LCOV - code coverage report
Current view: top level - gfx/skia/skia/src/core - SkLatticeIter.cpp (source / functions) Hit Total Coverage
Test: output.info Lines: 0 164 0.0 %
Date: 2017-07-14 16:53:18 Functions: 0 9 0.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*
       2             :  * Copyright 2015 Google Inc.
       3             :  *
       4             :  * Use of this source code is governed by a BSD-style license that can be
       5             :  * found in the LICENSE file.
       6             :  */
       7             : 
       8             : #include "SkLatticeIter.h"
       9             : #include "SkRect.h"
      10             : 
      11             : /**
      12             :  *  Divs must be in increasing order with no duplicates.
      13             :  */
      14           0 : static bool valid_divs(const int* divs, int count, int start, int end) {
      15           0 :     int prev = start - 1;
      16           0 :     for (int i = 0; i < count; i++) {
      17           0 :         if (prev >= divs[i] || divs[i] >= end) {
      18           0 :             return false;
      19             :         }
      20             :     }
      21             : 
      22           0 :     return true;
      23             : }
      24             : 
      25           0 : bool SkLatticeIter::Valid(int width, int height, const SkCanvas::Lattice& lattice) {
      26           0 :     SkIRect totalBounds = SkIRect::MakeWH(width, height);
      27           0 :     SkASSERT(lattice.fBounds);
      28           0 :     const SkIRect latticeBounds = *lattice.fBounds;
      29           0 :     if (!totalBounds.contains(latticeBounds)) {
      30           0 :         return false;
      31             :     }
      32             : 
      33           0 :     bool zeroXDivs = lattice.fXCount <= 0 || (1 == lattice.fXCount &&
      34           0 :                                               latticeBounds.fLeft == lattice.fXDivs[0]);
      35           0 :     bool zeroYDivs = lattice.fYCount <= 0 || (1 == lattice.fYCount &&
      36           0 :                                               latticeBounds.fTop == lattice.fYDivs[0]);
      37           0 :     if (zeroXDivs && zeroYDivs) {
      38           0 :         return false;
      39             :     }
      40             : 
      41           0 :     return valid_divs(lattice.fXDivs, lattice.fXCount, latticeBounds.fLeft, latticeBounds.fRight)
      42           0 :         && valid_divs(lattice.fYDivs, lattice.fYCount, latticeBounds.fTop, latticeBounds.fBottom);
      43             : }
      44             : 
      45             : /**
      46             :  *  Count the number of pixels that are in "scalable" patches.
      47             :  */
      48           0 : static int count_scalable_pixels(const int32_t* divs, int numDivs, bool firstIsScalable,
      49             :                                  int start, int end) {
      50           0 :     if (0 == numDivs) {
      51           0 :         return firstIsScalable ? end - start : 0;
      52             :     }
      53             : 
      54             :     int i;
      55             :     int count;
      56           0 :     if (firstIsScalable) {
      57           0 :         count = divs[0] - start;
      58           0 :         i = 1;
      59             :     } else {
      60           0 :         count = 0;
      61           0 :         i = 0;
      62             :     }
      63             : 
      64           0 :     for (; i < numDivs; i += 2) {
      65             :         // Alternatively, we could use |top| and |bottom| as variable names, instead of
      66             :         // |left| and |right|.
      67           0 :         int left = divs[i];
      68           0 :         int right = (i + 1 < numDivs) ? divs[i + 1] : end;
      69           0 :         count += right - left;
      70             :     }
      71             : 
      72           0 :     return count;
      73             : }
      74             : 
      75             : /**
      76             :  *  Set points for the src and dst rects on subsequent draw calls.
      77             :  */
      78           0 : static void set_points(float* dst, float* src, const int* divs, int divCount, int srcFixed,
      79             :                        int srcScalable, float srcStart, float srcEnd, float dstStart, float dstEnd,
      80             :                        bool isScalable) {
      81             : 
      82           0 :     float dstLen = dstEnd - dstStart;
      83             :     float scale;
      84           0 :     if (srcFixed <= dstLen) {
      85             :         // This is the "normal" case, where we scale the "scalable" patches and leave
      86             :         // the other patches fixed.
      87           0 :         scale = (dstLen - ((float) srcFixed)) / ((float) srcScalable);
      88             :     } else {
      89             :         // In this case, we eliminate the "scalable" patches and scale the "fixed" patches.
      90           0 :         scale = dstLen / ((float) srcFixed);
      91             :     }
      92             : 
      93           0 :     src[0] = srcStart;
      94           0 :     dst[0] = dstStart;
      95           0 :     for (int i = 0; i < divCount; i++) {
      96           0 :         src[i + 1] = (float) (divs[i]);
      97           0 :         float srcDelta = src[i + 1] - src[i];
      98             :         float dstDelta;
      99           0 :         if (srcFixed <= dstLen) {
     100           0 :             dstDelta = isScalable ? scale * srcDelta : srcDelta;
     101             :         } else {
     102           0 :             dstDelta = isScalable ? 0.0f : scale * srcDelta;
     103             :         }
     104           0 :         dst[i + 1] = dst[i] + dstDelta;
     105             : 
     106             :         // Alternate between "scalable" and "fixed" patches.
