LCOV - code coverage report
Current view: top level - gfx/skia/skia/src/core - SkMD5.cpp (source / functions) Hit Total Coverage
Test: output.info Lines: 0 144 0.0 %
Date: 2017-07-14 16:53:18 Functions: 0 17 0.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*
       2             :  * Copyright 2012 Google Inc.
       3             :  *
       4             :  * Use of this source code is governed by a BSD-style license that can be
       5             :  * found in the LICENSE file.
       6             :  *
       7             :  * The following code is based on the description in RFC 1321.
       8             :  * http://www.ietf.org/rfc/rfc1321.txt
       9             :  */
      10             : 
      11             : //The following macros can be defined to affect the MD5 code generated.
      12             : //SK_MD5_CLEAR_DATA causes all intermediate state to be overwritten with 0's.
      13             : //SK_CPU_LENDIAN allows 32 bit <=> 8 bit conversions without copies (if alligned).
      14             : //SK_CPU_FAST_UNALIGNED_ACCESS allows 32 bit <=> 8 bit conversions without copies if SK_CPU_LENDIAN.
      15             : 
      16             : #include "SkMD5.h"
      17             : #include <string.h>
      18             : 
      19             : /** MD5 basic transformation. Transforms state based on block. */
      20             : static void transform(uint32_t state[4], const uint8_t block[64]);
      21             : 
      22             : /** Encodes input into output (4 little endian 32 bit values). */
      23             : static void encode(uint8_t output[16], const uint32_t input[4]);
      24             : 
      25             : /** Encodes input into output (little endian 64 bit value). */
      26             : static void encode(uint8_t output[8], const uint64_t input);
      27             : 
      28             : /** Decodes input (4 little endian 32 bit values) into storage, if required. */
      29             : static const uint32_t* decode(uint32_t storage[16], const uint8_t input[64]);
      30             : 
      31           0 : SkMD5::SkMD5() : byteCount(0) {
      32             :     // These are magic numbers from the specification.
      33           0 :     this->state[0] = 0x67452301;
      34           0 :     this->state[1] = 0xefcdab89;
      35           0 :     this->state[2] = 0x98badcfe;
      36           0 :     this->state[3] = 0x10325476;
      37           0 : }
      38             : 
      39           0 : bool SkMD5::write(const void* buf, size_t inputLength) {
      40           0 :     const uint8_t* input = reinterpret_cast<const uint8_t*>(buf);
      41           0 :     unsigned int bufferIndex = (unsigned int)(this->byteCount & 0x3F);
      42           0 :     unsigned int bufferAvailable = 64 - bufferIndex;
      43             : 
      44             :     unsigned int inputIndex;
      45           0 :     if (inputLength >= bufferAvailable) {
      46           0 :         if (bufferIndex) {
      47           0 :             memcpy(&this->buffer[bufferIndex], input, bufferAvailable);
      48           0 :             transform(this->state, this->buffer);
      49           0 :             inputIndex = bufferAvailable;
      50             :         } else {
      51           0 :             inputIndex = 0;
      52             :         }
      53             : 
      54           0 :         for (; inputIndex + 63 < inputLength; inputIndex += 64) {
      55           0 :             transform(this->state, &input[inputIndex]);
      56             :         }
      57             : 
      58           0 :         bufferIndex = 0;
      59             :     } else {
      60           0 :         inputIndex = 0;
      61             :     }
      62             : 
      63           0 :     memcpy(&this->buffer[bufferIndex], &input[inputIndex], inputLength - inputIndex);
      64             : 
      65           0 :     this->byteCount += inputLength;
      66           0 :     return true;
      67             : }
      68             : 
      69           0 : void SkMD5::finish(Digest& digest) {
      70             :     // Get the number of bits before padding.
      71             :     uint8_t bits[8];
      72           0 :     encode(bits, this->byteCount << 3);
      73             : 
      74             :     // Pad out to 56 mod 64.
      75           0 :     unsigned int bufferIndex = (unsigned int)(this->byteCount & 0x3F);
      76           0 :     unsigned int paddingLength = (bufferIndex < 56) ? (56 - bufferIndex) : (120 - bufferIndex);
      77             :     static uint8_t PADDING[64] = {
      78             :         0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
      79             :            0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
      80             :            0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
      81             :            0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
      82             :     };
      83           0 :     (void)this->write(PADDING, paddingLength);
      84             : 
      85             :     // Append length (length before padding, will cause final update).
