LCOV - code coverage report
Current view: top level - gfx/skia/skia/src/core - SkEdge.cpp (source / functions) Hit Total Coverage
Test: output.info Lines: 186 229 81.2 %
Date: 2017-07-14 16:53:18 Functions: 12 14 85.7 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*
       2             :  * Copyright 2006 The Android Open Source Project
       3             :  *
       4             :  * Use of this source code is governed by a BSD-style license that can be
       5             :  * found in the LICENSE file.
       6             :  */
       7             : 
       8             : 
       9             : #include "SkEdge.h"
      10             : #include "SkFDot6.h"
      11             : #include "SkMathPriv.h"
      12             : 
      13             : /*
      14             :     In setLine, setQuadratic, setCubic, the first thing we do is to convert
      15             :     the points into FDot6. This is modulated by the shift parameter, which
      16             :     will either be 0, or something like 2 for antialiasing.
      17             : 
      18             :     In the float case, we want to turn the float into .6 by saying pt * 64,
      19             :     or pt * 256 for antialiasing. This is implemented as 1 << (shift + 6).
      20             : 
      21             :     In the fixed case, we want to turn the fixed into .6 by saying pt >> 10,
      22             :     or pt >> 8 for antialiasing. This is implemented as pt >> (10 - shift).
      23             : */
      24             : 
      25          32 : static inline SkFixed SkFDot6ToFixedDiv2(SkFDot6 value) {
      26             :     // we want to return SkFDot6ToFixed(value >> 1), but we don't want to throw
      27             :     // away data in value, so just perform a modify up-shift
      28          32 :     return SkLeftShift(value, 16 - 6 - 1);
      29             : }
      30             : 
      31             : /////////////////////////////////////////////////////////////////////////
      32             : 
      33           0 : int SkEdge::setLine(const SkPoint& p0, const SkPoint& p1, const SkIRect* clip,
      34             :                     int shift) {
      35             :     SkFDot6 x0, y0, x1, y1;
      36             : 
      37             :     {
      38             : #ifdef SK_RASTERIZE_EVEN_ROUNDING
      39           0 :         x0 = SkScalarRoundToFDot6(p0.fX, shift);
      40           0 :         y0 = SkScalarRoundToFDot6(p0.fY, shift);
      41           0 :         x1 = SkScalarRoundToFDot6(p1.fX, shift);
      42           0 :         y1 = SkScalarRoundToFDot6(p1.fY, shift);
      43             : #else
      44             :         float scale = float(1 << (shift + 6));
      45             :         x0 = int(p0.fX * scale);
      46             :         y0 = int(p0.fY * scale);
      47             :         x1 = int(p1.fX * scale);
      48             :         y1 = int(p1.fY * scale);
      49             : #endif
      50             :     }
      51             : 
      52           0 :     int winding = 1;
      53             : 
      54           0 :     if (y0 > y1) {
      55           0 :         SkTSwap(x0, x1);
      56           0 :         SkTSwap(y0, y1);
      57           0 :         winding = -1;
      58             :     }
      59             : 
      60           0 :     int top = SkFDot6Round(y0);
      61           0 :     int bot = SkFDot6Round(y1);
      62             : 
      63             :     // are we a zero-height line?
      64           0 :     if (top == bot) {
      65           0 :         return 0;
      66             :     }
      67             :     // are we completely above or below the clip?
