LCOV - code coverage report
Current view: top level - gfx/skia/skia/src/core - SkLinearBitmapPipeline_tile.h (source / functions) Hit Total Coverage
Test: output.info Lines: 0 175 0.0 %
Date: 2017-07-14 16:53:18 Functions: 0 23 0.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*
       2             :  * Copyright 2016 Google Inc.
       3             :  *
       4             :  * Use of this source code is governed by a BSD-style license that can be
       5             :  * found in the LICENSE file.
       6             :  */
       7             : 
       8             : #ifndef SkLinearBitmapPipeline_tile_DEFINED
       9             : #define SkLinearBitmapPipeline_tile_DEFINED
      10             : 
      11             : #include "SkLinearBitmapPipeline_core.h"
      12             : #include "SkPM4f.h"
      13             : #include <algorithm>
      14             : #include <cmath>
      15             : #include <limits>
      16             : 
      17             : namespace {
      18             : 
      19           0 : void assertTiled(const Sk4s& vs, SkScalar vMax) {
      20           0 :     SkASSERT(0 <= vs[0] && vs[0] < vMax);
      21           0 :     SkASSERT(0 <= vs[1] && vs[1] < vMax);
      22           0 :     SkASSERT(0 <= vs[2] && vs[2] < vMax);
      23           0 :     SkASSERT(0 <= vs[3] && vs[3] < vMax);
      24           0 : }
      25             : 
      26             : /*
      27             :  * Clamp in the X direction.
      28             :  * Observations:
      29             :  *   * sample pointer border - if the sample point is <= 0.5 or >= Max - 0.5 then the pixel
      30             :  *     value should be a border color. For this case, create the span using clampToSinglePixel.
      31             :  */
      32             : class XClampStrategy {
      33             : public:
      34           0 :     XClampStrategy(int32_t max)
      35           0 :         : fXMaxPixel{SkScalar(max - SK_ScalarHalf)}
      36           0 :         , fXMax{SkScalar(max)} { }
      37             : 
      38           0 :     void tileXPoints(Sk4s* xs) {
      39           0 :         *xs = Sk4s::Min(Sk4s::Max(*xs, SK_ScalarHalf), fXMaxPixel);
      40           0 :         assertTiled(*xs, fXMax);
      41           0 :     }
      42             : 
      43             :     template<typename Next>
      44           0 :     bool maybeProcessSpan(Span originalSpan, Next* next) {
      45           0 :         SkASSERT(!originalSpan.isEmpty());
      46             :         SkPoint start; SkScalar length; int count;
      47           0 :         std::tie(start, length, count) = originalSpan;
      48           0 :         SkScalar x = X(start);
      49           0 :         SkScalar y = Y(start);
      50           0 :         Span span{{x, y}, length, count};
      51             : 
      52           0 :         if (span.completelyWithin(0.0f, fXMax)) {
      53           0 :             next->pointSpan(span);
      54           0 :             return true;
      55             :         }
      56           0 :         if (1 == count || 0.0f == length) {
      57           0 :             return false;
      58             :         }
      59             : 
      60           0 :         SkScalar dx = length / (count - 1);
      61             : 
      62             :         //    A                 B     C
      63             :         // +-------+-------+-------++-------+-------+-------+     +-------+-------++------
      64             :         // |  *---*|---*---|*---*--||-*---*-|---*---|*---...|     |--*---*|---*---||*---*....
      65             :         // |       |       |       ||       |       |       | ... |       |       ||
      66             :         // |       |       |       ||       |       |       |     |       |       ||
      67             :         // +-------+-------+-------++-------+-------+-------+     +-------+-------++------
      68             :         //                         ^                                              ^
      69             :         //                         | xMin                                  xMax-1 | xMax
      70             :         //
      71             :         //     *---*---*---... - track of samples. * = sample
      72             :         //
      73             :         //     +-+                                 ||
      74             :         //     | |  - pixels in source space.      || - tile border.
      75             :         //     +-+                                 ||
      76             :         //
      77             :         // The length from A to B is the length in source space or 4 * dx or (count - 1) * dx
      78             :         // where dx is the distance between samples. There are 5 destination pixels
      79             :         // corresponding to 5 samples specified in the A, B span. The distance from A to the next
      80             :         // span starting at C is 5 * dx, so count * dx.
