LCOV - code coverage report
Current view: top level - gfx/skia/skia/src/gpu - GrPathUtils.cpp (source / functions) Hit Total Coverage
Test: output.info Lines: 0 481 0.0 %
Date: 2017-07-14 16:53:18 Functions: 0 20 0.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*
       2             :  * Copyright 2011 Google Inc.
       3             :  *
       4             :  * Use of this source code is governed by a BSD-style license that can be
       5             :  * found in the LICENSE file.
       6             :  */
       7             : 
       8             : #include "GrPathUtils.h"
       9             : 
      10             : #include "GrTypes.h"
      11             : #include "SkGeometry.h"
      12             : #include "SkMathPriv.h"
      13             : 
      14           0 : SkScalar GrPathUtils::scaleToleranceToSrc(SkScalar devTol,
      15             :                                           const SkMatrix& viewM,
      16             :                                           const SkRect& pathBounds) {
      17             :     // In order to tesselate the path we get a bound on how much the matrix can
      18             :     // scale when mapping to screen coordinates.
      19           0 :     SkScalar stretch = viewM.getMaxScale();
      20           0 :     SkScalar srcTol = devTol;
      21             : 
      22           0 :     if (stretch < 0) {
      23             :         // take worst case mapRadius amoung four corners.
      24             :         // (less than perfect)
      25           0 :         for (int i = 0; i < 4; ++i) {
      26             :             SkMatrix mat;
      27           0 :             mat.setTranslate((i % 2) ? pathBounds.fLeft : pathBounds.fRight,
      28           0 :                              (i < 2) ? pathBounds.fTop : pathBounds.fBottom);
      29           0 :             mat.postConcat(viewM);
      30           0 :             stretch = SkMaxScalar(stretch, mat.mapRadius(SK_Scalar1));
      31             :         }
      32             :     }
      33           0 :     return srcTol / stretch;
      34             : }
      35             : 
      36             : static const int MAX_POINTS_PER_CURVE = 1 << 10;
      37             : static const SkScalar gMinCurveTol = 0.0001f;
      38             : 
      39           0 : uint32_t GrPathUtils::quadraticPointCount(const SkPoint points[], SkScalar tol) {
      40           0 :     if (tol < gMinCurveTol) {
      41           0 :         tol = gMinCurveTol;
      42             :     }
      43           0 :     SkASSERT(tol > 0);
      44             : 
      45           0 :     SkScalar d = points[1].distanceToLineSegmentBetween(points[0], points[2]);
      46           0 :     if (!SkScalarIsFinite(d)) {
      47           0 :         return MAX_POINTS_PER_CURVE;
      48           0 :     } else if (d <= tol) {
      49           0 :         return 1;
      50             :     } else {
      51             :         // Each time we subdivide, d should be cut in 4. So we need to
      52             :         // subdivide x = log4(d/tol) times. x subdivisions creates 2^(x)
      53             :         // points.
      54             :         // 2^(log4(x)) = sqrt(x);
      55           0 :         SkScalar divSqrt = SkScalarSqrt(d / tol);
      56           0 :         if (((SkScalar)SK_MaxS32) <= divSqrt) {
      57           0 :             return MAX_POINTS_PER_CURVE;
      58             :         } else {
      59           0 :             int temp = SkScalarCeilToInt(divSqrt);
      60           0 :             int pow2 = GrNextPow2(temp);
      61             :             // Because of NaNs & INFs we can wind up with a degenerate temp
      62             :             // such that pow2 comes out negative. Also, our point generator
      63             :             // will always output at least one pt.
      64           0 :             if (pow2 < 1) {
      65           0 :                 pow2 = 1;
      66             :             }
      67           0 :             return SkTMin(pow2, MAX_POINTS_PER_CURVE);
      68             :         }
      69             :     }
      70             : }
      71             : 
      72           0 : uint32_t GrPathUtils::generateQuadraticPoints(const SkPoint& p0,
      73             :                                               const SkPoint& p1,
      74             :                                               const SkPoint& p2,
      75             :                                               SkScalar tolSqd,
      76             :                                               SkPoint** points,
      77             :                                               uint32_t pointsLeft) {
      78           0 :     if (pointsLeft < 2 ||
      79           0 :         (p1.distanceToLineSegmentBetweenSqd(p0, p2)) < tolSqd) {
      80           0 :         (*points)[0] = p2;
      81           0 :         *points += 1;
      82           0 :         return 1;
      83             :     }
      84             : 
      85             :     SkPoint q[] = {
      86           0 :         { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
      87           0 :         { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
      88           0 :     };
      89           0 :     SkPoint r = { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) };
      90             : 
      91           0 :     pointsLeft >>= 1;
      92           0 :     uint32_t a = generateQuadraticPoints(p0, q[0], r, tolSqd, points, pointsLeft);
      93           0 :     uint32_t b = generateQuadraticPoints(r, q[1], p2, tolSqd, points, pointsLeft);
      94           0 :     return a + b;
      95             : }
      96             : 
      97           0 : uint32_t GrPathUtils::cubicPointCount(const SkPoint points[],
      98             :                                            SkScalar tol) {
      99           0 :     if (tol < gMinCurveTol) {
     100           0 :         tol = gMinCurveTol;
     101             :     }
     102           0 :     SkASSERT(tol > 0);
     103             : 
     104             :     SkScalar d = SkTMax(
     105           0 :         points[1].distanceToLineSegmentBetweenSqd(points[0], points[3]),
     106           0 :         points[2].distanceToLineSegmentBetweenSqd(points[0], points[3]));
     107           0 :     d = SkScalarSqrt(d);
     108           0 :     if (!SkScalarIsFinite(d)) {
     109           0 :         return MAX_POINTS_PER_CURVE;
     110           0 :     } else if (d <= tol) {
     111           0 :         return 1;
     112             :     } else {
     113           0 :         SkScalar divSqrt = SkScalarSqrt(d / tol);
     114           0 :         if (((SkScalar)SK_MaxS32) <= divSqrt) {
     115           0 :             return MAX_POINTS_PER_CURVE;
     116             :         } else {
     117           0 :             int temp = SkScalarCeilToInt(SkScalarSqrt(d / tol));
     118           0 :             int pow2 = GrNextPow2(temp);
     119             :             // Because of NaNs & INFs we can wind up with a degenerate temp
     120             :             // such that pow2 comes out negative. Also, our point generator
     121             :             // will always output at least one pt.