      68           0 :     if (clip && (top >= clip->fBottom || bot <= clip->fTop)) {
      69           0 :         return 0;
      70             :     }
      71             : 
      72           0 :     SkFixed slope = SkFDot6Div(x1 - x0, y1 - y0);
      73           0 :     const SkFDot6 dy  = SkEdge_Compute_DY(top, y0);
      74             : 
      75           0 :     fX          = SkFDot6ToFixed(x0 + SkFixedMul(slope, dy));   // + SK_Fixed1/2
      76           0 :     fDX         = slope;
      77           0 :     fFirstY     = top;
      78           0 :     fLastY      = bot - 1;
      79           0 :     fCurveCount = 0;
      80           0 :     fWinding    = SkToS8(winding);
      81           0 :     fCurveShift = 0;
      82             : 
      83           0 :     if (clip) {
      84           0 :         this->chopLineWithClip(*clip);
      85             :     }
      86           0 :     return 1;
      87             : }
      88             : 
      89             : // called from a curve subclass
      90        1264 : int SkEdge::updateLine(SkFixed x0, SkFixed y0, SkFixed x1, SkFixed y1)
      91             : {
      92        1264 :     SkASSERT(fWinding == 1 || fWinding == -1);
      93        1264 :     SkASSERT(fCurveCount != 0);
      94             : //    SkASSERT(fCurveShift != 0);
      95             : 
      96        1264 :     y0 >>= 10;
      97        1264 :     y1 >>= 10;
      98             : 
      99        1264 :     SkASSERT(y0 <= y1);
     100             : 
     101        1264 :     int top = SkFDot6Round(y0);
     102        1264 :     int bot = SkFDot6Round(y1);
     103             : 
     104             : //  SkASSERT(top >= fFirstY);
     105             : 
     106             :     // are we a zero-height line?
     107        1264 :     if (top == bot)
     108          33 :         return 0;
     109             : 
     110        1231 :     x0 >>= 10;
     111        1231 :     x1 >>= 10;
     112             : 
     113        1231 :     SkFixed slope = SkFDot6Div(x1 - x0, y1 - y0);
     114        1231 :     const SkFDot6 dy  = SkEdge_Compute_DY(top, y0);
     115             : 
     116        1231 :     fX          = SkFDot6ToFixed(x0 + SkFixedMul(slope, dy));   // + SK_Fixed1/2
     117        1231 :     fDX         = slope;
     118        1231 :     fFirstY     = top;
     119        1231 :     fLastY      = bot - 1;
     120             : 
     121        1231 :     return 1;
     122             : }
     123             : 
     124           0 : void SkEdge::chopLineWithClip(const SkIRect& clip)
     125             : {
     126           0 :     int top = fFirstY;
     127             : 
     128           0 :     SkASSERT(top < clip.fBottom);
     129             : 
     130             :     // clip the line to the top
     131           0 :     if (top < clip.fTop)
     132             :     {
     133           0 :         SkASSERT(fLastY >= clip.fTop);
     134           0 :         fX += fDX * (clip.fTop - top);
     135           0 :         fFirstY = clip.fTop;
     136             :     }
     137           0 : }
     138             : 
     139             : ///////////////////////////////////////////////////////////////////////////////
     140             : 
     141             : /*  We store 1<<shift in a (signed) byte, so its maximum value is 1<<6 == 64.
     142             :     Note that this limits the number of lines we use to approximate a curve.
     143             :     If we need to increase this, we need to store fCurveCount in something
     144             :     larger than int8_t.
     145             : */
     146             : #define MAX_COEFF_SHIFT     6
     147             : 
     148         413 : static inline SkFDot6 cheap_distance(SkFDot6 dx, SkFDot6 dy)
     149             : {
     150         413 :     dx = SkAbs32(dx);
     151         413 :     dy = SkAbs32(dy);
     152             :     // return max + min/2
     153         413 :     if (dx > dy)
     154         129 :         dx += dy >> 1;
     155             :     else
     156         284 :         dx = dy + (dx >> 1);
     157         413 :     return dx;
     158             : }
     159             : 
     160         413 : static inline int diff_to_shift(SkFDot6 dx, SkFDot6 dy, int shiftAA = 2)
     161             : {
     162             :     // cheap calc of distance from center of p0-p2 to the center of the curve
     163         413 :     SkFDot6 dist = cheap_distance(dx, dy);
     164             : 
     165             :     // shift down dist (it is currently in dot6)
     166             :     // down by 3 should give us 1/8 pixel accuracy (assuming our dist is accurate...)
     167             :     // this is chosen by heuristic: make it as big as possible (to minimize segments)
     168             :     // ... but small enough so that our curves still look smooth
     169             :     // When shift > 0, we're using AA and everything is scaled up so we can
     170             :     // lower the accuracy.