      81             :         // Remember, count is the number of pixels needed for the destination and the number of
      82             :         // samples.
      83             :         // Overall Strategy:
      84             :         // * Under - for portions of the span < xMin, take the color at pixel {xMin, y} and use it
      85             :         //   to fill in the 5 pixel sampled from A to B.
      86             :         // * Middle - for the portion of the span between xMin and xMax sample normally.
      87             :         // * Over - for the portion of the span > xMax, take the color at pixel {xMax-1, y} and
      88             :         //   use it to fill in the rest of the destination pixels.
      89           0 :         if (dx >= 0) {
      90           0 :             Span leftClamped = span.breakAt(SK_ScalarHalf, dx);
      91           0 :             if (!leftClamped.isEmpty()) {
      92           0 :                 leftClamped.clampToSinglePixel({SK_ScalarHalf, y});
      93           0 :                 next->pointSpan(leftClamped);
      94             :             }
      95           0 :             Span center = span.breakAt(fXMax, dx);
      96           0 :             if (!center.isEmpty()) {
      97           0 :                 next->pointSpan(center);
      98             :             }
      99           0 :             if (!span.isEmpty()) {
     100           0 :                 span.clampToSinglePixel({fXMaxPixel, y});
     101           0 :                 next->pointSpan(span);
     102             :             }
     103             :         } else {
     104           0 :             Span rightClamped = span.breakAt(fXMax, dx);
     105           0 :             if (!rightClamped.isEmpty()) {
     106           0 :                 rightClamped.clampToSinglePixel({fXMaxPixel, y});
     107           0 :                 next->pointSpan(rightClamped);
     108             :             }
     109           0 :             Span center = span.breakAt(SK_ScalarHalf, dx);
     110           0 :             if (!center.isEmpty()) {
     111           0 :                 next->pointSpan(center);
     112             :             }
     113           0 :             if (!span.isEmpty()) {
     114           0 :                 span.clampToSinglePixel({SK_ScalarHalf, y});
     115           0 :                 next->pointSpan(span);
     116             :             }
     117             :         }
     118           0 :         return true;
     119             :     }
     120             : 
     121             : private:
     122             :     const SkScalar fXMaxPixel;
     123             :     const SkScalar fXMax;
     124             : };
     125             : 
     126             : class YClampStrategy {
     127             : public:
     128           0 :     YClampStrategy(int32_t max)
     129           0 :         : fYMaxPixel{SkScalar(max) - SK_ScalarHalf} { }
     130             : 
     131           0 :     void tileYPoints(Sk4s* ys) {
     132           0 :         *ys = Sk4s::Min(Sk4s::Max(*ys, SK_ScalarHalf), fYMaxPixel);
     133           0 :         assertTiled(*ys, fYMaxPixel + SK_ScalarHalf);
     134           0 :     }
     135             : 
     136           0 :     SkScalar tileY(SkScalar y) {
     137             :         Sk4f ys{y};
     138           0 :         tileYPoints(&ys);
     139           0 :         return ys[0];
     140             :     }
     141             : 
     142             : private:
     143             :     const SkScalar fYMaxPixel;
     144             : };
     145             : 
     146           0 : SkScalar tile_mod(SkScalar x, SkScalar base, SkScalar cap) {
     147             :     // When x is a negative number *very* close to zero, the difference becomes 0 - (-base) = base
     148             :     // which is an out of bound value. The min() corrects these problematic values.
     149           0 :     return std::min(x - SkScalarFloorToScalar(x / base) * base, cap);
     150             : }
     151             : 
     152             : class XRepeatStrategy {
     153             : public:
     154           0 :     XRepeatStrategy(int32_t max)
     155           0 :         : fXMax{SkScalar(max)}
     156           0 :         , fXCap{SkScalar(nextafterf(SkScalar(max), 0.0f))}
     157           0 :         , fXInvMax{1.0f / SkScalar(max)} { }
     158             : 
     159           0 :     void tileXPoints(Sk4s* xs) {
     160           0 :         Sk4s divX = *xs * fXInvMax;
     161           0 :         Sk4s modX = *xs - divX.floor() * fXMax;
     162           0 :         *xs = Sk4s::Min(fXCap, modX);
     163           0 :         assertTiled(*xs, fXMax);
     164           0 :     }
     165             : 
     166             :     template<typename Next>
     167           0 :     bool maybeProcessSpan(Span originalSpan, Next* next) {
     168           0 :         SkASSERT(!originalSpan.isEmpty());
     169             :         SkPoint start; SkScalar length; int count;
     170           0 :         std::tie(start, length, count) = originalSpan;
     171             :         // Make x and y in range on the tile.