     122           0 :             if (pow2 < 1) {
     123           0 :                 pow2 = 1;
     124             :             }
     125           0 :             return SkTMin(pow2, MAX_POINTS_PER_CURVE);
     126             :         }
     127             :     }
     128             : }
     129             : 
     130           0 : uint32_t GrPathUtils::generateCubicPoints(const SkPoint& p0,
     131             :                                           const SkPoint& p1,
     132             :                                           const SkPoint& p2,
     133             :                                           const SkPoint& p3,
     134             :                                           SkScalar tolSqd,
     135             :                                           SkPoint** points,
     136             :                                           uint32_t pointsLeft) {
     137           0 :     if (pointsLeft < 2 ||
     138           0 :         (p1.distanceToLineSegmentBetweenSqd(p0, p3) < tolSqd &&
     139           0 :          p2.distanceToLineSegmentBetweenSqd(p0, p3) < tolSqd)) {
     140           0 :         (*points)[0] = p3;
     141           0 :         *points += 1;
     142           0 :         return 1;
     143             :     }
     144             :     SkPoint q[] = {
     145           0 :         { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
     146           0 :         { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
     147           0 :         { SkScalarAve(p2.fX, p3.fX), SkScalarAve(p2.fY, p3.fY) }
     148           0 :     };
     149             :     SkPoint r[] = {
     150           0 :         { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) },
     151           0 :         { SkScalarAve(q[1].fX, q[2].fX), SkScalarAve(q[1].fY, q[2].fY) }
     152           0 :     };
     153           0 :     SkPoint s = { SkScalarAve(r[0].fX, r[1].fX), SkScalarAve(r[0].fY, r[1].fY) };
     154           0 :     pointsLeft >>= 1;
     155           0 :     uint32_t a = generateCubicPoints(p0, q[0], r[0], s, tolSqd, points, pointsLeft);
     156           0 :     uint32_t b = generateCubicPoints(s, r[1], q[2], p3, tolSqd, points, pointsLeft);
     157           0 :     return a + b;
     158             : }
     159             : 
     160           0 : int GrPathUtils::worstCasePointCount(const SkPath& path, int* subpaths, SkScalar tol) {
     161           0 :     if (tol < gMinCurveTol) {
     162           0 :         tol = gMinCurveTol;
     163             :     }
     164           0 :     SkASSERT(tol > 0);
     165             : 
     166           0 :     int pointCount = 0;
     167           0 :     *subpaths = 1;
     168             : 
     169           0 :     bool first = true;
     170             : 
     171           0 :     SkPath::Iter iter(path, false);
     172             :     SkPath::Verb verb;
     173             : 
     174             :     SkPoint pts[4];
     175           0 :     while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
     176             : 
     177           0 :         switch (verb) {
     178             :             case SkPath::kLine_Verb:
     179           0 :                 pointCount += 1;
     180           0 :                 break;
     181             :             case SkPath::kConic_Verb: {
     182           0 :                 SkScalar weight = iter.conicWeight();
     183           0 :                 SkAutoConicToQuads converter;
     184           0 :                 const SkPoint* quadPts = converter.computeQuads(pts, weight, tol);
     185           0 :                 for (int i = 0; i < converter.countQuads(); ++i) {
     186           0 :                     pointCount += quadraticPointCount(quadPts + 2*i, tol);
     187             :                 }
     188             :             }
     189             :             case SkPath::kQuad_Verb:
     190           0 :                 pointCount += quadraticPointCount(pts, tol);
     191           0 :                 break;
     192             :             case SkPath::kCubic_Verb:
     193           0 :                 pointCount += cubicPointCount(pts, tol);
     194           0 :                 break;
     195             :             case SkPath::kMove_Verb:
     196           0 :                 pointCount += 1;
     197           0 :                 if (!first) {
     198           0 :                     ++(*subpaths);
     199             :                 }
     200           0 :                 break;
     201             :             default:
     202           0 :                 break;
     203             :         }
     204           0 :         first = false;
     205             :     }
     206           0 :     return pointCount;
     207             : }
     208             : 
     209           0 : void GrPathUtils::QuadUVMatrix::set(const SkPoint qPts[3]) {
     210             :     SkMatrix m;
     211             :     // We want M such that M * xy_pt = uv_pt
     212             :     // We know M * control_pts = [0  1/2 1]
     213             :     //                           [0  0   1]
     214             :     //                           [1  1   1]
     215             :     // And control_pts = [x0 x1 x2]
     216             :     //                   [y0 y1 y2]
     217             :     //                   [1  1  1 ]
     218             :     // We invert the control pt matrix and post concat to both sides to get M.
     219             :     // Using the known form of the control point matrix and the result, we can
     220             :     // optimize and improve precision.
     221             : 
     222           0 :     double x0 = qPts[0].fX;
     223           0 :     double y0 = qPts[0].fY;
     224           0 :     double x1 = qPts[1].fX;
     225           0 :     double y1 = qPts[1].fY;
     226           0 :     double x2 = qPts[2].fX;
     227           0 :     double y2 = qPts[2].fY;
     228           0 :     double det = x0*y1 - y0*x1 + x2*y0 - y2*x0 + x1*y2 - y1*x2;
     229             : 
     230           0 :     if (!sk_float_isfinite(det)
     231           0 :         || SkScalarNearlyZero((float)det, SK_ScalarNearlyZero * SK_ScalarNearlyZero)) {
     232             :         // The quad is degenerate. Hopefully this is rare. Find the pts that are
     233             :         // farthest apart to compute a line (unless it is really a pt).