     171             : #ifdef SK_SUPPORT_LEGACY_QUAD_SHIFT
     172             :     dist = (dist + (1 << 4)) >> 5;
     173             : #else
     174         413 :     dist = (dist + (1 << 4)) >> (3 + shiftAA);
     175             : #endif
     176             : 
     177             :     // each subdivision (shift value) cuts this dist (error) by 1/4
     178         413 :     return (32 - SkCLZ(dist)) >> 1;
     179             : }
     180             : 
     181          16 : bool SkQuadraticEdge::setQuadraticWithoutUpdate(const SkPoint pts[3], int shift) {
     182             :     SkFDot6 x0, y0, x1, y1, x2, y2;
     183             : 
     184             :     {
     185             : #ifdef SK_RASTERIZE_EVEN_ROUNDING
     186          16 :         x0 = SkScalarRoundToFDot6(pts[0].fX, shift);
     187          16 :         y0 = SkScalarRoundToFDot6(pts[0].fY, shift);
     188          16 :         x1 = SkScalarRoundToFDot6(pts[1].fX, shift);
     189          16 :         y1 = SkScalarRoundToFDot6(pts[1].fY, shift);
     190          16 :         x2 = SkScalarRoundToFDot6(pts[2].fX, shift);
     191          16 :         y2 = SkScalarRoundToFDot6(pts[2].fY, shift);
     192             : #else
     193             :         float scale = float(1 << (shift + 6));
     194             :         x0 = int(pts[0].fX * scale);
     195             :         y0 = int(pts[0].fY * scale);
     196             :         x1 = int(pts[1].fX * scale);
     197             :         y1 = int(pts[1].fY * scale);
     198             :         x2 = int(pts[2].fX * scale);
     199             :         y2 = int(pts[2].fY * scale);
     200             : #endif
     201             :     }
     202             : 
     203          16 :     int winding = 1;
     204          16 :     if (y0 > y2)
     205             :     {
     206           8 :         SkTSwap(x0, x2);
     207           8 :         SkTSwap(y0, y2);
     208           8 :         winding = -1;
     209             :     }
     210          16 :     SkASSERT(y0 <= y1 && y1 <= y2);
     211             : 
     212          16 :     int top = SkFDot6Round(y0);
     213          16 :     int bot = SkFDot6Round(y2);
     214             : 
     215             :     // are we a zero-height quad (line)?
     216          16 :     if (top == bot)
     217           0 :         return 0;
     218             : 
     219             :     // compute number of steps needed (1 << shift)
     220             :     {
     221          16 :         SkFDot6 dx = (SkLeftShift(x1, 1) - x0 - x2) >> 2;
     222          16 :         SkFDot6 dy = (SkLeftShift(y1, 1) - y0 - y2) >> 2;
     223             :         // This is a little confusing:
     224             :         // before this line, shift is the scale up factor for AA;
     225             :         // after this line, shift is the fCurveShift.
     226          16 :         shift = diff_to_shift(dx, dy, shift);
     227          16 :         SkASSERT(shift >= 0);
     228             :     }
     229             :     // need at least 1 subdivision for our bias trick
     230          16 :     if (shift == 0) {
     231           0 :         shift = 1;
     232          16 :     } else if (shift > MAX_COEFF_SHIFT) {
     233           0 :         shift = MAX_COEFF_SHIFT;
     234             :     }
     235             : 
     236          16 :     fWinding    = SkToS8(winding);
     237             :     //fCubicDShift only set for cubics
     238          16 :     fCurveCount = SkToS8(1 << shift);
     239             : 
     240             :     /*
     241             :      *  We want to reformulate into polynomial form, to make it clear how we
     242             :      *  should forward-difference.
     243             :      *
     244             :      *  p0 (1 - t)^2 + p1 t(1 - t) + p2 t^2 ==> At^2 + Bt + C
     245             :      *
     246             :      *  A = p0 - 2p1 + p2
     247             :      *  B = 2(p1 - p0)
     248             :      *  C = p0
     249             :      *
     250             :      *  Our caller must have constrained our inputs (p0..p2) to all fit into
     251             :      *  16.16. However, as seen above, we sometimes compute values that can be
     252             :      *  larger (e.g. B = 2*(p1 - p0)). To guard against overflow, we will store
     253             :      *  A and B at 1/2 of their actual value, and just apply a 2x scale during
     254             :      *  application in updateQuadratic(). Hence we store (shift - 1) in
     255             :      *  fCurveShift.
