndPoint*/, size_t /*cnEndPoints*/,
1875 : int * prgnX, int * prgnY, bool * prgfOnCurve, size_t cnPoints)
1876 : {
1877 : memset(prgnX, 0x7F, cnPoints * sizeof(int));
1878 : memset(prgnY, 0x7F, cnPoints * sizeof(int));
1879 :
1880 : if (IsSpace(nGlyphId, pLoca, lLocaSize, pHead))
1881 : return false;
1882 :
1883 : void * pSimpleGlyf = GlyfLookup(nGlyphId, pGlyf, pLoca, lGlyfSize, lLocaSize, pHead);
1884 : if (pSimpleGlyf == NULL)
1885 : return false;
1886 :
1887 : int cContours = GlyfContourCount(pSimpleGlyf);
1888 : int cActualPts;
1889 : if (cContours > 0)
1890 : {
1891 : if (!GlyfPoints(pSimpleGlyf, prgnX, prgnY, (char *)prgfOnCurve, cnPoints, cActualPts))
1892 : return false;
1893 : CalcAbsolutePoints(prgnX, prgnY, cnPoints);
1894 : SimplifyFlags((char *)prgfOnCurve, cnPoints);
1895 : return true;
1896 : }
1897 :
1898 : // handle composite glyphs
1899 : int rgnCompId[kMaxGlyphComponents]; // assumes no glyph will be made of more than 8 components
1900 : size_t cCompIdTotal = kMaxGlyphComponents;
1901 : size_t cCompId = 0;
1902 :
1903 : // this will fail if there are more components than there is room for
1904 : if (!GetComponentGlyphIds(pSimpleGlyf, rgnCompId, cCompIdTotal, cCompId))
1905 : return false;
1906 :
1907 : int * prgnCurrentX = prgnX;
1908 : int * prgnCurrentY = prgnY;
1909 : char * prgbCurrentFlag = (char *)prgfOnCurve; // converting bool to char should be safe
1910 : int cCurrentPoints = cnPoints;
1911 : bool fOffset = true, fTransOff = true;
1912 : int a, b;
1913 : float flt11, flt12, flt21, flt22;
1914 : // int * prgnPrevX = prgnX; // in case first att pt number relative to preceding glyph
1915 : // int * prgnPrevY = prgnY;
1916 : for (size_t i = 0; i < cCompId; i++)
1917 : {
1918 : if (IsSpace(static_cast<gid16>(rgnCompId[i]), pLoca, lLocaSize, pHead)) {return false;}
1919 : void * pCompGlyf = GlyfLookup(static_cast<gid16>(rgnCompId[i]), pGlyf, pLoca, lGlyfSize, lLocaSize, pHead);
1920 : if (pCompGlyf == NULL) {return false;}
1921 : // returns false on multi-level composite
1922 : if (!GlyfPoints(pCompGlyf, prgnCurrentX, prgnCurrentY, prgbCurrentFlag,
1923 : cCurrentPoints, cActualPts))
1924 : return false;
1925 : if (!GetComponentPlacement(pSimpleGlyf, rgnCompId[i], fOffset, a, b))
1926 : return false;
1927 : if (!GetComponentTransform(pSimpleGlyf, rgnCompId[i],
1928 : flt11, flt12, flt21, flt22, fTransOff))
1929 : return false;
1930 : bool fIdTrans = flt11 == 1.0 && flt12 == 0.0 && flt21 == 0.0 && flt22 == 1.0;
1931 :
1932 : // convert points to absolute coordinates
1933 : // do before transform and attachment point placement are applied
1934 : CalcAbsolutePoints(prgnCurrentX, prgnCurrentY, cActualPts);
1935 :
1936 : // apply transform - see main method note above
1937 : // do before attachment point calcs
1938 : if (!fIdTrans)
1939 : for (int j = 0; j < cActualPts; j++)
1940 : {
1941 : int x = prgnCurrentX[j]; // store before transform applied
1942 : int y = prgnCurrentY[j];
1943 : prgnCurrentX[j] = (int)(x * flt11 + y * flt12);
1944 : prgnCurrentY[j] = (int)(x * flt21 + y * flt22);
1945 : }
1946 :
1947 : // apply placement - see main method note above
1948 : int nXOff, nYOff;
1949 : if (fOffset) // explicit x & y offsets
1950 : {
1951 : /* ignore fTransOff for now
1952 : if (fTransOff && !fIdTrans)
1953 : { // transform x & y offsets
1954 : nXOff = (int)(a * flt11 + b * flt12);
1955 : nYOff = (int)(a * flt21 + b * flt22);
1956 : }
1957 : else */
1958 : { // don't transform offset