     234           0 :         SkScalar maxD = qPts[0].distanceToSqd(qPts[1]);
     235           0 :         int maxEdge = 0;
     236           0 :         SkScalar d = qPts[1].distanceToSqd(qPts[2]);
     237           0 :         if (d > maxD) {
     238           0 :             maxD = d;
     239           0 :             maxEdge = 1;
     240             :         }
     241           0 :         d = qPts[2].distanceToSqd(qPts[0]);
     242           0 :         if (d > maxD) {
     243           0 :             maxD = d;
     244           0 :             maxEdge = 2;
     245             :         }
     246             :         // We could have a tolerance here, not sure if it would improve anything
     247           0 :         if (maxD > 0) {
     248             :             // Set the matrix to give (u = 0, v = distance_to_line)
     249           0 :             SkVector lineVec = qPts[(maxEdge + 1)%3] - qPts[maxEdge];
     250             :             // when looking from the point 0 down the line we want positive
     251             :             // distances to be to the left. This matches the non-degenerate
     252             :             // case.
     253           0 :             lineVec.setOrthog(lineVec, SkPoint::kLeft_Side);
     254             :             // first row
     255           0 :             fM[0] = 0;
     256           0 :             fM[1] = 0;
     257           0 :             fM[2] = 0;
     258             :             // second row
     259           0 :             fM[3] = lineVec.fX;
     260           0 :             fM[4] = lineVec.fY;
     261           0 :             fM[5] = -lineVec.dot(qPts[maxEdge]);
     262             :         } else {
     263             :             // It's a point. It should cover zero area. Just set the matrix such
     264             :             // that (u, v) will always be far away from the quad.
     265           0 :             fM[0] = 0; fM[1] = 0; fM[2] = 100.f;
     266           0 :             fM[3] = 0; fM[4] = 0; fM[5] = 100.f;
     267             :         }
     268             :     } else {
     269           0 :         double scale = 1.0/det;
     270             : 
     271             :         // compute adjugate matrix
     272             :         double a2, a3, a4, a5, a6, a7, a8;
     273           0 :         a2 = x1*y2-x2*y1;
     274             : 
     275           0 :         a3 = y2-y0;
     276           0 :         a4 = x0-x2;
     277           0 :         a5 = x2*y0-x0*y2;
     278             : 
     279           0 :         a6 = y0-y1;
     280           0 :         a7 = x1-x0;
     281           0 :         a8 = x0*y1-x1*y0;
     282             : 
     283             :         // this performs the uv_pts*adjugate(control_pts) multiply,
     284             :         // then does the scale by 1/det afterwards to improve precision
     285           0 :         m[SkMatrix::kMScaleX] = (float)((0.5*a3 + a6)*scale);
     286           0 :         m[SkMatrix::kMSkewX]  = (float)((0.5*a4 + a7)*scale);
     287           0 :         m[SkMatrix::kMTransX] = (float)((0.5*a5 + a8)*scale);
     288             : 
     289           0 :         m[SkMatrix::kMSkewY]  = (float)(a6*scale);
     290           0 :         m[SkMatrix::kMScaleY] = (float)(a7*scale);
     291           0 :         m[SkMatrix::kMTransY] = (float)(a8*scale);
     292             : 
     293             :         // kMPersp0 & kMPersp1 should algebraically be zero
     294           0 :         m[SkMatrix::kMPersp0] = 0.0f;
     295           0 :         m[SkMatrix::kMPersp1] = 0.0f;
     296           0 :         m[SkMatrix::kMPersp2] = (float)((a2 + a5 + a8)*scale);
     297             : 
     298             :         // It may not be normalized to have 1.0 in the bottom right
     299           0 :         float m33 = m.get(SkMatrix::kMPersp2);
     300           0 :         if (1.f != m33) {
     301           0 :             m33 = 1.f / m33;
     302           0 :             fM[0] = m33 * m.get(SkMatrix::kMScaleX);
     303           0 :             fM[1] = m33 * m.get(SkMatrix::kMSkewX);
     304           0 :             fM[2] = m33 * m.get(SkMatrix::kMTransX);
     305           0 :             fM[3] = m33 * m.get(SkMatrix::kMSkewY);
     306           0 :             fM[4] = m33 * m.get(SkMatrix::kMScaleY);
     307           0 :             fM[5] = m33 * m.get(SkMatrix::kMTransY);
     308             :         } else {
     309           0 :             fM[0] = m.get(SkMatrix::kMScaleX);
     310           0 :             fM[1] = m.get(SkMatrix::kMSkewX);
     311           0 :             fM[2] = m.get(SkMatrix::kMTransX);
     312           0 :             fM[3] = m.get(SkMatrix::kMSkewY);
     313           0 :             fM[4] = m.get(SkMatrix::kMScaleY);
     314           0 :             fM[5] = m.get(SkMatrix::kMTransY);
     315             :         }
     316             :     }
     317           0 : }
     318             : 
     319             : ////////////////////////////////////////////////////////////////////////////////
     320             : 
     321             : // k = (y2 - y0, x0 - x2, x2*y0 - x0*y2)
     322             : // l = (y1 - y0, x0 - x1, x1*y0 - x0*y1) * 2*w
     323             : // m = (y2 - y1, x1 - x2, x2*y1 - x1*y2) * 2*w
     324           0 : void GrPathUtils::getConicKLM(const SkPoint p[3], const SkScalar weight, SkMatrix* out) {
     325           0 :     SkMatrix& klm = *out;
     326           0 :     const SkScalar w2 = 2.f * weight;
     327           0 :     klm[0] = p[2].fY - p[0].fY;
     328           0 :     klm[1] = p[0].fX - p[2].fX;
     329           0 :     klm[2] = p[2].fX * p[0].fY - p[0].fX * p[2].fY;
     330             : 
     331           0 :     klm[3] = w2 * (p[1].fY - p[0].fY);
     332           0 :     klm[4] = w2 * (p[0].fX - p[1].fX);
     333           0 :     klm[5] = w2 * (p[1].fX * p[0].fY - p[0].fX * p[1].fY);
     334             : 
     335           0 :     klm[6] = w2 * (p[2].fY - p[1].fY);
     336           0 :     klm[7] = w2 * (p[1].fX - p[2].fX);
     337           0 :     klm[8] = w2 * (p[2].fX * p[1].fY - p[1].fX * p[2].fY);
     338             : 
     339             :     // scale the max absolute value of coeffs to 10
     340           0 :     SkScalar scale = 0.f;
     341           0 :     for (int i = 0; i < 9; ++i) {
     342           0 :        scale = SkMaxScalar(scale, SkScalarAbs(klm[i]));
     343             :     }
     344           0 :     SkASSERT(scale > 0.f);
     345           0 :     scale = 10.f / scale;
     346           0 :     for (int i = 0; i < 9; ++i) {
     347           0 :         klm[i] *= scale;
     348             :     }
     349           0 : }
     350             : 
     351             : ////////////////////////////////////////////////////////////////////////////////
     352             : 
     353             : namespace {
     354             : 
     355             : // a is the first control point of the cubic.