     256             :      */
     257             : 
     258          16 :     fCurveShift = SkToU8(shift - 1);
     259             : 
     260          16 :     SkFixed A = SkFDot6ToFixedDiv2(x0 - x1 - x1 + x2);  // 1/2 the real value
     261          16 :     SkFixed B = SkFDot6ToFixed(x1 - x0);                // 1/2 the real value
     262             : 
     263          16 :     fQx     = SkFDot6ToFixed(x0);
     264          16 :     fQDx    = B + (A >> shift);     // biased by shift
     265          16 :     fQDDx   = A >> (shift - 1);     // biased by shift
     266             : 
     267          16 :     A = SkFDot6ToFixedDiv2(y0 - y1 - y1 + y2);  // 1/2 the real value
     268          16 :     B = SkFDot6ToFixed(y1 - y0);                // 1/2 the real value
     269             : 
     270          16 :     fQy     = SkFDot6ToFixed(y0);
     271          16 :     fQDy    = B + (A >> shift);     // biased by shift
     272          16 :     fQDDy   = A >> (shift - 1);     // biased by shift
     273             : 
     274          16 :     fQLastX = SkFDot6ToFixed(x2);
     275          16 :     fQLastY = SkFDot6ToFixed(y2);
     276             : 
     277          16 :     return true;
     278             : }
     279             : 
     280          16 : int SkQuadraticEdge::setQuadratic(const SkPoint pts[3], int shift) {
     281          16 :     if (!setQuadraticWithoutUpdate(pts, shift)) {
     282           0 :         return 0;
     283             :     }
     284          16 :     return this->updateQuadratic();
     285             : }
     286             : 
     287          48 : int SkQuadraticEdge::updateQuadratic()
     288             : {
     289             :     int     success;
     290          48 :     int     count = fCurveCount;
     291          48 :     SkFixed oldx = fQx;
     292          48 :     SkFixed oldy = fQy;
     293          48 :     SkFixed dx = fQDx;
     294          48 :     SkFixed dy = fQDy;
     295             :     SkFixed newx, newy;
     296          48 :     int     shift = fCurveShift;
     297             : 
     298          48 :     SkASSERT(count > 0);
     299             : 
     300           0 :     do {
     301          48 :         if (--count > 0)
     302             :         {
     303          32 :             newx    = oldx + (dx >> shift);
     304          32 :             dx    += fQDDx;
     305          32 :             newy    = oldy + (dy >> shift);
     306          32 :             dy    += fQDDy;
     307             :         }
     308             :         else    // last segment
     309             :         {
     310          16 :             newx    = fQLastX;
     311          16 :             newy    = fQLastY;
     312             :         }
     313          48 :         success = this->updateLine(oldx, oldy, newx, newy);
     314          48 :         oldx = newx;
     315          48 :         oldy = newy;
     316          48 :     } while (count > 0 && !success);
     317             : 
     318          48 :     fQx         = newx;
     319          48 :     fQy         = newy;
     320          48 :     fQDx        = dx;
     321          48 :     fQDy        = dy;
     322          48 :     fCurveCount = SkToS8(count);
     323          48 :     return success;
     324             : }
     325             : 
     326             : /////////////////////////////////////////////////////////////////////////
     327             : 
     328        2382 : static inline int SkFDot6UpShift(SkFDot6 x, int upShift) {
     329        2382 :     SkASSERT((SkLeftShift(x, upShift) >> upShift) == x);
     330        2382 :     return SkLeftShift(x, upShift);
     331             : }
     332             : 
     333             : /*  f(1/3) = (8a + 12b + 6c + d) / 27
     334             :     f(2/3) = (a + 6b + 12c + 8d) / 27
     335             : 
     336             :     f(1/3)-b = (8a - 15b + 6c + d) / 27
     337             :     f(2/3)-c = (a + 6b - 15c + 8d) / 27
     338             : 
     339             :     use 16/512 to approximate 1/27
     340             : */
     341         794 : static SkFDot6 cubic_delta_from_line(SkFDot6 a, SkFDot6 b, SkFDot6 c, SkFDot6 d)
     342             : {
     343             :     // since our parameters may be negative, we don't use << to avoid ASAN warnings
