Line data Source code
1 : #include <xmmintrin.h>
2 :
3 : #include "qcmsint.h"
4 :
5 : /* pre-shuffled: just load these into XMM reg instead of load-scalar/shufps sequence */
6 : #define FLOATSCALE (float)(PRECACHE_OUTPUT_SIZE)
7 : #define CLAMPMAXVAL ( ((float) (PRECACHE_OUTPUT_SIZE - 1)) / PRECACHE_OUTPUT_SIZE )
8 : static const ALIGN float floatScaleX4[4] =
9 : { FLOATSCALE, FLOATSCALE, FLOATSCALE, FLOATSCALE};
10 : static const ALIGN float clampMaxValueX4[4] =
11 : { CLAMPMAXVAL, CLAMPMAXVAL, CLAMPMAXVAL, CLAMPMAXVAL};
12 :
13 0 : void qcms_transform_data_rgb_out_lut_sse1(qcms_transform *transform,
14 : unsigned char *src,
15 : unsigned char *dest,
16 : size_t length)
17 : {
18 : unsigned int i;
19 0 : float (*mat)[4] = transform->matrix;
20 : char input_back[32];
21 : /* Ensure we have a buffer that's 16 byte aligned regardless of the original
22 : * stack alignment. We can't use __attribute__((aligned(16))) or __declspec(align(32))
23 : * because they don't work on stack variables. gcc 4.4 does do the right thing
24 : * on x86 but that's too new for us right now. For more info: gcc bug #16660 */
25 0 : float const * input = (float*)(((uintptr_t)&input_back[16]) & ~0xf);
26 : /* share input and output locations to save having to keep the
27 : * locations in separate registers */
28 0 : uint32_t const * output = (uint32_t*)input;
29 :
30 : /* deref *transform now to avoid it in loop */
31 0 : const float *igtbl_r = transform->input_gamma_table_r;
32 0 : const float *igtbl_g = transform->input_gamma_table_g;
33 0 : const float *igtbl_b = transform->input_gamma_table_b;
34 :
35 : /* deref *transform now to avoid it in loop */
36 0 : const uint8_t *otdata_r = &transform->output_table_r->data[0];
37 0 : const uint8_t *otdata_g = &transform->output_table_g->data[0];
38 0 : const uint8_t *otdata_b = &transform->output_table_b->data[0];
39 :
40 : /* input matrix values never change */
41 0 : const __m128 mat0 = _mm_load_ps(mat[0]);
42 0 : const __m128 mat1 = _mm_load_ps(mat[1]);
43 0 : const __m128 mat2 = _mm_load_ps(mat[2]);
44 :
45 : /* these values don't change, either */
46 0 : const __m128 max = _mm_load_ps(clampMaxValueX4);
47 0 : const __m128 min = _mm_setzero_ps();
48 0 : const __m128 scale = _mm_load_ps(floatScaleX4);
49 :
50 : /* working variables */
51 : __m128 vec_r, vec_g, vec_b, result;
52 :
53 : /* CYA */
54 0 : if (!length)
55 0 : return;
56 :
57 : /* one pixel is handled outside of the loop */
58 0 : length--;
59 :
60 : /* setup for transforming 1st pixel */
61 0 : vec_r = _mm_load_ss(&igtbl_r[src[0]]);
62 0 : vec_g = _mm_load_ss(&igtbl_g[src[1]]);
63 0 : vec_b = _mm_load_ss(&igtbl_b[src[2]]);
64 0 : src += 3;
65 :
66 : /* transform all but final pixel */
67 :
68 0 : for (i=0; i<length; i++)
69 : {
70 : /* position values from gamma tables */
71 0 : vec_r = _mm_shuffle_ps(vec_r, vec_r, 0);
72 0 : vec_g = _mm_shuffle_ps(vec_g, vec_g, 0);
73 0 : vec_b = _mm_shuffle_ps(vec_b, vec_b, 0);
74 :
75 : /* gamma * matrix */
76 0 : vec_r = _mm_mul_ps(vec_r, mat0);
77 0 : vec_g = _mm_mul_ps(vec_g, mat1);
78 0 : vec_b = _mm_mul_ps(vec_b, mat2);
79 :
80 : /* crunch, crunch, crunch */
81 0 : vec_r = _mm_add_ps(vec_r, _mm_add_ps(vec_g, vec_b));