     107           0 :         isScalable = !isScalable;
     108             :     }
     109             : 
     110           0 :     src[divCount + 1] = srcEnd;
     111           0 :     dst[divCount + 1] = dstEnd;
     112           0 : }
     113             : 
     114           0 : SkLatticeIter::SkLatticeIter(const SkCanvas::Lattice& lattice, const SkRect& dst) {
     115           0 :     const int* xDivs = lattice.fXDivs;
     116           0 :     const int origXCount = lattice.fXCount;
     117           0 :     const int* yDivs = lattice.fYDivs;
     118           0 :     const int origYCount = lattice.fYCount;
     119           0 :     SkASSERT(lattice.fBounds);
     120           0 :     const SkIRect src = *lattice.fBounds;
     121             : 
     122             :     // In the x-dimension, the first rectangle always starts at x = 0 and is "scalable".
     123             :     // If xDiv[0] is 0, it indicates that the first rectangle is degenerate, so the
     124             :     // first real rectangle "scalable" in the x-direction.
     125             :     //
     126             :     // The same interpretation applies to the y-dimension.
     127             :     //
     128             :     // As we move left to right across the image, alternating patches will be "fixed" or
     129             :     // "scalable" in the x-direction.  Similarly, as move top to bottom, alternating
     130             :     // patches will be "fixed" or "scalable" in the y-direction.
     131           0 :     int xCount = origXCount;
     132           0 :     int yCount = origYCount;
     133           0 :     bool xIsScalable = (xCount > 0 && src.fLeft == xDivs[0]);
     134           0 :     if (xIsScalable) {
     135             :         // Once we've decided that the first patch is "scalable", we don't need the
     136             :         // xDiv.  It is always implied that we start at the edge of the bounds.
     137           0 :         xDivs++;
     138           0 :         xCount--;
     139             :     }
     140           0 :     bool yIsScalable = (yCount > 0 && src.fTop == yDivs[0]);
     141           0 :     if (yIsScalable) {
     142             :         // Once we've decided that the first patch is "scalable", we don't need the
     143             :         // yDiv.  It is always implied that we start at the edge of the bounds.
     144           0 :         yDivs++;
     145           0 :         yCount--;
     146             :     }
     147             : 
     148             :     // Count "scalable" and "fixed" pixels in each dimension.
     149           0 :     int xCountScalable = count_scalable_pixels(xDivs, xCount, xIsScalable, src.fLeft, src.fRight);
     150           0 :     int xCountFixed = src.width() - xCountScalable;
     151           0 :     int yCountScalable = count_scalable_pixels(yDivs, yCount, yIsScalable, src.fTop, src.fBottom);
     152           0 :     int yCountFixed = src.height() - yCountScalable;
     153             : 
     154           0 :     fSrcX.reset(xCount + 2);
     155           0 :     fDstX.reset(xCount + 2);
     156           0 :     set_points(fDstX.begin(), fSrcX.begin(), xDivs, xCount, xCountFixed, xCountScalable,
     157           0 :                src.fLeft, src.fRight, dst.fLeft, dst.fRight, xIsScalable);
     158             : 
     159           0 :     fSrcY.reset(yCount + 2);
     160           0 :     fDstY.reset(yCount + 2);
     161           0 :     set_points(fDstY.begin(), fSrcY.begin(), yDivs, yCount, yCountFixed, yCountScalable,
     162           0 :                src.fTop, src.fBottom, dst.fTop, dst.fBottom, yIsScalable);
     163             : 
     164           0 :     fCurrX = fCurrY = 0;
     165           0 :     fNumRectsInLattice = (xCount + 1) * (yCount + 1);
     166           0 :     fNumRectsToDraw = fNumRectsInLattice;
     167             : 
     168           0 :     if (lattice.fFlags) {
     169           0 :         fFlags.push_back_n(fNumRectsInLattice);
     170             : 
     171           0 :         const SkCanvas::Lattice::Flags* flags = lattice.fFlags;
     172             : 
     173           0 :         bool hasPadRow = (yCount != origYCount);
     174           0 :         bool hasPadCol = (xCount != origXCount);
     175           0 :         if (hasPadRow) {
     176             :             // The first row of rects are all empty, skip the first row of flags.
     177           0 :             flags += origXCount + 1;
     178             :         }
     179             : 
     180           0 :         int i = 0;
     181           0 :         for (int y = 0; y < yCount + 1; y++) {
     182           0 :             for (int x = 0; x < origXCount + 1; x++) {
     183           0 :                 if (0 == x && hasPadCol) {
     184             :                     // The first column of rects are all empty.  Skip a rect.