     344         794 :     SkFDot6 oneThird = (a*8 - b*15 + 6*c + d) * 19 >> 9;
     345         794 :     SkFDot6 twoThird = (a + 6*b - c*15 + d*8) * 19 >> 9;
     346             : 
     347         794 :     return SkMax32(SkAbs32(oneThird), SkAbs32(twoThird));
     348             : }
     349             : 
     350         408 : bool SkCubicEdge::setCubicWithoutUpdate(const SkPoint pts[4], int shift) {
     351             :     SkFDot6 x0, y0, x1, y1, x2, y2, x3, y3;
     352             : 
     353             :     {
     354             : #ifdef SK_RASTERIZE_EVEN_ROUNDING
     355         408 :         x0 = SkScalarRoundToFDot6(pts[0].fX, shift);
     356         408 :         y0 = SkScalarRoundToFDot6(pts[0].fY, shift);
     357         408 :         x1 = SkScalarRoundToFDot6(pts[1].fX, shift);
     358         408 :         y1 = SkScalarRoundToFDot6(pts[1].fY, shift);
     359         408 :         x2 = SkScalarRoundToFDot6(pts[2].fX, shift);
     360         408 :         y2 = SkScalarRoundToFDot6(pts[2].fY, shift);
     361         408 :         x3 = SkScalarRoundToFDot6(pts[3].fX, shift);
     362         408 :         y3 = SkScalarRoundToFDot6(pts[3].fY, shift);
     363             : #else
     364             :         float scale = float(1 << (shift + 6));
     365             :         x0 = int(pts[0].fX * scale);
     366             :         y0 = int(pts[0].fY * scale);
     367             :         x1 = int(pts[1].fX * scale);
     368             :         y1 = int(pts[1].fY * scale);
     369             :         x2 = int(pts[2].fX * scale);
     370             :         y2 = int(pts[2].fY * scale);
     371             :         x3 = int(pts[3].fX * scale);
     372             :         y3 = int(pts[3].fY * scale);
     373             : #endif
     374             :     }
     375             : 
     376         408 :     int winding = 1;
     377         408 :     if (y0 > y3)
     378             :     {
     379         199 :         SkTSwap(x0, x3);
     380         199 :         SkTSwap(x1, x2);
     381         199 :         SkTSwap(y0, y3);
     382         199 :         SkTSwap(y1, y2);
     383         199 :         winding = -1;
     384             :     }
     385             : 
     386         408 :     int top = SkFDot6Round(y0);
     387         408 :     int bot = SkFDot6Round(y3);
     388             : 
     389             :     // are we a zero-height cubic (line)?
     390         408 :     if (top == bot)
     391          11 :         return 0;
     392             : 
     393             :     // compute number of steps needed (1 << shift)
     394             :     {
     395             :         // Can't use (center of curve - center of baseline), since center-of-curve
     396             :         // need not be the max delta from the baseline (it could even be coincident)
     397             :         // so we try just looking at the two off-curve points
     398         397 :         SkFDot6 dx = cubic_delta_from_line(x0, x1, x2, x3);
     399         397 :         SkFDot6 dy = cubic_delta_from_line(y0, y1, y2, y3);
     400             :         // add 1 (by observation)
     401         397 :         shift = diff_to_shift(dx, dy) + 1;
     402             :     }
     403             :     // need at least 1 subdivision for our bias trick
     404         397 :     SkASSERT(shift > 0);
     405         397 :     if (shift > MAX_COEFF_SHIFT) {
     406           0 :         shift = MAX_COEFF_SHIFT;
     407             :     }
     408             : 
     409             :     /*  Since our in coming data is initially shifted down by 10 (or 8 in
     410             :         antialias). That means the most we can shift up is 8. However, we
     411             :         compute coefficients with a 3*, so the safest upshift is really 6
     412             :     */
     413         397 :     int upShift = 6;    // largest safe value
     414         397 :     int downShift = shift + upShift - 10;
     415         397 :     if (downShift < 0) {
     416         339 :         downShift = 0;
     417         339 :         upShift = 10 - shift;
     418             :     }
     419             : 
     420         397 :     fWinding    = SkToS8(winding);
