LCOV - code coverage report
Current view: top level - gfx/skia/skia/include/core - SkScalar.h (source / functions) Hit Total Coverage
Test: output.info Lines: 32 44 72.7 %
Date: 2017-07-14 16:53:18 Functions: 11 16 68.8 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*
       2             :  * Copyright 2006 The Android Open Source Project
       3             :  *
       4             :  * Use of this source code is governed by a BSD-style license that can be
       5             :  * found in the LICENSE file.
       6             :  */
       7             : 
       8             : #ifndef SkScalar_DEFINED
       9             : #define SkScalar_DEFINED
      10             : 
      11             : #include "../private/SkFloatingPoint.h"
      12             : 
      13             : #undef SK_SCALAR_IS_FLOAT
      14             : #define SK_SCALAR_IS_FLOAT  1
      15             : 
      16             : typedef float SkScalar;
      17             : 
      18             : #define SK_Scalar1                  1.0f
      19             : #define SK_ScalarHalf               0.5f
      20             : #define SK_ScalarSqrt2              1.41421356f
      21             : #define SK_ScalarPI                 3.14159265f
      22             : #define SK_ScalarTanPIOver8         0.414213562f
      23             : #define SK_ScalarRoot2Over2         0.707106781f
      24             : #define SK_ScalarMax                3.402823466e+38f
      25             : #define SK_ScalarInfinity           SK_FloatInfinity
      26             : #define SK_ScalarNegativeInfinity   SK_FloatNegativeInfinity
      27             : #define SK_ScalarNaN                SK_FloatNaN
      28             : 
      29             : #define SkScalarFloorToScalar(x)    sk_float_floor(x)
      30             : #define SkScalarCeilToScalar(x)     sk_float_ceil(x)
      31             : #define SkScalarRoundToScalar(x)    sk_float_floor((x) + 0.5f)
      32             : #define SkScalarTruncToScalar(x)    sk_float_trunc(x)
      33             : 
      34             : #define SkScalarFloorToInt(x)       sk_float_floor2int(x)
      35             : #define SkScalarCeilToInt(x)        sk_float_ceil2int(x)
      36             : #define SkScalarRoundToInt(x)       sk_float_round2int(x)
      37             : 
      38             : #define SkScalarAbs(x)              sk_float_abs(x)
      39             : #define SkScalarCopySign(x, y)      sk_float_copysign(x, y)
      40             : #define SkScalarMod(x, y)           sk_float_mod(x,y)
      41             : #define SkScalarSqrt(x)             sk_float_sqrt(x)
      42             : #define SkScalarPow(b, e)           sk_float_pow(b, e)
      43             : 
      44             : #define SkScalarSin(radians)        (float)sk_float_sin(radians)
      45             : #define SkScalarCos(radians)        (float)sk_float_cos(radians)
      46             : #define SkScalarTan(radians)        (float)sk_float_tan(radians)
      47             : #define SkScalarASin(val)           (float)sk_float_asin(val)
      48             : #define SkScalarACos(val)           (float)sk_float_acos(val)
      49             : #define SkScalarATan2(y, x)         (float)sk_float_atan2(y,x)
      50             : #define SkScalarExp(x)              (float)sk_float_exp(x)
      51             : #define SkScalarLog(x)              (float)sk_float_log(x)
      52             : #define SkScalarLog2(x)             (float)sk_float_log2(x)
      53             : 
      54             : //////////////////////////////////////////////////////////////////////////////////////////////////
      55             : 
      56             : #define SkIntToScalar(x)        static_cast<SkScalar>(x)
      57             : #define SkIntToFloat(x)         static_cast<float>(x)
      58             : #define SkScalarTruncToInt(x)   static_cast<int>(x)
      59             : 
      60             : #define SkScalarToFloat(x)      static_cast<float>(x)
      61             : #define SkFloatToScalar(x)      static_cast<SkScalar>(x)
      62             : #define SkScalarToDouble(x)     static_cast<double>(x)
      63             : #define SkDoubleToScalar(x)     static_cast<SkScalar>(x)
      64             : 