      86           0 :     (void)this->write(bits, 8);
      87             : 
      88             :     // Write out digest.
      89           0 :     encode(digest.data, this->state);
      90             : 
      91             : #if defined(SK_MD5_CLEAR_DATA)
      92             :     // Clear state.
      93             :     memset(this, 0, sizeof(*this));
      94             : #endif
      95           0 : }
      96             : 
      97           0 : struct F { uint32_t operator()(uint32_t x, uint32_t y, uint32_t z) {
      98             :     //return (x & y) | ((~x) & z);
      99           0 :     return ((y ^ z) & x) ^ z; //equivelent but faster
     100             : }};
     101             : 
     102           0 : struct G { uint32_t operator()(uint32_t x, uint32_t y, uint32_t z) {
     103           0 :     return (x & z) | (y & (~z));
     104             :     //return ((x ^ y) & z) ^ y; //equivelent but slower
     105             : }};
     106             : 
     107           0 : struct H { uint32_t operator()(uint32_t x, uint32_t y, uint32_t z) {
     108           0 :     return x ^ y ^ z;
     109             : }};
     110             : 
     111           0 : struct I { uint32_t operator()(uint32_t x, uint32_t y, uint32_t z) {
     112           0 :     return y ^ (x | (~z));
     113             : }};
     114             : 
     115             : /** Rotates x left n bits. */
     116           0 : static inline uint32_t rotate_left(uint32_t x, uint8_t n) {
     117           0 :     return (x << n) | (x >> (32 - n));
     118             : }
     119             : 
     120             : template <typename T>
     121           0 : static inline void operation(T operation, uint32_t& a, uint32_t b, uint32_t c, uint32_t d,
     122             :                              uint32_t x, uint8_t s, uint32_t t) {
     123           0 :     a = b + rotate_left(a + operation(b, c, d) + x + t, s);
     124           0 : }
     125             : 
     126           0 : static void transform(uint32_t state[4], const uint8_t block[64]) {
     127           0 :     uint32_t a = state[0], b = state[1], c = state[2], d = state[3];
     128             : 
     129             :     uint32_t storage[16];
     130           0 :     const uint32_t* X = decode(storage, block);
     131             : 
     132             :     // Round 1
     133           0 :     operation(F(), a, b, c, d, X[ 0],  7, 0xd76aa478); // 1
     134           0 :     operation(F(), d, a, b, c, X[ 1], 12, 0xe8c7b756); // 2
     135           0 :     operation(F(), c, d, a, b, X[ 2], 17, 0x242070db); // 3
     136           0 :     operation(F(), b, c, d, a, X[ 3], 22, 0xc1bdceee); // 4
     137           0 :     operation(F(), a, b, c, d, X[ 4],  7, 0xf57c0faf); // 5
     138           0 :     operation(F(), d, a, b, c, X[ 5], 12, 0x4787c62a); // 6
     139           0 :     operation(F(), c, d, a, b, X[ 6], 17, 0xa8304613); // 7
     140           0 :     operation(F(), b, c, d, a, X[ 7], 22, 0xfd469501); // 8
     141           0 :     operation(F(), a, b, c, d, X[ 8],  7, 0x698098d8); // 9
     142           0 :     operation(F(), d, a, b, c, X[ 9], 12, 0x8b44f7af); // 10
     143           0 :     operation(F(), c, d, a, b, X[10], 17, 0xffff5bb1); // 11
     144           0 :     operation(F(), b, c, d, a, X[11], 22, 0x895cd7be); // 12
     145           0 :     operation(F(), a, b, c, d, X[12],  7, 0x6b901122); // 13
     146           0 :     operation(F(), d, a, b, c, X[13], 12, 0xfd987193); // 14
     147           0 :     operation(F(), c, d, a, b, X[14], 17, 0xa679438e); // 15
     148           0 :     operation(F(), b, c, d, a, X[15], 22, 0x49b40821); // 16