     185           0 :                     flags++;
     186           0 :                     continue;
     187             :                 }
     188             : 
     189           0 :                 fFlags[i] = *flags;
     190           0 :                 flags++;
     191           0 :                 i++;
     192             :             }
     193             :         }
     194             : 
     195           0 :         for (int j = 0; j < fFlags.count(); j++) {
     196           0 :             if (SkCanvas::Lattice::kTransparent_Flags == fFlags[j]) {
     197           0 :                 fNumRectsToDraw--;
     198             :             }
     199             :         }
     200             :     }
     201           0 : }
     202             : 
     203           0 : bool SkLatticeIter::Valid(int width, int height, const SkIRect& center) {
     204           0 :     return !center.isEmpty() && SkIRect::MakeWH(width, height).contains(center);
     205             : }
     206             : 
     207           0 : SkLatticeIter::SkLatticeIter(int w, int h, const SkIRect& c, const SkRect& dst) {
     208           0 :     SkASSERT(SkIRect::MakeWH(w, h).contains(c));
     209             : 
     210           0 :     fSrcX.reset(4);
     211           0 :     fSrcY.reset(4);
     212           0 :     fDstX.reset(4);
     213           0 :     fDstY.reset(4);
     214             : 
     215           0 :     fSrcX[0] = 0;
     216           0 :     fSrcX[1] = SkIntToScalar(c.fLeft);
     217           0 :     fSrcX[2] = SkIntToScalar(c.fRight);
     218           0 :     fSrcX[3] = SkIntToScalar(w);
     219             : 
     220           0 :     fSrcY[0] = 0;
     221           0 :     fSrcY[1] = SkIntToScalar(c.fTop);
     222           0 :     fSrcY[2] = SkIntToScalar(c.fBottom);
     223           0 :     fSrcY[3] = SkIntToScalar(h);
     224             : 
     225           0 :     fDstX[0] = dst.fLeft;
     226           0 :     fDstX[1] = dst.fLeft + SkIntToScalar(c.fLeft);
     227           0 :     fDstX[2] = dst.fRight - SkIntToScalar(w - c.fRight);
     228           0 :     fDstX[3] = dst.fRight;
     229             : 
     230           0 :     fDstY[0] = dst.fTop;
     231           0 :     fDstY[1] = dst.fTop + SkIntToScalar(c.fTop);
     232           0 :     fDstY[2] = dst.fBottom - SkIntToScalar(h - c.fBottom);
     233           0 :     fDstY[3] = dst.fBottom;
     234             : 
     235           0 :     if (fDstX[1] > fDstX[2]) {
     236           0 :         fDstX[1] = fDstX[0] + (fDstX[3] - fDstX[0]) * c.fLeft / (w - c.width());
     237           0 :         fDstX[2] = fDstX[1];
     238             :     }
     239             : 
     240           0 :     if (fDstY[1] > fDstY[2]) {
     241           0 :         fDstY[1] = fDstY[0] + (fDstY[3] - fDstY[0]) * c.fTop / (h - c.height());
     242           0 :         fDstY[2] = fDstY[1];
     243             :     }
     244             : 
     245           0 :     fCurrX = fCurrY = 0;
     246           0 :     fNumRectsInLattice = 9;
     247           0 :     fNumRectsToDraw = 9;
     248           0 : }
     249             : 
     250           0 : bool SkLatticeIter::next(SkRect* src, SkRect* dst) {
     251           0 :     int currRect = fCurrX + fCurrY * (fSrcX.count() - 1);
     252           0 :     if (currRect == fNumRectsInLattice) {
     253           0 :         return false;
     254             :     }
     255             : 
     256           0 :     const int x = fCurrX;
     257           0 :     const int y = fCurrY;
     258           0 :     SkASSERT(x >= 0 && x < fSrcX.count() - 1);
     259           0 :     SkASSERT(y >= 0 && y < fSrcY.count() - 1);
     260             : 
     261           0 :     if (fSrcX.count() - 1 == ++fCurrX) {
     262           0 :         fCurrX = 0;
     263           0 :         fCurrY += 1;
     264             :     }
     265             : 
     266           0 :     if (fFlags.count() > 0 && SkToBool(SkCanvas::Lattice::kTransparent_Flags & fFlags[currRect])) {
     267           0 :         return this->next(src, dst);
     268             :     }
     269             : 
     270           0 :     src->set(fSrcX[x], fSrcY[y], fSrcX[x + 1], fSrcY[y + 1]);
     271           0 :     dst->set(fDstX[x], fDstY[y], fDstX[x + 1], fDstY[y + 1]);
     272           0 :     return true;
     273             : }
     274             : 
     275           0 : void SkLatticeIter::mapDstScaleTranslate(const SkMatrix& matrix) {
     276           0 :     SkASSERT(matrix.isScaleTranslate());
     277           0 :     SkScalar tx = matrix.getTranslateX();
     278           0 :     SkScalar sx = matrix.getScaleX();
     279           0 :     for (int i = 0; i < fDstX.count(); i++) {
     280           0 :         fDstX[i] = fDstX[i] * sx + tx;
     281             :     }
     282             : 
     283           0 :     SkScalar ty = matrix.getTranslateY();
     284           0 :     SkScalar sy = matrix.getScaleY();
     285           0 :     for (int i = 0; i < fDstY.count(); i++) {
     286           0 :         fDstY[i] = fDstY[i] * sy + ty;
     287             :     }
     288           0 : }

Generated by: LCOV version 1.13