     356             : // ab is the vector from a to the second control point.
     357             : // dc is the vector from the fourth to the third control point.
     358             : // d is the fourth control point.
     359             : // p is the candidate quadratic control point.
     360             : // this assumes that the cubic doesn't inflect and is simple
     361           0 : bool is_point_within_cubic_tangents(const SkPoint& a,
     362             :                                     const SkVector& ab,
     363             :                                     const SkVector& dc,
     364             :                                     const SkPoint& d,
     365             :                                     SkPathPriv::FirstDirection dir,
     366             :                                     const SkPoint p) {
     367           0 :     SkVector ap = p - a;
     368           0 :     SkScalar apXab = ap.cross(ab);
     369           0 :     if (SkPathPriv::kCW_FirstDirection == dir) {
     370           0 :         if (apXab > 0) {
     371           0 :             return false;
     372             :         }
     373             :     } else {
     374           0 :         SkASSERT(SkPathPriv::kCCW_FirstDirection == dir);
     375           0 :         if (apXab < 0) {
     376           0 :             return false;
     377             :         }
     378             :     }
     379             : 
     380           0 :     SkVector dp = p - d;
     381           0 :     SkScalar dpXdc = dp.cross(dc);
     382           0 :     if (SkPathPriv::kCW_FirstDirection == dir) {
     383           0 :         if (dpXdc < 0) {
     384           0 :             return false;
     385             :         }
     386             :     } else {
     387           0 :         SkASSERT(SkPathPriv::kCCW_FirstDirection == dir);
     388           0 :         if (dpXdc > 0) {
     389           0 :             return false;
     390             :         }
     391             :     }
     392           0 :     return true;
     393             : }
     394             : 
     395           0 : void convert_noninflect_cubic_to_quads(const SkPoint p[4],
     396             :                                        SkScalar toleranceSqd,
     397             :                                        bool constrainWithinTangents,
     398             :                                        SkPathPriv::FirstDirection dir,
     399             :                                        SkTArray<SkPoint, true>* quads,
     400             :                                        int sublevel = 0) {
     401             : 
     402             :     // Notation: Point a is always p[0]. Point b is p[1] unless p[1] == p[0], in which case it is
     403             :     // p[2]. Point d is always p[3]. Point c is p[2] unless p[2] == p[3], in which case it is p[1].
     404             : 
     405           0 :     SkVector ab = p[1] - p[0];
     406           0 :     SkVector dc = p[2] - p[3];
     407             : 
     408           0 :     if (ab.lengthSqd() < SK_ScalarNearlyZero) {
     409           0 :         if (dc.lengthSqd() < SK_ScalarNearlyZero) {
     410           0 :             SkPoint* degQuad = quads->push_back_n(3);
     411           0 :             degQuad[0] = p[0];
     412           0 :             degQuad[1] = p[0];
     413           0 :             degQuad[2] = p[3];
     414           0 :             return;
     415             :         }
     416           0 :         ab = p[2] - p[0];
     417             :     }
     418           0 :     if (dc.lengthSqd() < SK_ScalarNearlyZero) {
     419           0 :         dc = p[1] - p[3];
     420             :     }
     421             : 
     422             :     // When the ab and cd tangents are degenerate or nearly parallel with vector from d to a the
     423             :     // constraint that the quad point falls between the tangents becomes hard to enforce and we are
     424             :     // likely to hit the max subdivision count. However, in this case the cubic is approaching a
     425             :     // line and the accuracy of the quad point isn't so important. We check if the two middle cubic
     426             :     // control points are very close to the baseline vector. If so then we just pick quadratic
     427             :     // points on the control polygon.
     428             : 
     429           0 :     if (constrainWithinTangents) {
     430           0 :         SkVector da = p[0] - p[3];
     431           0 :         bool doQuads = dc.lengthSqd() < SK_ScalarNearlyZero ||
     432           0 :                        ab.lengthSqd() < SK_ScalarNearlyZero;
     433           0 :         if (!doQuads) {
     434           0 :             SkScalar invDALengthSqd = da.lengthSqd();
     435           0 :             if (invDALengthSqd > SK_ScalarNearlyZero) {
     436           0 :                 invDALengthSqd = SkScalarInvert(invDALengthSqd);
     437             :                 // cross(ab, da)^2/length(da)^2 == sqd distance from b to line from d to a.
     438             :                 // same goes for point c using vector cd.
     439           0 :                 SkScalar detABSqd = ab.cross(da);
     440           0 :                 detABSqd = SkScalarSquare(detABSqd);
     441           0 :                 SkScalar detDCSqd = dc.cross(da);
     442           0 :                 detDCSqd = SkScalarSquare(detDCSqd);
     443           0 :                 if (detABSqd * invDALengthSqd < toleranceSqd &&
     444           0 :                     detDCSqd * invDALengthSqd < toleranceSqd)
     445             :                 {
     446           0 :                     doQuads = true;
     447             :                 }
     448             :             }
     449             :         }
     450           0 :         if (doQuads) {
     451           0 :             SkPoint b = p[0] + ab;
     452           0 :             SkPoint c = p[3] + dc;
     453           0 :             SkPoint mid = b + c;
     454           0 :             mid.scale(SK_ScalarHalf);
     455             :             // Insert two quadratics to cover the case when ab points away from d and/or dc
     456             :             // points away from a.
