LCOV - code coverage report
Current view: top level - gfx/skia/skia/src/core - SkCubicClipper.cpp (source / functions) Hit Total Coverage
Test: output.info Lines: 0 69 0.0 %
Date: 2017-07-14 16:53:18 Functions: 0 4 0.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*
       2             :  * Copyright 2009 The Android Open Source Project
       3             :  *
       4             :  * Use of this source code is governed by a BSD-style license that can be
       5             :  * found in the LICENSE file.
       6             :  */
       7             : 
       8             : 
       9             : #include "SkCubicClipper.h"
      10             : #include "SkGeometry.h"
      11             : 
      12           0 : SkCubicClipper::SkCubicClipper() {
      13           0 :     fClip.setEmpty();
      14           0 : }
      15             : 
      16           0 : void SkCubicClipper::setClip(const SkIRect& clip) {
      17             :     // conver to scalars, since that's where we'll see the points
      18           0 :     fClip.set(clip);
      19           0 : }
      20             : 
      21             : 
      22           0 : bool SkCubicClipper::ChopMonoAtY(const SkPoint pts[4], SkScalar y, SkScalar* t) {
      23             :     SkScalar ycrv[4];
      24           0 :     ycrv[0] = pts[0].fY - y;
      25           0 :     ycrv[1] = pts[1].fY - y;
      26           0 :     ycrv[2] = pts[2].fY - y;
      27           0 :     ycrv[3] = pts[3].fY - y;
      28             : 
      29             : #ifdef NEWTON_RAPHSON    // Quadratic convergence, typically <= 3 iterations.
      30             :     // Initial guess.
      31             :     // TODO(turk): Check for zero denominator? Shouldn't happen unless the curve
      32             :     // is not only monotonic but degenerate.
      33             :     SkScalar t1 = ycrv[0] / (ycrv[0] - ycrv[3]);
      34             : 
      35             :     // Newton's iterations.
      36             :     const SkScalar tol = SK_Scalar1 / 16384;  // This leaves 2 fixed noise bits.
      37             :     SkScalar t0;
      38             :     const int maxiters = 5;
      39             :     int iters = 0;
      40             :     bool converged;
      41             :     do {
      42             :         t0 = t1;
      43             :         SkScalar y01   = SkScalarInterp(ycrv[0], ycrv[1], t0);
      44             :         SkScalar y12   = SkScalarInterp(ycrv[1], ycrv[2], t0);
      45             :         SkScalar y23   = SkScalarInterp(ycrv[2], ycrv[3], t0);
      46             :         SkScalar y012  = SkScalarInterp(y01,  y12,  t0);
      47             :         SkScalar y123  = SkScalarInterp(y12,  y23,  t0);
      48             :         SkScalar y0123 = SkScalarInterp(y012, y123, t0);
      49             :         SkScalar yder  = (y123 - y012) * 3;
      50             :         // TODO(turk): check for yder==0: horizontal.
      51             :         t1 -= y0123 / yder;
      52             :         converged = SkScalarAbs(t1 - t0) <= tol;  // NaN-safe
      53             :         ++iters;
      54             :     } while (!converged && (iters < maxiters));
      55             :     *t = t1;                  // Return the result.
      56             : 
      57             :     // The result might be valid, even if outside of the range [0, 1], but
      58             :     // we never evaluate a Bezier outside this interval, so we return false.
      59             :     if (t1 < 0 || t1 > SK_Scalar1)
      60             :         return false;         // This shouldn't happen, but check anyway.
      61             :     return converged;
      62             : 
      63             : #else  // BISECTION    // Linear convergence, typically 16 iterations.
      64             : 
      65             :     // Check that the endpoints straddle zero.
      66             :     SkScalar tNeg, tPos;    // Negative and positive function parameters.