     172           0 :         SkScalar x = tile_mod(X(start), fXMax, fXCap);
     173           0 :         SkScalar y = Y(start);
     174           0 :         SkScalar dx = length / (count - 1);
     175             : 
     176             :         // No need trying to go fast because the steps are larger than a tile or there is one point.
     177           0 :         if (SkScalarAbs(dx) >= fXMax || count <= 1) {
     178           0 :             return false;
     179             :         }
     180             : 
     181             :         //             A        B     C                  D                Z
     182             :         // +-------+-------+-------++-------+-------+-------++     +-------+-------++------
     183             :         // |       |   *---|*---*--||-*---*-|---*---|*---*--||     |--*---*|       ||
     184             :         // |       |       |       ||       |       |       || ... |       |       ||
     185             :         // |       |       |       ||       |       |       ||     |       |       ||
     186             :         // +-------+-------+-------++-------+-------+-------++     +-------+-------++------
     187             :         //                         ^^                       ^^                     ^^
     188             :         //                    xMax || xMin             xMax || xMin           xMax || xMin
     189             :         //
     190             :         //     *---*---*---... - track of samples. * = sample
     191             :         //
     192             :         //     +-+                                 ||
     193             :         //     | |  - pixels in source space.      || - tile border.
     194             :         //     +-+                                 ||
     195             :         //
     196             :         //
     197             :         // The given span starts at A and continues on through several tiles to sample point Z.
     198             :         // The idea is to break this into several spans one on each tile the entire span
     199             :         // intersects. The A to B span only covers a partial tile and has a count of 3 and the
     200             :         // distance from A to B is (count - 1) * dx or 2 * dx. The distance from A to the start of
     201             :         // the next span is count * dx or 3 * dx. Span C to D covers an entire tile has a count
     202             :         // of 5 and a length of 4 * dx. Remember, count is the number of pixels needed for the
     203             :         // destination and the number of samples.
     204             :         //
     205             :         // Overall Strategy:
     206             :         // While the span hangs over the edge of the tile, draw the span covering the tile then
     207             :         // slide the span over to the next tile.
     208             : 
     209             :         // The guard could have been count > 0, but then a bunch of math would be done in the
     210             :         // common case.
     211             : 
     212           0 :         Span span({x, y}, length, count);
     213           0 :         if (dx > 0) {
     214           0 :             while (!span.isEmpty() && span.endX() >= fXMax) {
     215           0 :                 Span toDraw = span.breakAt(fXMax, dx);
     216           0 :                 next->pointSpan(toDraw);
     217           0 :                 span.offset(-fXMax);
     218             :             }
     219             :         } else {
     220           0 :             while (!span.isEmpty() && span.endX() < 0.0f) {
     221           0 :                 Span toDraw = span.breakAt(0.0f, dx);
     222           0 :                 next->pointSpan(toDraw);
     223           0 :                 span.offset(fXMax);
     224             :             }
     225             :         }
     226             : 
     227             :         // All on a single tile.
     228           0 :         if (!span.isEmpty()) {
     229           0 :             next->pointSpan(span);
     230             :         }
     231             : 
     232           0 :         return true;
     233             :     }
     234             : 
     235             : private:
     236             :     const SkScalar fXMax;
     237             :     const SkScalar fXCap;
     238             :     const SkScalar fXInvMax;
     239             : };
     240             : 
     241             : // The XRepeatUnitScaleStrategy exploits the situation where dx = 1.0. The main advantage is that
     242             : // the relationship between the sample points and the source pixels does not change from tile to
     243             : // repeated tile. This allows the tiler to calculate the span once and re-use it for each
     244             : // repeated tile. This is later exploited by some samplers to avoid converting pixels to linear
     245             : // space allowing the use of memmove to place pixel in the destination.