     421         397 :     fCurveCount = SkToS8(SkLeftShift(-1, shift));
     422         397 :     fCurveShift = SkToU8(shift);
     423         397 :     fCubicDShift = SkToU8(downShift);
     424             : 
     425         397 :     SkFixed B = SkFDot6UpShift(3 * (x1 - x0), upShift);
     426         397 :     SkFixed C = SkFDot6UpShift(3 * (x0 - x1 - x1 + x2), upShift);
     427         397 :     SkFixed D = SkFDot6UpShift(x3 + 3 * (x1 - x2) - x0, upShift);
     428             : 
     429         397 :     fCx     = SkFDot6ToFixed(x0);
     430         397 :     fCDx    = B + (C >> shift) + (D >> 2*shift);    // biased by shift
     431         397 :     fCDDx   = 2*C + (3*D >> (shift - 1));           // biased by 2*shift
     432         397 :     fCDDDx  = 3*D >> (shift - 1);                   // biased by 2*shift
     433             : 
     434         397 :     B = SkFDot6UpShift(3 * (y1 - y0), upShift);
     435         397 :     C = SkFDot6UpShift(3 * (y0 - y1 - y1 + y2), upShift);
     436         397 :     D = SkFDot6UpShift(y3 + 3 * (y1 - y2) - y0, upShift);
     437             : 
     438         397 :     fCy     = SkFDot6ToFixed(y0);
     439         397 :     fCDy    = B + (C >> shift) + (D >> 2*shift);    // biased by shift
     440         397 :     fCDDy   = 2*C + (3*D >> (shift - 1));           // biased by 2*shift
     441         397 :     fCDDDy  = 3*D >> (shift - 1);                   // biased by 2*shift
     442             : 
     443         397 :     fCLastX = SkFDot6ToFixed(x3);
     444         397 :     fCLastY = SkFDot6ToFixed(y3);
     445             : 
     446         397 :     return true;
     447             : }
     448             : 
     449         222 : int SkCubicEdge::setCubic(const SkPoint pts[4], int shift) {
     450         222 :     if (!this->setCubicWithoutUpdate(pts, shift)) {
     451          11 :         return 0;
     452             :     }
     453         211 :     return this->updateCubic();
     454             : }
     455             : 
     456        1201 : int SkCubicEdge::updateCubic()
     457             : {
     458             :     int     success;
     459        1201 :     int     count = fCurveCount;
     460        1201 :     SkFixed oldx = fCx;
     461        1201 :     SkFixed oldy = fCy;
     462             :     SkFixed newx, newy;
     463        1201 :     const int ddshift = fCurveShift;
     464        1201 :     const int dshift = fCubicDShift;
     465             : 
     466        1201 :     SkASSERT(count < 0);
     467             : 
     468          15 :     do {
     469        1216 :         if (++count < 0)
     470             :         {
     471        1005 :             newx    = oldx + (fCDx >> dshift);
     472        1005 :             fCDx    += fCDDx >> ddshift;
     473        1005 :             fCDDx   += fCDDDx;
     474             : 
     475        1005 :             newy    = oldy + (fCDy >> dshift);
     476        1005 :             fCDy    += fCDDy >> ddshift;
     477        1005 :             fCDDy   += fCDDDy;
     478             :         }
     479             :         else    // last segment
     480             :         {
     481             :         //  SkDebugf("LastX err=%d, LastY err=%d\n", (oldx + (fCDx >> shift) - fLastX), (oldy + (fCDy >> shift) - fLastY));
     482         211 :             newx    = fCLastX;
     483         211 :             newy    = fCLastY;
     484             :         }
     485             : 
     486             :         // we want to say SkASSERT(oldy <= newy), but our finite fixedpoint
     487             :         // doesn't always achieve that, so we have to explicitly pin it here.
     488        1216 :         if (newy < oldy) {
     489           0 :             newy = oldy;
     490             :         }
     491             : 
     492        1216 :         success = this->updateLine(oldx, oldy, newx, newy);
     493        1216 :         oldx = newx;
     494        1216 :         oldy = newy;
     495        1216 :     } while (count < 0 && !success);
     496             : 
     497        1201 :     fCx         = newx;
     498        1201 :     fCy         = newy;
     499        1201 :     fCurveCount = SkToS8(count);
     500        1201 :     return success;
     501             : }

Generated by: LCOV version 1.13