     457           0 :             if (SkVector::DotProduct(da, dc) < 0 || SkVector::DotProduct(ab,da) > 0) {
     458           0 :                 SkPoint* qpts = quads->push_back_n(6);
     459           0 :                 qpts[0] = p[0];
     460           0 :                 qpts[1] = b;
     461           0 :                 qpts[2] = mid;
     462           0 :                 qpts[3] = mid;
     463           0 :                 qpts[4] = c;
     464           0 :                 qpts[5] = p[3];
     465             :             } else {
     466           0 :                 SkPoint* qpts = quads->push_back_n(3);
     467           0 :                 qpts[0] = p[0];
     468           0 :                 qpts[1] = mid;
     469           0 :                 qpts[2] = p[3];
     470             :             }
     471           0 :             return;
     472             :         }
     473             :     }
     474             : 
     475             :     static const SkScalar kLengthScale = 3 * SK_Scalar1 / 2;
     476             :     static const int kMaxSubdivs = 10;
     477             : 
     478           0 :     ab.scale(kLengthScale);
     479           0 :     dc.scale(kLengthScale);
     480             : 
     481             :     // e0 and e1 are extrapolations along vectors ab and dc.
     482           0 :     SkVector c0 = p[0];
     483           0 :     c0 += ab;
     484           0 :     SkVector c1 = p[3];
     485           0 :     c1 += dc;
     486             : 
     487           0 :     SkScalar dSqd = sublevel > kMaxSubdivs ? 0 : c0.distanceToSqd(c1);
     488           0 :     if (dSqd < toleranceSqd) {
     489           0 :         SkPoint cAvg = c0;
     490           0 :         cAvg += c1;
     491           0 :         cAvg.scale(SK_ScalarHalf);
     492             : 
     493           0 :         bool subdivide = false;
     494             : 
     495           0 :         if (constrainWithinTangents &&
     496           0 :             !is_point_within_cubic_tangents(p[0], ab, dc, p[3], dir, cAvg)) {
     497             :             // choose a new cAvg that is the intersection of the two tangent lines.
     498           0 :             ab.setOrthog(ab);
     499           0 :             SkScalar z0 = -ab.dot(p[0]);
     500           0 :             dc.setOrthog(dc);
     501           0 :             SkScalar z1 = -dc.dot(p[3]);
     502           0 :             cAvg.fX = ab.fY * z1 - z0 * dc.fY;
     503           0 :             cAvg.fY = z0 * dc.fX - ab.fX * z1;
     504           0 :             SkScalar z = ab.fX * dc.fY - ab.fY * dc.fX;
     505           0 :             z = SkScalarInvert(z);
     506           0 :             cAvg.fX *= z;
     507           0 :             cAvg.fY *= z;
     508           0 :             if (sublevel <= kMaxSubdivs) {
     509           0 :                 SkScalar d0Sqd = c0.distanceToSqd(cAvg);
     510           0 :                 SkScalar d1Sqd = c1.distanceToSqd(cAvg);
     511             :                 // We need to subdivide if d0 + d1 > tolerance but we have the sqd values. We know
     512             :                 // the distances and tolerance can't be negative.
     513             :                 // (d0 + d1)^2 > toleranceSqd
     514             :                 // d0Sqd + 2*d0*d1 + d1Sqd > toleranceSqd
     515           0 :                 SkScalar d0d1 = SkScalarSqrt(d0Sqd * d1Sqd);
     516           0 :                 subdivide = 2 * d0d1 + d0Sqd + d1Sqd > toleranceSqd;
     517             :             }
     518             :         }
     519           0 :         if (!subdivide) {
     520           0 :             SkPoint* pts = quads->push_back_n(3);
     521           0 :             pts[0] = p[0];
     522           0 :             pts[1] = cAvg;
     523           0 :             pts[2] = p[3];
     524           0 :             return;
     525             :         }
     526             :     }
     527             :     SkPoint choppedPts[7];
     528           0 :     SkChopCubicAtHalf(p, choppedPts);
     529           0 :     convert_noninflect_cubic_to_quads(choppedPts + 0,
     530             :                                       toleranceSqd,
     531             :                                       constrainWithinTangents,
     532             :                                       dir,
     533             :                                       quads,
     534           0 :                                       sublevel + 1);
     535           0 :     convert_noninflect_cubic_to_quads(choppedPts + 3,
     536             :                                       toleranceSqd,
     537             :                                       constrainWithinTangents,
     538             :                                       dir,
     539             :                                       quads,
     540           0 :                                       sublevel + 1);
     541             : }
     542             : }
     543             : 
     544           0 : void GrPathUtils::convertCubicToQuads(const SkPoint p[4],
     545             :                                       SkScalar tolScale,
     546             :                                       SkTArray<SkPoint, true>* quads) {
     547             :     SkPoint chopped[10];
     548           0 :     int count = SkChopCubicAtInflections(p, chopped);
     549             : 
     550           0 :     const SkScalar tolSqd = SkScalarSquare(tolScale);
     551             : 
     552           0 :     for (int i = 0; i < count; ++i) {
     553           0 :         SkPoint* cubic = chopped + 3*i;
     554             :         // The direction param is ignored if the third param is false.
     555             :         convert_noninflect_cubic_to_quads(cubic, tolSqd, false,
     556           0 :                                           SkPathPriv::kCCW_FirstDirection, quads);
     557             :     }
     558           0 : }
     559             : 
     560           0 : void GrPathUtils::convertCubicToQuadsConstrainToTangents(const SkPoint p[4],
     561             :                                                          SkScalar tolScale,
     562             :                                                          SkPathPriv::FirstDirection dir,
     563             :                                                          SkTArray<SkPoint, true>* quads) {
     564             :     SkPoint chopped[10];
     565           0 :     int count = SkChopCubicAtInflections(p, chopped);
     566             : 
     567           0 :     const SkScalar tolSqd = SkScalarSquare(tolScale);
     568             : 
     569           0 :     for (int i = 0; i < count; ++i) {
     570           0 :         SkPoint* cubic = chopped + 3*i;
     571           0 :         convert_noninflect_cubic_to_quads(cubic, tolSqd, true, dir, quads);
     572             :     }
     573           0 : }
     574             : 
     575             : ////////////////////////////////////////////////////////////////////////////////
     576             : 
     577             : /**
     578             :  * Computes an SkMatrix that can find the cubic KLM functionals as follows:
     579             :  *
     580             :  *     | ..K.. |   | ..kcoeffs.. |
     581             :  *     | ..L.. | = | ..lcoeffs.. | * inverse_transpose_power_basis_matrix
     582             :  *     | ..M.. |   | ..mcoeffs.. |
     583             :  *
     584             :  * 'kcoeffs' are the power basis coefficients to a scalar valued cubic function that returns the
     585             :  * signed distance to line K from a given point on the curve:
     586             :  *
     587             :  *     k(t,s) = C(t,s) * K   [C(t,s) is defined in the following comment]
     588             :  *
     589             :  * The same applies for lcoeffs and mcoeffs. These are found separately, depending on the type of
     590             :  * curve. There are 4 coefficients but 3 rows in the matrix, so in order to do this calculation the
     591             :  * caller must first remove a specific column of coefficients.