     246             : class XRepeatUnitScaleStrategy {
     247             : public:
     248           0 :     XRepeatUnitScaleStrategy(int32_t max)
     249           0 :         : fXMax{SkScalar(max)}
     250           0 :         , fXCap{SkScalar(nextafterf(SkScalar(max), 0.0f))}
     251           0 :         , fXInvMax{1.0f / SkScalar(max)} { }
     252             : 
     253           0 :     void tileXPoints(Sk4s* xs) {
     254           0 :         Sk4s divX = *xs * fXInvMax;
     255           0 :         Sk4s modX = *xs - divX.floor() * fXMax;
     256           0 :         *xs = Sk4s::Min(fXCap, modX);
     257           0 :         assertTiled(*xs, fXMax);
     258           0 :     }
     259             : 
     260             :     template<typename Next>
     261           0 :     bool maybeProcessSpan(Span originalSpan, Next* next) {
     262           0 :         SkASSERT(!originalSpan.isEmpty());
     263             :         SkPoint start; SkScalar length; int count;
     264           0 :         std::tie(start, length, count) = originalSpan;
     265             :         // Make x and y in range on the tile.
     266           0 :         SkScalar x = tile_mod(X(start), fXMax, fXCap);
     267           0 :         SkScalar y = Y(start);
     268             : 
     269             :         // No need trying to go fast because the steps are larger than a tile or there is one point.
     270           0 :         if (fXMax == 1 || count <= 1) {
     271           0 :             return false;
     272             :         }
     273             : 
     274             :         // x should be on the tile.
     275           0 :         SkASSERT(0.0f <= x && x < fXMax);
     276           0 :         Span span({x, y}, length, count);
     277             : 
     278           0 :         if (SkScalarFloorToScalar(x) != 0.0f) {
     279           0 :             Span toDraw = span.breakAt(fXMax, 1.0f);
     280           0 :             SkASSERT(0.0f <= toDraw.startX() && toDraw.endX() < fXMax);
     281           0 :             next->pointSpan(toDraw);
     282           0 :             span.offset(-fXMax);
     283             :         }
     284             : 
     285             :         // All of the span could have been on the first tile. If so, then no work to do.
     286           0 :         if (span.isEmpty()) return true;
     287             : 
     288             :         // At this point the span should be aligned to zero.
     289           0 :         SkASSERT(SkScalarFloorToScalar(span.startX()) == 0.0f);
     290             : 
     291             :         // Note: The span length has an unintuitive relation to the tile width. The tile width is
     292             :         // a half open interval [tb, te), but the span is a closed interval [sb, se]. In order to
     293             :         // compare the two, you need to convert the span to a half open interval. This is done by
     294             :         // adding dx to se. So, the span becomes: [sb, se + dx). Hence the + 1.0f below.
     295           0 :         SkScalar div = (span.length() + 1.0f) / fXMax;
     296           0 :         int32_t repeatCount = SkScalarFloorToInt(div);
     297           0 :         Span repeatableSpan{{0.0f, y}, fXMax - 1.0f, SkScalarFloorToInt(fXMax)};
     298             : 
     299             :         // Repeat the center section.
     300           0 :         SkASSERT(0.0f <= repeatableSpan.startX() && repeatableSpan.endX() < fXMax);
     301           0 :         if (repeatCount > 0) {
     302           0 :             next->repeatSpan(repeatableSpan, repeatCount);
     303             :         }
     304             : 
     305             :         // Calculate the advance past the center portion.
     306           0 :         SkScalar advance = SkScalar(repeatCount) * fXMax;
     307             : 
     308             :         // There may be some of the span left over.
     309           0 :         span.breakAt(advance, 1.0f);
     310             : 
     311             :         // All on a single tile.