     149             : 
     150             :     // Round 2
     151           0 :     operation(G(), a, b, c, d, X[ 1],  5, 0xf61e2562); // 17
     152           0 :     operation(G(), d, a, b, c, X[ 6],  9, 0xc040b340); // 18
     153           0 :     operation(G(), c, d, a, b, X[11], 14, 0x265e5a51); // 19
     154           0 :     operation(G(), b, c, d, a, X[ 0], 20, 0xe9b6c7aa); // 20
     155           0 :     operation(G(), a, b, c, d, X[ 5],  5, 0xd62f105d); // 21
     156           0 :     operation(G(), d, a, b, c, X[10],  9,  0x2441453); // 22
     157           0 :     operation(G(), c, d, a, b, X[15], 14, 0xd8a1e681); // 23
     158           0 :     operation(G(), b, c, d, a, X[ 4], 20, 0xe7d3fbc8); // 24
     159           0 :     operation(G(), a, b, c, d, X[ 9],  5, 0x21e1cde6); // 25
     160           0 :     operation(G(), d, a, b, c, X[14],  9, 0xc33707d6); // 26
     161           0 :     operation(G(), c, d, a, b, X[ 3], 14, 0xf4d50d87); // 27
     162           0 :     operation(G(), b, c, d, a, X[ 8], 20, 0x455a14ed); // 28
     163           0 :     operation(G(), a, b, c, d, X[13],  5, 0xa9e3e905); // 29
     164           0 :     operation(G(), d, a, b, c, X[ 2],  9, 0xfcefa3f8); // 30
     165           0 :     operation(G(), c, d, a, b, X[ 7], 14, 0x676f02d9); // 31
     166           0 :     operation(G(), b, c, d, a, X[12], 20, 0x8d2a4c8a); // 32
     167             : 
     168             :     // Round 3
     169           0 :     operation(H(), a, b, c, d, X[ 5],  4, 0xfffa3942); // 33
     170           0 :     operation(H(), d, a, b, c, X[ 8], 11, 0x8771f681); // 34
     171           0 :     operation(H(), c, d, a, b, X[11], 16, 0x6d9d6122); // 35
     172           0 :     operation(H(), b, c, d, a, X[14], 23, 0xfde5380c); // 36
     173           0 :     operation(H(), a, b, c, d, X[ 1],  4, 0xa4beea44); // 37
     174           0 :     operation(H(), d, a, b, c, X[ 4], 11, 0x4bdecfa9); // 38
     175           0 :     operation(H(), c, d, a, b, X[ 7], 16, 0xf6bb4b60); // 39
     176           0 :     operation(H(), b, c, d, a, X[10], 23, 0xbebfbc70); // 40
     177           0 :     operation(H(), a, b, c, d, X[13],  4, 0x289b7ec6); // 41
     178           0 :     operation(H(), d, a, b, c, X[ 0], 11, 0xeaa127fa); // 42
     179           0 :     operation(H(), c, d, a, b, X[ 3], 16, 0xd4ef3085); // 43
     180           0 :     operation(H(), b, c, d, a, X[ 6], 23,  0x4881d05); // 44
     181           0 :     operation(H(), a, b, c, d, X[ 9],  4, 0xd9d4d039); // 45
     182           0 :     operation(H(), d, a, b, c, X[12], 11, 0xe6db99e5); // 46
     183           0 :     operation(H(), c, d, a, b, X[15], 16, 0x1fa27cf8); // 47
     184           0 :     operation(H(), b, c, d, a, X[ 2], 23, 0xc4ac5665); // 48
     185             : 
     186             :     // Round 4
     187           0 :     operation(I(), a, b, c, d, X[ 0],  6, 0xf4292244); // 49
     188           0 :     operation(I(), d, a, b, c, X[ 7], 10, 0x432aff97); // 50
     189           0 :     operation(I(), c, d, a, b, X[14], 15, 0xab9423a7); // 51
     190           0 :     operation(I(), b, c, d, a, X[ 5], 21, 0xfc93a039); // 52
     191           0 :     operation(I(), a, b, c, d, X[12],  6, 0x655b59c3); // 53
     192           0 :     operation(I(), d, a, b, c, X[ 3], 10, 0x8f0ccc92); // 54
     193           0 :     operation(I(), c, d, a, b, X[10], 15, 0xffeff47d); // 55
     194           0 :     operation(I(), b, c, d, a, X[ 1], 21, 0x85845dd1); // 56
     195           0 :     operation(I(), a, b, c, d, X[ 8],  6, 0x6fa87e4f); // 57