      67           0 :     if (ycrv[0] < 0) {
      68           0 :         if (ycrv[3] < 0)
      69           0 :             return false;
      70           0 :         tNeg = 0;
      71           0 :         tPos = SK_Scalar1;
      72           0 :     } else if (ycrv[0] > 0) {
      73           0 :         if (ycrv[3] > 0)
      74           0 :             return false;
      75           0 :         tNeg = SK_Scalar1;
      76           0 :         tPos = 0;
      77             :     } else {
      78           0 :         *t = 0;
      79           0 :         return true;
      80             :     }
      81             : 
      82           0 :     const SkScalar tol = SK_Scalar1 / 65536;  // 1 for fixed, 1e-5 for float.
      83           0 :     int iters = 0;
      84           0 :     do {
      85           0 :         SkScalar tMid = (tPos + tNeg) / 2;
      86           0 :         SkScalar y01   = SkScalarInterp(ycrv[0], ycrv[1], tMid);
      87           0 :         SkScalar y12   = SkScalarInterp(ycrv[1], ycrv[2], tMid);
      88           0 :         SkScalar y23   = SkScalarInterp(ycrv[2], ycrv[3], tMid);
      89           0 :         SkScalar y012  = SkScalarInterp(y01,     y12,     tMid);
      90           0 :         SkScalar y123  = SkScalarInterp(y12,     y23,     tMid);
      91           0 :         SkScalar y0123 = SkScalarInterp(y012,    y123,    tMid);
      92           0 :         if (y0123 == 0) {
      93           0 :             *t = tMid;
      94           0 :             return true;
      95             :         }
      96           0 :         if (y0123 < 0)  tNeg = tMid;
      97           0 :         else            tPos = tMid;
      98           0 :         ++iters;
      99           0 :     } while (!(SkScalarAbs(tPos - tNeg) <= tol));   // Nan-safe
     100             : 
     101           0 :     *t = (tNeg + tPos) / 2;
     102           0 :     return true;
     103             : #endif  // BISECTION
     104             : }
     105             : 
     106             : 
     107           0 : bool SkCubicClipper::clipCubic(const SkPoint srcPts[4], SkPoint dst[4]) {
     108             :     bool reverse;
     109             : 
     110             :     // we need the data to be monotonically descending in Y
     111           0 :     if (srcPts[0].fY > srcPts[3].fY) {
     112           0 :         dst[0] = srcPts[3];
     113           0 :         dst[1] = srcPts[2];
     114           0 :         dst[2] = srcPts[1];
     115           0 :         dst[3] = srcPts[0];
     116           0 :         reverse = true;
     117             :     } else {
     118           0 :         memcpy(dst, srcPts, 4 * sizeof(SkPoint));
     119           0 :         reverse = false;
     120             :     }
     121             : 
     122             :     // are we completely above or below
     123           0 :     const SkScalar ctop = fClip.fTop;
     124           0 :     const SkScalar cbot = fClip.fBottom;
     125           0 :     if (dst[3].fY <= ctop || dst[0].fY >= cbot) {
     126           0 :         return false;
     127             :     }
     128             : 
     129             :     SkScalar t;
     130             :     SkPoint tmp[7]; // for SkChopCubicAt
     131             : 
     132             :     // are we partially above
     133           0 :     if (dst[0].fY < ctop && ChopMonoAtY(dst, ctop, &t)) {
     134           0 :         SkChopCubicAt(dst, tmp, t);
     135           0 :         dst[0] = tmp[3];
     136           0 :         dst[1] = tmp[4];
     137           0 :         dst[2] = tmp[5];
     138             :     }
     139             : 
     140             :     // are we partially below
     141           0 :     if (dst[3].fY > cbot && ChopMonoAtY(dst, cbot, &t)) {
     142           0 :         SkChopCubicAt(dst, tmp, t);
     143           0 :         dst[1] = tmp[1];
     144           0 :         dst[2] = tmp[2];
     145           0 :         dst[3] = tmp[3];
     146             :     }
     147             : 
     148           0 :     if (reverse) {
     149           0 :         SkTSwap<SkPoint>(dst[0], dst[3]);
     150           0 :         SkTSwap<SkPoint>(dst[1], dst[2]);
     151             :     }
     152           0 :     return true;
     153             : }

Generated by: LCOV version 1.13