      65             : #define SK_ScalarMin            (-SK_ScalarMax)
      66             : 
      67      158276 : static inline bool SkScalarIsNaN(SkScalar x) { return x != x; }
      68             : 
      69             : /** Returns true if x is not NaN and not infinite
      70             :  */
      71        4576 : static inline bool SkScalarIsFinite(SkScalar x) {
      72             :     // We rely on the following behavior of infinities and nans
      73             :     // 0 * finite --> 0
      74             :     // 0 * infinity --> NaN
      75             :     // 0 * NaN --> NaN
      76        4576 :     SkScalar prod = x * 0;
      77             :     // At this point, prod will either be NaN or 0
      78        4576 :     return !SkScalarIsNaN(prod);
      79             : }
      80             : 
      81          15 : static inline bool SkScalarsAreFinite(SkScalar a, SkScalar b) {
      82          15 :     SkScalar prod = 0;
      83          15 :     prod *= a;
      84          15 :     prod *= b;
      85             :     // At this point, prod will either be NaN or 0
      86          15 :     return !SkScalarIsNaN(prod);
      87             : }
      88             : 
      89          25 : static inline bool SkScalarsAreFinite(const SkScalar array[], int count) {
      90          25 :     SkScalar prod = 0;
      91         250 :     for (int i = 0; i < count; ++i) {
      92         225 :         prod *= array[i];
      93             :     }
      94             :     // At this point, prod will either be NaN or 0
      95          25 :     return !SkScalarIsNaN(prod);
      96             : }
      97             : 
      98             : /**
      99             :  *  Variant of SkScalarRoundToInt, that performs the rounding step (adding 0.5) explicitly using
     100             :  *  double, to avoid possibly losing the low bit(s) of the answer before calling floor().
     101             :  *
     102             :  *  This routine will likely be slower than SkScalarRoundToInt(), and should only be used when the
     103             :  *  extra precision is known to be valuable.
     104             :  *
     105             :  *  In particular, this catches the following case:
     106             :  *      SkScalar x = 0.49999997;
     107             :  *      int ix = SkScalarRoundToInt(x);
     108             :  *      SkASSERT(0 == ix);    // <--- fails
     109             :  *      ix = SkDScalarRoundToInt(x);
     110             :  *      SkASSERT(0 == ix);    // <--- succeeds
     111             :  */
     112             : static inline int SkDScalarRoundToInt(SkScalar x) {
     113             :     double xx = x;
     114             :     xx += 0.5;
     115             :     return (int)floor(xx);
     116             : }
     117             : 
     118             : /** Returns the fractional part of the scalar. */
     119           0 : static inline SkScalar SkScalarFraction(SkScalar x) {
     120           0 :     return x - SkScalarTruncToScalar(x);
     121             : }
     122             : 
     123           0 : static inline SkScalar SkScalarClampMax(SkScalar x, SkScalar max) {
     124           0 :     x = SkTMin(x, max);
     125           0 :     x = SkTMax<SkScalar>(x, 0);
     126           0 :     return x;
     127             : }
     128             : 
     129          66 : static inline SkScalar SkScalarPin(SkScalar x, SkScalar min, SkScalar max) {
     130          66 :     return SkTPin(x, min, max);
     131             : }
     132             : 
     133             : SkScalar SkScalarSinCos(SkScalar radians, SkScalar* cosValue);
     134             : 
     135           0 : static inline SkScalar SkScalarSquare(SkScalar x) { return x * x; }
     136             : 
     137             : #define SkScalarInvert(x)       (SK_Scalar1 / (x))
     138             : #define SkScalarFastInvert(x)   (SK_Scalar1 / (x))
     139             : #define SkScalarAve(a, b)       (((a) + (b)) * SK_ScalarHalf)
     140             : #define SkScalarHalf(a)         ((a) * SK_ScalarHalf)
     141             : 
     142             : #define SkDegreesToRadians(degrees) ((degrees) * (SK_ScalarPI / 180))