1959 : nXOff = a;
1960 : nYOff = b;
1961 : }
1962 : }
1963 : else // attachment points
1964 : { // in case first point is relative to preceding glyph and second relative to current
1965 : // nXOff = prgnPrevX[a] - prgnCurrentX[b];
1966 : // nYOff = prgnPrevY[a] - prgnCurrentY[b];
1967 : // first point number relative to whole composite, second relative to current glyph
1968 : nXOff = prgnX[a] - prgnCurrentX[b];
1969 : nYOff = prgnY[a] - prgnCurrentY[b];
1970 : }
1971 : for (int j = 0; j < cActualPts; j++)
1972 : {
1973 : prgnCurrentX[j] += nXOff;
1974 : prgnCurrentY[j] += nYOff;
1975 : }
1976 :
1977 : // prgnPrevX = prgnCurrentX;
1978 : // prgnPrevY = prgnCurrentY;
1979 : prgnCurrentX += cActualPts;
1980 : prgnCurrentY += cActualPts;
1981 : prgbCurrentFlag += cActualPts;
1982 : cCurrentPoints -= cActualPts;
1983 : }
1984 :
1985 : SimplifyFlags((char *)prgfOnCurve, cnPoints);
1986 :
1987 : return true;
1988 : }
1989 :
1990 : /*----------------------------------------------------------------------------------------------
1991 : Simplify the meaning of flags to just indicate whether point is on-curve or off-curve.
1992 : ---------------------------------------------------------------------------------------------*/
1993 : bool SimplifyFlags(char * prgbFlags, int cnPoints)
1994 : {
1995 : for (int i = 0; i < cnPoints; i++)
1996 : prgbFlags[i] = static_cast<char>(prgbFlags[i] & Sfnt::SimpleGlyph::OnCurve);
1997 : return true;
1998 : }
1999 :
2000 : /*----------------------------------------------------------------------------------------------
2001 : Convert relative point coordinates to absolute coordinates
2002 : Points are stored in the font such that they are offsets from one another except for the
2003 : first point of a glyph.
2004 : ---------------------------------------------------------------------------------------------*/
2005 : bool CalcAbsolutePoints(int * prgnX, int * prgnY, int cnPoints)
2006 : {
2007 : int nX = prgnX[0];
2008 : int nY = prgnY[0];
2009 : for (int i = 1; i < cnPoints; i++)
2010 : {
2011 : prgnX[i] += nX;
2012 : nX = prgnX[i];
2013 : prgnY[i] += nY;
2014 : nY = prgnY[i];
2015 : }
2016 :
2017 : return true;
2018 : }
2019 : #endif
2020 :
2021 : /*----------------------------------------------------------------------------------------------
2022 : Return the length of the 'name' table in bytes.
2023 : Currently used.
2024 : ---------------------------------------------------------------------------------------------*/
2025 : #if 0
2026 : size_t NameTableLength(const byte * pTable)
2027 : {
2028 : byte * pb = (const_cast<byte *>(pTable)) + 2; // skip format
2029 : size_t cRecords = *pb++ << 8; cRecords += *pb++;
2030 : int dbStringOffset0 = (*pb++) << 8; dbStringOffset0 += *pb++;
2031 : int dbMaxStringOffset = 0;
2032 : for (size_t irec = 0; irec < cRecords; irec++)
2033 : {
2034 : int nPlatform = (*pb++) << 8; nPlatform += *pb++;
2035 : int nEncoding = (*pb++) << 8; nEncoding += *pb++;
2036 : int nLanguage = (*pb++) << 8; nLanguage += *pb++;
2037 : int nName = (*pb++) << 8; nName += *pb++;
2038 : int cbStringLen = (*pb++) << 8; cbStringLen += *pb++;
2039 : int dbStringOffset = (*pb++) << 8; dbStringOffset += *pb++;
2040 : if (dbMaxStringOffset < dbStringOffset + cbStringLen)
2041 : dbMaxStringOffset = dbStringOffset + cbStringLen;
2042 : }
2043 : return dbStringOffset0 + dbMaxStringOffset;
2044 : }
2045 : #endif
2046 :
2047 : } // end of namespace TtfUtil
2048 : } // end of namespace graphite
|