     196           0 :     operation(I(), d, a, b, c, X[15], 10, 0xfe2ce6e0); // 58
     197           0 :     operation(I(), c, d, a, b, X[ 6], 15, 0xa3014314); // 59
     198           0 :     operation(I(), b, c, d, a, X[13], 21, 0x4e0811a1); // 60
     199           0 :     operation(I(), a, b, c, d, X[ 4],  6, 0xf7537e82); // 61
     200           0 :     operation(I(), d, a, b, c, X[11], 10, 0xbd3af235); // 62
     201           0 :     operation(I(), c, d, a, b, X[ 2], 15, 0x2ad7d2bb); // 63
     202           0 :     operation(I(), b, c, d, a, X[ 9], 21, 0xeb86d391); // 64
     203             : 
     204           0 :     state[0] += a;
     205           0 :     state[1] += b;
     206           0 :     state[2] += c;
     207           0 :     state[3] += d;
     208             : 
     209             : #if defined(SK_MD5_CLEAR_DATA)
     210             :     // Clear sensitive information.
     211             :     if (X == &storage) {
     212             :         memset(storage, 0, sizeof(storage));
     213             :     }
     214             : #endif
     215           0 : }
     216             : 
     217           0 : static void encode(uint8_t output[16], const uint32_t input[4]) {
     218           0 :     for (size_t i = 0, j = 0; i < 4; i++, j += 4) {
     219           0 :         output[j  ] = (uint8_t) (input[i]        & 0xff);
     220           0 :         output[j+1] = (uint8_t)((input[i] >>  8) & 0xff);
     221           0 :         output[j+2] = (uint8_t)((input[i] >> 16) & 0xff);
     222           0 :         output[j+3] = (uint8_t)((input[i] >> 24) & 0xff);
     223             :     }
     224           0 : }
     225             : 
     226           0 : static void encode(uint8_t output[8], const uint64_t input) {
     227           0 :     output[0] = (uint8_t) (input        & 0xff);
     228           0 :     output[1] = (uint8_t)((input >>  8) & 0xff);
     229           0 :     output[2] = (uint8_t)((input >> 16) & 0xff);
     230           0 :     output[3] = (uint8_t)((input >> 24) & 0xff);
     231           0 :     output[4] = (uint8_t)((input >> 32) & 0xff);
     232           0 :     output[5] = (uint8_t)((input >> 40) & 0xff);
     233           0 :     output[6] = (uint8_t)((input >> 48) & 0xff);
     234           0 :     output[7] = (uint8_t)((input >> 56) & 0xff);
     235           0 : }
     236             : 
     237           0 : static inline bool is_aligned(const void *pointer, size_t byte_count) {
     238           0 :     return reinterpret_cast<uintptr_t>(pointer) % byte_count == 0;
     239             : }
     240             : 
     241           0 : static const uint32_t* decode(uint32_t storage[16], const uint8_t input[64]) {
     242             : #if defined(SK_CPU_LENDIAN) && defined(SK_CPU_FAST_UNALIGNED_ACCESS)
     243             :    return reinterpret_cast<const uint32_t*>(input);
     244             : #else
     245             : #if defined(SK_CPU_LENDIAN)
     246           0 :     if (is_aligned(input, 4)) {
     247           0 :         return reinterpret_cast<const uint32_t*>(input);
     248             :     }
     249             : #endif
     250           0 :     for (size_t i = 0, j = 0; j < 64; i++, j += 4) {
     251           0 :         storage[i] =  ((uint32_t)input[j  ])        |
     252           0 :                      (((uint32_t)input[j+1]) <<  8) |
     253           0 :                      (((uint32_t)input[j+2]) << 16) |
     254           0 :                      (((uint32_t)input[j+3]) << 24);
     255             :     }
     256           0 :     return storage;
     257             : #endif
     258             : }

Generated by: LCOV version 1.13