     143             : #define SkRadiansToDegrees(radians) ((radians) * (180 / SK_ScalarPI))
     144             : 
     145         926 : static inline SkScalar SkMaxScalar(SkScalar a, SkScalar b) { return a > b ? a : b; }
     146         926 : static inline SkScalar SkMinScalar(SkScalar a, SkScalar b) { return a < b ? a : b; }
     147             : 
     148           0 : static inline bool SkScalarIsInt(SkScalar x) {
     149           0 :     return x == (SkScalar)(int)x;
     150             : }
     151             : 
     152             : /**
     153             :  *  Returns -1 || 0 || 1 depending on the sign of value:
     154             :  *  -1 if x < 0
     155             :  *   0 if x == 0
     156             :  *   1 if x > 0
     157             :  */
     158         619 : static inline int SkScalarSignAsInt(SkScalar x) {
     159         619 :     return x < 0 ? -1 : (x > 0);
     160             : }
     161             : 
     162             : // Scalar result version of above
     163             : static inline SkScalar SkScalarSignAsScalar(SkScalar x) {
     164             :     return x < 0 ? -SK_Scalar1 : ((x > 0) ? SK_Scalar1 : 0);
     165             : }
     166             : 
     167             : #define SK_ScalarNearlyZero         (SK_Scalar1 / (1 << 12))
     168             : 
     169        1396 : static inline bool SkScalarNearlyZero(SkScalar x,
     170             :                                       SkScalar tolerance = SK_ScalarNearlyZero) {
     171        1396 :     SkASSERT(tolerance >= 0);
     172        1396 :     return SkScalarAbs(x) <= tolerance;
     173             : }
     174             : 
     175           8 : static inline bool SkScalarNearlyEqual(SkScalar x, SkScalar y,
     176             :                                        SkScalar tolerance = SK_ScalarNearlyZero) {
     177           8 :     SkASSERT(tolerance >= 0);
     178           8 :     return SkScalarAbs(x-y) <= tolerance;
     179             : }
     180             : 
     181             : /** Linearly interpolate between A and B, based on t.
     182             :     If t is 0, return A
     183             :     If t is 1, return B
     184             :     else interpolate.
     185             :     t must be [0..SK_Scalar1]
     186             : */
     187           0 : static inline SkScalar SkScalarInterp(SkScalar A, SkScalar B, SkScalar t) {
     188           0 :     SkASSERT(t >= 0 && t <= SK_Scalar1);
     189           0 :     return A + (B - A) * t;
     190             : }
     191             : 
     192             : /** Interpolate along the function described by (keys[length], values[length])
     193             :     for the passed searchKey.  SearchKeys outside the range keys[0]-keys[Length]
     194             :     clamp to the min or max value.  This function was inspired by a desire
     195             :     to change the multiplier for thickness in fakeBold; therefore it assumes
     196             :     the number of pairs (length) will be small, and a linear search is used.
     197             :     Repeated keys are allowed for discontinuous functions (so long as keys is
     198             :     monotonically increasing), and if key is the value of a repeated scalar in
     199             :     keys, the first one will be used.  However, that may change if a binary
     200             :     search is used.
     201             : */
     202             : SkScalar SkScalarInterpFunc(SkScalar searchKey, const SkScalar keys[],
     203             :                             const SkScalar values[], int length);
     204             : 
     205             : /*
     206             :  *  Helper to compare an array of scalars.
     207             :  */
     208         539 : static inline bool SkScalarsEqual(const SkScalar a[], const SkScalar b[], int n) {
     209         539 :     SkASSERT(n >= 0);
     210        2641 :     for (int i = 0; i < n; ++i) {
     211        2116 :         if (a[i] != b[i]) {
     212          14 :             return false;
     213             :         }
     214             :     }
     215         525 :     return true;
     216             : }
     217             : 
     218             : #endif

Generated by: LCOV version 1.13