LCOV - code coverage report
Current view: top level - gfx/skia/skia/src/gpu - GrPathUtils.h (source / functions) Hit Total Coverage
Test: output.info Lines: 0 18 0.0 %
Date: 2017-07-14 16:53:18 Functions: 0 3 0.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*
       2             :  * Copyright 2011 Google Inc.
       3             :  *
       4             :  * Use of this source code is governed by a BSD-style license that can be
       5             :  * found in the LICENSE file.
       6             :  */
       7             : 
       8             : #ifndef GrPathUtils_DEFINED
       9             : #define GrPathUtils_DEFINED
      10             : 
      11             : #include "SkRect.h"
      12             : #include "SkPathPriv.h"
      13             : #include "SkTArray.h"
      14             : 
      15             : class SkMatrix;
      16             : 
      17             : /**
      18             :  *  Utilities for evaluating paths.
      19             :  */
      20             : namespace GrPathUtils {
      21             :     SkScalar scaleToleranceToSrc(SkScalar devTol,
      22             :                                  const SkMatrix& viewM,
      23             :                                  const SkRect& pathBounds);
      24             : 
      25             :     /// Since we divide by tol if we're computing exact worst-case bounds,
      26             :     /// very small tolerances will be increased to gMinCurveTol.
      27             :     int worstCasePointCount(const SkPath&,
      28             :                             int* subpaths,
      29             :                             SkScalar tol);
      30             : 
      31             :     /// Since we divide by tol if we're computing exact worst-case bounds,
      32             :     /// very small tolerances will be increased to gMinCurveTol.
      33             :     uint32_t quadraticPointCount(const SkPoint points[], SkScalar tol);
      34             : 
      35             :     uint32_t generateQuadraticPoints(const SkPoint& p0,
      36             :                                      const SkPoint& p1,
      37             :                                      const SkPoint& p2,
      38             :                                      SkScalar tolSqd,
      39             :                                      SkPoint** points,
      40             :                                      uint32_t pointsLeft);
      41             : 
      42             :     /// Since we divide by tol if we're computing exact worst-case bounds,
      43             :     /// very small tolerances will be increased to gMinCurveTol.
      44             :     uint32_t cubicPointCount(const SkPoint points[], SkScalar tol);
      45             : 
      46             :     uint32_t generateCubicPoints(const SkPoint& p0,
      47             :                                  const SkPoint& p1,
      48             :                                  const SkPoint& p2,
      49             :                                  const SkPoint& p3,
      50             :                                  SkScalar tolSqd,
      51             :                                  SkPoint** points,
      52             :                                  uint32_t pointsLeft);
      53             : 
      54             :     // A 2x3 matrix that goes from the 2d space coordinates to UV space where
      55             :     // u^2-v = 0 specifies the quad. The matrix is determined by the control
      56             :     // points of the quadratic.
      57             :     class QuadUVMatrix {
      58             :     public:
      59             :         QuadUVMatrix() {}
      60             :         // Initialize the matrix from the control pts
      61           0 :         QuadUVMatrix(const SkPoint controlPts[3]) { this->set(controlPts); }
      62             :         void set(const SkPoint controlPts[3]);
      63             : 
      64             :         /**
      65             :          * Applies the matrix to vertex positions to compute UV coords. This
      66             :          * has been templated so that the compiler can easliy unroll the loop
      67             :          * and reorder to avoid stalling for loads. The assumption is that a
      68             :          * path renderer will have a small fixed number of vertices that it
      69             :          * uploads for each quad.
      70             :          *
      71             :          * N is the number of vertices.
      72             :          * STRIDE is the size of each vertex.
      73             :          * UV_OFFSET is the offset of the UV values within each vertex.
      74             :          * vertices is a pointer to the first vertex.
      75             :          */
      76             :         template <int N, size_t STRIDE, size_t UV_OFFSET>
      77           0 :         void apply(const void* vertices) const {
      78           0 :             intptr_t xyPtr = reinterpret_cast<intptr_t>(vertices);
      79           0 :             intptr_t uvPtr = reinterpret_cast<intptr_t>(vertices) + UV_OFFSET;
      80           0 :             float sx = fM[0];
      81           0 :             float kx = fM[1];
      82           0 :             float tx = fM[2];
      83           0 :             float ky = fM[3];
      84           0 :             float sy = fM[4];
      85           0 :             float ty = fM[5];
      86           0 :             for (int i = 0; i < N; ++i) {
      87           0 :                 const SkPoint* xy = reinterpret_cast<const SkPoint*>(xyPtr);
      88           0 :                 SkPoint* uv = reinterpret_cast<SkPoint*>(uvPtr);
      89           0 :                 uv->fX = sx * xy->fX + kx * xy->fY + tx;
      90           0 :                 uv->fY = ky * xy->fX + sy * xy->fY + ty;
      91           0 :                 xyPtr += STRIDE;
      92           0 :                 uvPtr += STRIDE;
      93             :             }
      94           0 :         }
      95             :     private:
      96             :         float fM[6];
      97             :     };
      98             : 
      99             :     // Input is 3 control points and a weight for a bezier conic. Calculates the
     100             :     // three linear functionals (K,L,M) that represent the implicit equation of the
     101             :     // conic, k^2 - lm.