82 0 : vec_r = _mm_max_ps(min, vec_r);
83 0 : vec_r = _mm_min_ps(max, vec_r);
84 0 : result = _mm_mul_ps(vec_r, scale);
85 :
86 : /* store calc'd output tables indices */
87 0 : *((__m64 *)&output[0]) = _mm_cvtps_pi32(result);
88 0 : result = _mm_movehl_ps(result, result);
89 0 : *((__m64 *)&output[2]) = _mm_cvtps_pi32(result) ;
90 :
91 : /* load for next loop while store completes */
92 0 : vec_r = _mm_load_ss(&igtbl_r[src[0]]);
93 0 : vec_g = _mm_load_ss(&igtbl_g[src[1]]);
94 0 : vec_b = _mm_load_ss(&igtbl_b[src[2]]);
95 0 : src += 3;
96 :
97 : /* use calc'd indices to output RGB values */
98 0 : dest[OUTPUT_R_INDEX] = otdata_r[output[0]];
99 0 : dest[OUTPUT_G_INDEX] = otdata_g[output[1]];
100 0 : dest[OUTPUT_B_INDEX] = otdata_b[output[2]];
101 0 : dest += RGB_OUTPUT_COMPONENTS;
102 : }
103 :
104 : /* handle final (maybe only) pixel */
105 :
106 0 : vec_r = _mm_shuffle_ps(vec_r, vec_r, 0);
107 0 : vec_g = _mm_shuffle_ps(vec_g, vec_g, 0);
108 0 : vec_b = _mm_shuffle_ps(vec_b, vec_b, 0);
109 :
110 0 : vec_r = _mm_mul_ps(vec_r, mat0);
111 0 : vec_g = _mm_mul_ps(vec_g, mat1);
112 0 : vec_b = _mm_mul_ps(vec_b, mat2);
113 :
114 0 : vec_r = _mm_add_ps(vec_r, _mm_add_ps(vec_g, vec_b));
115 0 : vec_r = _mm_max_ps(min, vec_r);
116 0 : vec_r = _mm_min_ps(max, vec_r);
117 0 : result = _mm_mul_ps(vec_r, scale);
118 :
119 0 : *((__m64 *)&output[0]) = _mm_cvtps_pi32(result);
120 0 : result = _mm_movehl_ps(result, result);
121 0 : *((__m64 *)&output[2]) = _mm_cvtps_pi32(result);
122 :
123 0 : dest[OUTPUT_R_INDEX] = otdata_r[output[0]];
124 0 : dest[OUTPUT_G_INDEX] = otdata_g[output[1]];
125 0 : dest[OUTPUT_B_INDEX] = otdata_b[output[2]];
126 :
127 : _mm_empty();
128 : }
129 :
130 0 : void qcms_transform_data_rgba_out_lut_sse1(qcms_transform *transform,
131 : unsigned char *src,
132 : unsigned char *dest,
133 : size_t length)
134 : {
135 : unsigned int i;
136 0 : float (*mat)[4] = transform->matrix;
137 : char input_back[32];
138 : /* Ensure we have a buffer that's 16 byte aligned regardless of the original
139 : * stack alignment. We can't use __attribute__((aligned(16))) or __declspec(align(32))
140 : * because they don't work on stack variables. gcc 4.4 does do the right thing
141 : * on x86 but that's too new for us right now. For more info: gcc bug #16660 */
142 0 : float const * input = (float*)(((uintptr_t)&input_back[16]) & ~0xf);
143 : /* share input and output locations to save having to keep the
144 : * locations in separate registers */
145 0 : uint32_t const * output = (uint32_t*)input;
146 :
147 : /* deref *transform now to avoid it in loop */
148 0 : const float *igtbl_r = transform->input_gamma_table_r;
149 0 : const float *igtbl_g = transform->input_gamma_table_g;
150 0 : const float *igtbl_b = transform->input_gamma_table_b;
151 :
152 : /* deref *transform now to avoid it in loop */
153 0 : const uint8_t *otdata_r = &transform->output_table_r->data[0];
154 0 : const uint8_t *otdata_g = &transform->output_table_g->data[0];
155 0 : const uint8_t *otdata_b = &transform->output_table_b->data[0];
156 :
157 : /* input matrix values never change */
158 0 : const __m128 mat0 = _mm_load_ps(mat[0]);