     312           0 :         if (!span.isEmpty()) {
     313           0 :             span.offset(-advance);
     314           0 :             SkASSERT(0.0f <= span.startX() && span.endX() < fXMax);
     315           0 :             next->pointSpan(span);
     316             :         }
     317             : 
     318           0 :         return true;
     319             :     }
     320             : 
     321             : private:
     322             :     const SkScalar fXMax;
     323             :     const SkScalar fXCap;
     324             :     const SkScalar fXInvMax;
     325             : };
     326             : 
     327             : class YRepeatStrategy {
     328             : public:
     329           0 :     YRepeatStrategy(int32_t max)
     330           0 :         : fYMax{SkScalar(max)}
     331           0 :         , fYCap{SkScalar(nextafterf(SkScalar(max), 0.0f))}
     332           0 :         , fYsInvMax{1.0f / SkScalar(max)} { }
     333             : 
     334           0 :     void tileYPoints(Sk4s* ys) {
     335           0 :         Sk4s divY = *ys * fYsInvMax;
     336           0 :         Sk4s modY = *ys - divY.floor() * fYMax;
     337           0 :         *ys = Sk4s::Min(fYCap, modY);
     338           0 :         assertTiled(*ys, fYMax);
     339           0 :     }
     340             : 
     341           0 :     SkScalar tileY(SkScalar y) {
     342           0 :         SkScalar answer = tile_mod(y, fYMax, fYCap);
     343           0 :         SkASSERT(0 <= answer && answer < fYMax);
     344           0 :         return answer;
     345             :     }
     346             : 
     347             : private:
     348             :     const SkScalar fYMax;
     349             :     const SkScalar fYCap;
     350             :     const SkScalar fYsInvMax;
     351             : };
     352             : // max = 40
     353             : // mq2[x_] := Abs[(x - 40) - Floor[(x - 40)/80] * 80 - 40]
     354             : class XMirrorStrategy {
     355             : public:
     356           0 :     XMirrorStrategy(int32_t max)
     357           0 :         : fXMax{SkScalar(max)}
     358           0 :         , fXCap{SkScalar(nextafterf(SkScalar(max), 0.0f))}
     359           0 :         , fXDoubleInvMax{1.0f / (2.0f * SkScalar(max))} { }
     360             : 
     361           0 :     void tileXPoints(Sk4s* xs) {
     362           0 :         Sk4f bias   = *xs - fXMax;
     363           0 :         Sk4f div    = bias * fXDoubleInvMax;
     364           0 :         Sk4f mod    = bias - div.floor() * 2.0f * fXMax;
     365           0 :         Sk4f unbias = mod - fXMax;
     366           0 :         *xs = Sk4f::Min(unbias.abs(), fXCap);
     367           0 :         assertTiled(*xs, fXMax);
     368           0 :     }
     369             : 
     370             :     template <typename Next>
     371           0 :     bool maybeProcessSpan(Span originalSpan, Next* next) { return false; }
     372             : 
     373             : private:
     374             :     SkScalar fXMax;
     375             :     SkScalar fXCap;
     376             :     SkScalar fXDoubleInvMax;
     377             : };
     378             : 
     379             : class YMirrorStrategy {
     380             : public:
     381           0 :     YMirrorStrategy(int32_t max)
     382           0 :         : fYMax{SkScalar(max)}
     383           0 :         , fYCap{nextafterf(SkScalar(max), 0.0f)}
     384           0 :         , fYDoubleInvMax{1.0f / (2.0f * SkScalar(max))} { }
     385             : 
     386           0 :     void tileYPoints(Sk4s* ys) {
     387           0 :         Sk4f bias   = *ys - fYMax;
     388           0 :         Sk4f div    = bias * fYDoubleInvMax;
     389           0 :         Sk4f mod    = bias - div.floor() * 2.0f * fYMax;
     390           0 :         Sk4f unbias = mod - fYMax;
     391           0 :         *ys = Sk4f::Min(unbias.abs(), fYCap);
     392           0 :         assertTiled(*ys, fYMax);
     393           0 :     }
     394             : 
     395           0 :     SkScalar tileY(SkScalar y) {
     396           0 :         SkScalar bias   = y - fYMax;
     397           0 :         SkScalar div    = bias * fYDoubleInvMax;
     398           0 :         SkScalar mod    = bias - SkScalarFloorToScalar(div) * 2.0f * fYMax;
     399           0 :         SkScalar unbias = mod - fYMax;
     400           0 :         SkScalar answer = SkMinScalar(SkScalarAbs(unbias), fYCap);
     401           0 :         SkASSERT(0 <= answer && answer < fYMax);
     402           0 :         return answer;
     403             :     }
     404             : 
     405             : private:
     406             :     SkScalar fYMax;
     407             :     SkScalar fYCap;
     408             :     SkScalar fYDoubleInvMax;
     409             : };
     410             : 
     411             : }  // namespace
     412             : #endif  // SkLinearBitmapPipeline_tile_DEFINED

Generated by: LCOV version 1.13