     592             :  *
     593             :  * @return which column of klm coefficients to exclude from the calculation.
     594             :  */
     595           0 : static int calc_inverse_transpose_power_basis_matrix(const SkPoint pts[4], SkMatrix* out) {
     596             :     using SkScalar4 = SkNx<4, SkScalar>;
     597             : 
     598             :     // First we convert the bezier coordinates 'pts' to power basis coefficients X,Y,W=[0 0 0 1].
     599             :     // M3 is the matrix that does this conversion. The homogeneous equation for the cubic becomes:
     600             :     //
     601             :     //                                     | X   Y   0 |
     602             :     // C(t,s) = [t^3  t^2*s  t*s^2  s^3] * | .   .   0 |
     603             :     //                                     | .   .   0 |
     604             :     //                                     | .   .   1 |
     605             :     //
     606             :     const SkScalar4 M3[3] = {SkScalar4(-1, 3, -3, 1),
     607             :                              SkScalar4(3, -6, 3, 0),
     608           0 :                              SkScalar4(-3, 3, 0, 0)};
     609             :     // 4th column of M3   =  SkScalar4(1, 0, 0, 0)};
     610           0 :     SkScalar4 X(pts[3].x(), 0, 0, 0);
     611           0 :     SkScalar4 Y(pts[3].y(), 0, 0, 0);
     612           0 :     for (int i = 2; i >= 0; --i) {
     613           0 :         X += M3[i] * pts[i].x();
     614           0 :         Y += M3[i] * pts[i].y();
     615             :     }
     616             : 
     617             :     // The matrix is 3x4. In order to invert it, we first need to make it square by throwing out one
     618             :     // of the top three rows. We toss the row that leaves us with the largest absolute determinant.
     619             :     // Since the right column will be [0 0 1], the determinant reduces to x0*y1 - y0*x1.
     620             :     SkScalar absDet[4];
     621           0 :     const SkScalar4 DETX1 = SkNx_shuffle<1,0,0,3>(X), DETY1 = SkNx_shuffle<1,0,0,3>(Y);
     622           0 :     const SkScalar4 DETX2 = SkNx_shuffle<2,2,1,3>(X), DETY2 = SkNx_shuffle<2,2,1,3>(Y);
     623           0 :     const SkScalar4 DET = DETX1 * DETY2 - DETY1 * DETX2;
     624           0 :     DET.abs().store(absDet);
     625           0 :     const int skipRow = absDet[0] > absDet[2] ? (absDet[0] > absDet[1] ? 0 : 1)
     626           0 :                                               : (absDet[1] > absDet[2] ? 1 : 2);
     627           0 :     const SkScalar rdet = 1 / DET[skipRow];
     628           0 :     const int row0 = (0 != skipRow) ? 0 : 1;
     629           0 :     const int row1 = (2 == skipRow) ? 1 : 2;
     630             : 
     631             :     // Compute the inverse-transpose of the power basis matrix with the 'skipRow'th row removed.
     632             :     // Since W=[0 0 0 1], it follows that our corresponding solution will be equal to:
     633             :     //
     634             :     //             |  y1  -x1   x1*y2 - y1*x2 |
     635             :     //     1/det * | -y0   x0  -x0*y2 + y0*x2 |
     636             :     //             |   0    0             det |
     637             :     //
     638             :     const SkScalar4 R(rdet, rdet, rdet, 1);
     639             :     X *= R;
     640             :     Y *= R;
     641             : 
     642             :     SkScalar x[4], y[4], z[4];
     643             :     X.store(x);
     644             :     Y.store(y);
     645           0 :     (X * SkNx_shuffle<3,3,3,3>(Y) - Y * SkNx_shuffle<3,3,3,3>(X)).store(z);
     646             : 
     647           0 :     out->setAll( y[row1], -x[row1],  z[row1],
     648           0 :                 -y[row0],  x[row0], -z[row0],
     649           0 :                        0,        0,        1);
     650             : 
     651           0 :     return skipRow;
     652             : }
     653             : 
     654           0 : static void negate_kl(SkMatrix* klm) {
     655             :     // We could use klm->postScale(-1, -1), but it ends up doing a full matrix multiply.