     102             :     //
     103             :     // Output: klm holds the linear functionals K,L,M as row vectors:
     104             :     //
     105             :     //     | ..K.. |   | x |      | k |
     106             :     //     | ..L.. | * | y |  ==  | l |
     107             :     //     | ..M.. |   | 1 |      | m |
     108             :     //
     109             :     void getConicKLM(const SkPoint p[3], const SkScalar weight, SkMatrix* klm);
     110             : 
     111             :     // Converts a cubic into a sequence of quads. If working in device space
     112             :     // use tolScale = 1, otherwise set based on stretchiness of the matrix. The
     113             :     // result is sets of 3 points in quads.
     114             :     void convertCubicToQuads(const SkPoint p[4],
     115             :                              SkScalar tolScale,
     116             :                              SkTArray<SkPoint, true>* quads);
     117             : 
     118             :     // When we approximate a cubic {a,b,c,d} with a quadratic we may have to
     119             :     // ensure that the new control point lies between the lines ab and cd. The
     120             :     // convex path renderer requires this. It starts with a path where all the
     121             :     // control points taken together form a convex polygon. It relies on this
     122             :     // property and the quadratic approximation of cubics step cannot alter it.
     123             :     // This variation enforces this constraint. The cubic must be simple and dir
     124             :     // must specify the orientation of the contour containing the cubic.
     125             :     void convertCubicToQuadsConstrainToTangents(const SkPoint p[4],
     126             :                                                 SkScalar tolScale,
     127             :                                                 SkPathPriv::FirstDirection dir,
     128             :                                                 SkTArray<SkPoint, true>* quads);
     129             : 
     130             :     // Chops the cubic bezier passed in by src, at the double point (intersection point)
     131             :     // if the curve is a cubic loop. If it is a loop, there will be two parametric values for
     132             :     // the double point: t1 and t2. We chop the cubic at these values if they are between 0 and 1.
     133             :     // Return value:
     134             :     // Value of 3: t1 and t2 are both between (0,1), and dst will contain the three cubics,
     135             :     //             dst[0..3], dst[3..6], and dst[6..9] if dst is not nullptr
     136             :     // Value of 2: Only one of t1 and t2 are between (0,1), and dst will contain the two cubics,
     137             :     //             dst[0..3] and dst[3..6] if dst is not nullptr
     138             :     // Value of 1: Neither t1 nor t2 are between (0,1), and dst will contain the one original cubic,
     139             :     //             dst[0..3] if dst is not nullptr
     140             :     //
     141             :     // Optional KLM Calculation:
     142             :     // The function can also return the KLM linear functionals for the cubic implicit form of
     143             :     // k^3 - lm. This can be shared by all chopped cubics.
     144             :     //
     145             :     // Output:
     146             :     //
     147             :     // klm: Holds the linear functionals K,L,M as row vectors:
     148             :     //
     149             :     //          | ..K.. |   | x |      | k |
     150             :     //          | ..L.. | * | y |  ==  | l |
     151             :     //          | ..M.. |   | 1 |      | m |
     152             :     //
     153             :     // loopIndex: This value will tell the caller which of the chopped sections (if any) are the
     154             :     //            actual loop. A value of -1 means there is no loop section. The caller can then use
     155             :     //            this value to decide how/if they want to flip the orientation of this section.
     156             :     //            The flip should be done by negating the k and l values as follows:
     157             :     //
     158             :     //                KLM.postScale(-1, -1)
     159             :     //
     160             :     // Notice that the KLM lines are calculated in the same space as the input control points.
     161             :     // If you transform the points the lines will also need to be transformed. This can be done
     162             :     // by mapping the lines with the inverse-transpose of the matrix used to map the points.
     163             :     int chopCubicAtLoopIntersection(const SkPoint src[4], SkPoint dst[10] = nullptr,
     164             :                                     SkMatrix* klm = nullptr, int* loopIndex = nullptr);
     165             : 
     166             :     // When tessellating curved paths into linear segments, this defines the maximum distance
     167             :     // in screen space which a segment may deviate from the mathmatically correct value.
     168             :     // Above this value, the segment will be subdivided.
     169             :     // This value was chosen to approximate the supersampling accuracy of the raster path (16
     170             :     // samples, or one quarter pixel).
     171             :     static const SkScalar kDefaultTolerance = SkDoubleToScalar(0.25);
     172             : };
     173             : #endif

Generated by: LCOV version 1.13