159 0 : const __m128 mat1 = _mm_load_ps(mat[1]);
160 0 : const __m128 mat2 = _mm_load_ps(mat[2]);
161 :
162 : /* these values don't change, either */
163 0 : const __m128 max = _mm_load_ps(clampMaxValueX4);
164 0 : const __m128 min = _mm_setzero_ps();
165 0 : const __m128 scale = _mm_load_ps(floatScaleX4);
166 :
167 : /* working variables */
168 : __m128 vec_r, vec_g, vec_b, result;
169 : unsigned char alpha;
170 :
171 : /* CYA */
172 0 : if (!length)
173 0 : return;
174 :
175 : /* one pixel is handled outside of the loop */
176 0 : length--;
177 :
178 : /* setup for transforming 1st pixel */
179 0 : vec_r = _mm_load_ss(&igtbl_r[src[0]]);
180 0 : vec_g = _mm_load_ss(&igtbl_g[src[1]]);
181 0 : vec_b = _mm_load_ss(&igtbl_b[src[2]]);
182 0 : alpha = src[3];
183 0 : src += 4;
184 :
185 : /* transform all but final pixel */
186 :
187 0 : for (i=0; i<length; i++)
188 : {
189 : /* position values from gamma tables */
190 0 : vec_r = _mm_shuffle_ps(vec_r, vec_r, 0);
191 0 : vec_g = _mm_shuffle_ps(vec_g, vec_g, 0);
192 0 : vec_b = _mm_shuffle_ps(vec_b, vec_b, 0);
193 :
194 : /* gamma * matrix */
195 0 : vec_r = _mm_mul_ps(vec_r, mat0);
196 0 : vec_g = _mm_mul_ps(vec_g, mat1);
197 0 : vec_b = _mm_mul_ps(vec_b, mat2);
198 :
199 : /* store alpha for this pixel; load alpha for next */
200 0 : dest[OUTPUT_A_INDEX] = alpha;
201 0 : alpha = src[3];
202 :
203 : /* crunch, crunch, crunch */
204 0 : vec_r = _mm_add_ps(vec_r, _mm_add_ps(vec_g, vec_b));
205 0 : vec_r = _mm_max_ps(min, vec_r);
206 0 : vec_r = _mm_min_ps(max, vec_r);
207 0 : result = _mm_mul_ps(vec_r, scale);
208 :
209 : /* store calc'd output tables indices */
210 0 : *((__m64 *)&output[0]) = _mm_cvtps_pi32(result);
211 0 : result = _mm_movehl_ps(result, result);
212 0 : *((__m64 *)&output[2]) = _mm_cvtps_pi32(result);
213 :
214 : /* load gamma values for next loop while store completes */
215 0 : vec_r = _mm_load_ss(&igtbl_r[src[0]]);
216 0 : vec_g = _mm_load_ss(&igtbl_g[src[1]]);
217 0 : vec_b = _mm_load_ss(&igtbl_b[src[2]]);
218 0 : src += 4;
219 :
220 : /* use calc'd indices to output RGB values */
221 0 : dest[OUTPUT_R_INDEX] = otdata_r[output[0]];
222 0 : dest[OUTPUT_G_INDEX] = otdata_g[output[1]];
223 0 : dest[OUTPUT_B_INDEX] = otdata_b[output[2]];
224 0 : dest += 4;
225 : }
226 :
227 : /* handle final (maybe only) pixel */
228 :
229 0 : vec_r = _mm_shuffle_ps(vec_r, vec_r, 0);
230 0 : vec_g = _mm_shuffle_ps(vec_g, vec_g, 0);
231 0 : vec_b = _mm_shuffle_ps(vec_b, vec_b, 0);
232 :
233 0 : vec_r = _mm_mul_ps(vec_r, mat0);
234 0 : vec_g = _mm_mul_ps(vec_g, mat1);
235 0 : vec_b = _mm_mul_ps(vec_b, mat2);
236 :
237 0 : dest[OUTPUT_A_INDEX] = alpha;
238 :
239 0 : vec_r = _mm_add_ps(vec_r, _mm_add_ps(vec_g, vec_b));
240 0 : vec_r = _mm_max_ps(min, vec_r);
241 0 : vec_r = _mm_min_ps(max, vec_r);
242 0 : result = _mm_mul_ps(vec_r, scale);
243 :
244 0 : *((__m64 *)&output[0]) = _mm_cvtps_pi32(result);
245 0 : result = _mm_movehl_ps(result, result);
246 0 : *((__m64 *)&output[2]) = _mm_cvtps_pi32(result);
247 :
248 0 : dest[OUTPUT_R_INDEX] = otdata_r[output[0]];
249 0 : dest[OUTPUT_G_INDEX] = otdata_g[output[1]];
250 0 : dest[OUTPUT_B_INDEX] = otdata_b[output[2]];
251 :
252 : _mm_empty();
253 : }
|