     656           0 :     for (int i = 0; i < 6; ++i) {
     657           0 :         (*klm)[i] = -(*klm)[i];
     658             :     }
     659           0 : }
     660             : 
     661           0 : static void calc_serp_klm(const SkPoint pts[4], const SkScalar d[3], SkMatrix* klm) {
     662             :     SkMatrix CIT;
     663           0 :     int skipCol = calc_inverse_transpose_power_basis_matrix(pts, &CIT);
     664             : 
     665           0 :     const SkScalar root = SkScalarSqrt(9 * d[1] * d[1] - 12 * d[0] * d[2]);
     666             : 
     667           0 :     const SkScalar tl = 3 * d[1] + root;
     668           0 :     const SkScalar sl = 6 * d[0];
     669           0 :     const SkScalar tm = 3 * d[1] - root;
     670           0 :     const SkScalar sm = 6 * d[0];
     671             : 
     672             :     SkMatrix klmCoeffs;
     673           0 :     int col = 0;
     674           0 :     if (0 != skipCol) {
     675           0 :         klmCoeffs[0] = 0;
     676           0 :         klmCoeffs[3] = -sl * sl * sl;
     677           0 :         klmCoeffs[6] = -sm * sm * sm;
     678           0 :         ++col;
     679             :     }
     680           0 :     if (1 != skipCol) {
     681           0 :         klmCoeffs[col + 0] = sl * sm;
     682           0 :         klmCoeffs[col + 3] = 3 * sl * sl * tl;
     683           0 :         klmCoeffs[col + 6] = 3 * sm * sm * tm;
     684           0 :         ++col;
     685             :     }
     686           0 :     if (2 != skipCol) {
     687           0 :         klmCoeffs[col + 0] = -tl * sm - tm * sl;
     688           0 :         klmCoeffs[col + 3] = -3 * sl * tl * tl;
     689           0 :         klmCoeffs[col + 6] = -3 * sm * tm * tm;
     690           0 :         ++col;
     691             :     }
     692             : 
     693           0 :     SkASSERT(2 == col);
     694           0 :     klmCoeffs[2] = tl * tm;
     695           0 :     klmCoeffs[5] = tl * tl * tl;
     696           0 :     klmCoeffs[8] = tm * tm * tm;
     697             : 
     698           0 :     klm->setConcat(klmCoeffs, CIT);
     699             : 
     700             :     // If d0 > 0 we need to flip the orientation of our curve
     701             :     // This is done by negating the k and l values
     702             :     // We want negative distance values to be on the inside
     703           0 :     if (d[0] > 0) {
     704           0 :         negate_kl(klm);
     705             :     }
     706           0 : }
     707             : 
     708           0 : static void calc_loop_klm(const SkPoint pts[4], SkScalar d1, SkScalar td, SkScalar sd,
     709             :                           SkScalar te, SkScalar se, SkMatrix* klm) {
     710             :     SkMatrix CIT;
     711           0 :     int skipCol = calc_inverse_transpose_power_basis_matrix(pts, &CIT);
     712             : 
     713           0 :     const SkScalar tesd = te * sd;
     714           0 :     const SkScalar tdse = td * se;
     715             : 
     716             :     SkMatrix klmCoeffs;
     717           0 :     int col = 0;
     718           0 :     if (0 != skipCol) {
     719           0 :         klmCoeffs[0] = 0;
     720           0 :         klmCoeffs[3] = -sd * sd * se;
     721           0 :         klmCoeffs[6] = -se * se * sd;
     722           0 :         ++col;
     723             :     }
     724           0 :     if (1 != skipCol) {
     725           0 :         klmCoeffs[col + 0] = sd * se;
     726           0 :         klmCoeffs[col + 3] = sd * (2 * tdse + tesd);
     727           0 :         klmCoeffs[col + 6] = se * (2 * tesd + tdse);
     728           0 :         ++col;
     729             :     }
     730           0 :     if (2 != skipCol) {
     731           0 :         klmCoeffs[col + 0] = -tdse - tesd;
     732           0 :         klmCoeffs[col + 3] = -td * (tdse + 2 * tesd);
     733           0 :         klmCoeffs[col + 6] = -te * (tesd + 2 * tdse);
     734           0 :         ++col;
     735             :     }
     736             : 
     737           0 :     SkASSERT(2 == col);
     738           0 :     klmCoeffs[2] = td * te;
     739           0 :     klmCoeffs[5] = td * td * te;
     740           0 :     klmCoeffs[8] = te * te * td;
     741             : 
     742           0 :     klm->setConcat(klmCoeffs, CIT);
     743             : 
     744             :     // For the general loop curve, we flip the orientation in the same pattern as the serp case
     745             :     // above. Thus we only check d1. Technically we should check the value of the hessian as well
     746             :     // cause we care about the sign of d1*Hessian. However, the Hessian is always negative outside
     747             :     // the loop section and positive inside. We take care of the flipping for the loop sections
     748             :     // later on.
     749           0 :     if (d1 > 0) {
     750           0 :         negate_kl(klm);
     751             :     }
     752           0 : }
     753             : 
     754             : // For the case when we have a cusp at a parameter value of infinity (discr == 0, d1 == 0).
     755           0 : static void calc_inf_cusp_klm(const SkPoint pts[4], SkScalar d2, SkScalar d3, SkMatrix* klm) {
     756             :     SkMatrix CIT;
     757           0 :     int skipCol = calc_inverse_transpose_power_basis_matrix(pts, &CIT);
     758             : 
     759           0 :     const SkScalar tn = d3;
     760           0 :     const SkScalar sn = 3 * d2;
     761             : 
     762             :     SkMatrix klmCoeffs;
     763           0 :     int col = 0;
     764           0 :     if (0 != skipCol) {
     765           0 :         klmCoeffs[0] = 0;
     766           0 :         klmCoeffs[3] = -sn * sn * sn;
     767           0 :         ++col;
     768             :     }
     769           0 :     if (1 != skipCol) {
     770           0 :         klmCoeffs[col + 0] = 0;
     771           0 :         klmCoeffs[col + 3] = 3 * sn * sn * tn;
     772           0 :         ++col;
     773             :     }
     774           0 :     if (2 != skipCol) {
     775           0 :         klmCoeffs[col + 0] = -sn;
     776           0 :         klmCoeffs[col + 3] = -3 * sn * tn * tn;
     777           0 :         ++col;
     778             :     }
     779             : 
     780           0 :     SkASSERT(2 == col);
     781           0 :     klmCoeffs[2] = tn;
     782           0 :     klmCoeffs[5] = tn * tn * tn;
     783             : 
     784           0 :     klmCoeffs[6] = 0;
     785           0 :     klmCoeffs[7] = 0;
     786           0 :     klmCoeffs[8] = 1;
     787             : 
     788           0 :     klm->setConcat(klmCoeffs, CIT);
     789           0 : }
     790             : 
     791             : // For the case when a cubic bezier is actually a quadratic. We duplicate k in l so that the
     792             : // implicit becomes:
     793             : //
     794             : //     k^3 - l*m == k^3 - l*k == k * (k^2 - l)
     795             : //
     796             : // In the quadratic case we can simply assign fixed values at each control point:
     797             : //
     798             : //     | ..K.. |     | pts[0]  pts[1]  pts[2]  pts[3] |      | 0   1/3  2/3  1 |
     799             : //     | ..L.. |  *  |   .       .       .       .    |  ==  | 0     0  1/3  1 |
     800             : //     | ..K.. |     |   1       1       1       1    |      | 0   1/3  2/3  1 |
     801             : //
     802           0 : static void calc_quadratic_klm(const SkPoint pts[4], SkScalar d3, SkMatrix* klm) {
     803             :     SkMatrix klmAtPts;
     804             :     klmAtPts.setAll(0,  1.f/3,  1,
     805             :                     0,      0,  1,
     806           0 :                     0,  1.f/3,  1);
     807             : 
     808             :     SkMatrix inversePts;
     809           0 :     inversePts.setAll(pts[0].x(),  pts[1].x(),  pts[3].x(),
     810             :                       pts[0].y(),  pts[1].y(),  pts[3].y(),
     811           0 :                                1,           1,           1);
     812           0 :     SkAssertResult(inversePts.invert(&inversePts));
     813             : 
     814           0 :     klm->setConcat(klmAtPts, inversePts);
     815             : 
     816             :     // If d3 > 0 we need to flip the orientation of our curve
     817             :     // This is done by negating the k and l values
     818           0 :     if (d3 > 0) {
     819           0 :         negate_kl(klm);
     820             :     }
     821           0 : }
     822             : 
     823             : // For the case when a cubic bezier is actually a line. We set K=0, L=1, M=-line, which results in
     824             : // the following implicit:
     825             : //
     826             : //     k^3 - l*m == 0^3 - 1*(-line) == -(-line) == line
     827             : //
     828           0 : static void calc_line_klm(const SkPoint pts[4], SkMatrix* klm) {
     829           0 :     SkScalar ny = pts[0].x() - pts[3].x();
     830           0 :     SkScalar nx = pts[3].y() - pts[0].y();
     831           0 :     SkScalar k = nx * pts[0].x() + ny * pts[0].y();
     832           0 :     klm->setAll(  0,   0, 0,
     833             :                   0,   0, 1,
     834           0 :                 -nx, -ny, k);
     835           0 : }
     836             : 
     837           0 : int GrPathUtils::chopCubicAtLoopIntersection(const SkPoint src[4], SkPoint dst[10], SkMatrix* klm,
     838             :                                              int* loopIndex) {
     839             :     // Variables to store the two parametric values at the loop double point.
     840           0 :     SkScalar t1 = 0, t2 = 0;
     841             : 
     842             :     // Homogeneous parametric values at the loop double point.
     843             :     SkScalar td, sd, te, se;
     844             : 
     845             :     SkScalar d[3];
     846           0 :     SkCubicType cType = SkClassifyCubic(src, d);
     847             : 
     848           0 :     int chop_count = 0;
     849           0 :     if (kLoop_SkCubicType == cType) {
     850           0 :         SkScalar tempSqrt = SkScalarSqrt(4.f * d[0] * d[2] - 3.f * d[1] * d[1]);
     851           0 :         td = d[1] + tempSqrt;
     852           0 :         sd = 2.f * d[0];
     853           0 :         te = d[1] - tempSqrt;
     854           0 :         se = 2.f * d[0];
     855             : 
     856           0 :         t1 = td / sd;
     857           0 :         t2 = te / se;
     858             :         // need to have t values sorted since this is what is expected by SkChopCubicAt
     859           0 :         if (t1 > t2) {
     860           0 :             SkTSwap(t1, t2);
     861             :         }
     862             : 
     863             :         SkScalar chop_ts[2];
     864           0 :         if (t1 > 0.f && t1 < 1.f) {
     865           0 :             chop_ts[chop_count++] = t1;
     866             :         }
     867           0 :         if (t2 > 0.f && t2 < 1.f) {
     868           0 :             chop_ts[chop_count++] = t2;
     869             :         }
     870           0 :         if(dst) {
     871           0 :             SkChopCubicAt(src, dst, chop_ts, chop_count);
     872             :         }
     873             :     } else {
     874           0 :         if (dst) {
     875           0 :             memcpy(dst, src, sizeof(SkPoint) * 4);
     876             :         }
     877             :     }
     878             : 
     879           0 :     if (loopIndex) {
     880           0 :         if (2 == chop_count) {
     881           0 :             *loopIndex = 1;
     882           0 :         } else if (1 == chop_count) {
     883           0 :             if (t1 < 0.f) {
     884           0 :                 *loopIndex = 0;
     885             :             } else {
     886           0 :                 *loopIndex = 1;
     887             :             }
     888             :         } else {
     889           0 :             if (t1 < 0.f && t2 > 1.f) {
     890           0 :                 *loopIndex = 0;
     891             :             } else {
     892           0 :                 *loopIndex = -1;
     893             :             }
     894             :         }
     895             :     }
     896             : 
     897           0 :     if (klm) {
     898           0 :         switch (cType) {
     899             :             case kSerpentine_SkCubicType:
     900           0 :                 calc_serp_klm(src, d, klm);
     901           0 :                 break;
     902             :             case kLoop_SkCubicType:
     903           0 :                 calc_loop_klm(src, d[0], td, sd, te, se, klm);
     904           0 :                 break;
     905             :             case kCusp_SkCubicType:
     906           0 :                 if (0 != d[0]) {
     907             :                     // FIXME: SkClassifyCubic has a tolerance, but we need an exact classification
     908             :                     // here to be sure we won't get a negative in the square root.
     909           0 :                     calc_serp_klm(src, d, klm);
     910             :                 } else {
     911           0 :                     calc_inf_cusp_klm(src, d[1], d[2], klm);
     912             :                 }
     913           0 :                 break;
     914             :             case kQuadratic_SkCubicType:
     915           0 :                 calc_quadratic_klm(src, d[2], klm);
     916           0 :                 break;
     917             :             case kLine_SkCubicType:
     918             :             case kPoint_SkCubicType:
     919           0 :                 calc_line_klm(src, klm);
     920           0 :                 break;
     921             :         };
     922             :     }
     923           0 :     return chop_count + 1;
     924             : }

Generated by: LCOV version 1.13