LCOV - code coverage report
Current view: top level - gfx/skia/skia/src/gpu/ops - GrAAConvexTessellator.cpp (source / functions) Hit Total Coverage
Test: output.info Lines: 0 538 0.0 %
Date: 2017-07-14 16:53:18 Functions: 0 34 0.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*
       2             :  * Copyright 2015 Google Inc.
       3             :  *
       4             :  * Use of this source code is governed by a BSD-style license that can be
       5             :  * found in the LICENSE file.
       6             :  */
       7             : 
       8             : #include "GrAAConvexTessellator.h"
       9             : #include "SkCanvas.h"
      10             : #include "SkPath.h"
      11             : #include "SkPoint.h"
      12             : #include "SkString.h"
      13             : #include "GrPathUtils.h"
      14             : 
      15             : // Next steps:
      16             : //  add an interactive sample app slide
      17             : //  add debug check that all points are suitably far apart
      18             : //  test more degenerate cases
      19             : 
      20             : // The tolerance for fusing vertices and eliminating colinear lines (It is in device space).
      21             : static const SkScalar kClose = (SK_Scalar1 / 16);
      22             : static const SkScalar kCloseSqd = kClose * kClose;
      23             : 
      24             : // tesselation tolerance values, in device space pixels
      25             : static const SkScalar kQuadTolerance = 0.2f;
      26             : static const SkScalar kCubicTolerance = 0.2f;
      27             : static const SkScalar kConicTolerance = 0.5f;
      28             : 
      29             : // dot product below which we use a round cap between curve segments
      30             : static const SkScalar kRoundCapThreshold = 0.8f;
      31             : 
      32             : // dot product above which we consider two adjacent curves to be part of the "same" curve
      33             : static const SkScalar kCurveConnectionThreshold = 0.8f;
      34             : 
      35           0 : static bool intersect(const SkPoint& p0, const SkPoint& n0,
      36             :                       const SkPoint& p1, const SkPoint& n1,
      37             :                       SkScalar* t) {
      38           0 :     const SkPoint v = p1 - p0;
      39           0 :     SkScalar perpDot = n0.fX * n1.fY - n0.fY * n1.fX;
      40           0 :     if (SkScalarNearlyZero(perpDot)) {
      41           0 :         return false;
      42             :     }
      43           0 :     *t = (v.fX * n1.fY - v.fY * n1.fX) / perpDot;
      44           0 :     SkASSERT(SkScalarIsFinite(*t));
      45           0 :     return true;
      46             : }
      47             : 
      48             : // This is a special case version of intersect where we have the vector
      49             : // perpendicular to the second line rather than the vector parallel to it.
      50           0 : static SkScalar perp_intersect(const SkPoint& p0, const SkPoint& n0,
      51             :                                const SkPoint& p1, const SkPoint& perp) {
      52           0 :     const SkPoint v = p1 - p0;
      53           0 :     SkScalar perpDot = n0.dot(perp);
      54           0 :     return v.dot(perp) / perpDot;
      55             : }
      56             : 
      57           0 : static bool duplicate_pt(const SkPoint& p0, const SkPoint& p1) {
      58           0 :     SkScalar distSq = p0.distanceToSqd(p1);
      59           0 :     return distSq < kCloseSqd;
      60             : }
      61             : 
      62           0 : static SkScalar abs_dist_from_line(const SkPoint& p0, const SkVector& v, const SkPoint& test) {
      63           0 :     SkPoint testV = test - p0;
      64           0 :     SkScalar dist = testV.fX * v.fY - testV.fY * v.fX;
      65           0 :     return SkScalarAbs(dist);
      66             : }
      67             : 
      68           0 : int GrAAConvexTessellator::addPt(const SkPoint& pt,
      69             :                                  SkScalar depth,
      70             :                                  SkScalar coverage,
      71             :                                  bool movable,
      72             :                                  CurveState curve) {
      73           0 :     this->validate();
      74             : 
      75           0 :     int index = fPts.count();
      76           0 :     *fPts.push() = pt;
      77           0 :     *fCoverages.push() = coverage;
      78           0 :     *fMovable.push() = movable;
      79           0 :     *fCurveState.push() = curve;
      80             : 
      81           0 :     this->validate();
      82           0 :     return index;
      83             : }
      84             : 
      85           0 : void GrAAConvexTessellator::popLastPt() {
      86           0 :     this->validate();
      87             : 
      88           0 :     fPts.pop();
      89           0 :     fCoverages.pop();
      90           0 :     fMovable.pop();
      91           0 :     fCurveState.pop();
      92             : 
      93           0 :     this->validate();
      94           0 : }
      95             : 
      96           0 : void GrAAConvexTessellator::popFirstPtShuffle() {
      97           0 :     this->validate();
      98             : 
      99           0 :     fPts.removeShuffle(0);
     100           0 :     fCoverages.removeShuffle(0);
     101           0 :     fMovable.removeShuffle(0);
     102           0 :     fCurveState.removeShuffle(0);
     103             : 
     104           0 :     this->validate();
     105           0 : }
     106             : 
     107           0 : void GrAAConvexTessellator::updatePt(int index,
     108             :                                      const SkPoint& pt,
     109             :                                      SkScalar depth,
     110             :                                      SkScalar coverage) {
     111           0 :     this->validate();
     112           0 :     SkASSERT(fMovable[index]);
     113             : 
     114           0 :     fPts[index] = pt;
     115           0 :     fCoverages[index] = coverage;
     116           0 : }
     117             : 
     118           0 : void GrAAConvexTessellator::addTri(int i0, int i1, int i2) {
     119           0 :     if (i0 == i1 || i1 == i2 || i2 == i0) {
     120           0 :         return;
     121             :     }
     122             : 
     123           0 :     *fIndices.push() = i0;
     124           0 :     *fIndices.push() = i1;
     125           0 :     *fIndices.push() = i2;
     126             : }
     127             : 
     128           0 : void GrAAConvexTessellator::rewind() {
     129           0 :     fPts.rewind();
     130           0 :     fCoverages.rewind();
     131           0 :     fMovable.rewind();
     132           0 :     fIndices.rewind();
     133           0 :     fNorms.rewind();
     134           0 :     fCurveState.rewind();
     135           0 :     fInitialRing.rewind();
     136           0 :     fCandidateVerts.rewind();
     137             : #if GR_AA_CONVEX_TESSELLATOR_VIZ
     138             :     fRings.rewind();        // TODO: leak in this case!
     139             : #else
     140           0 :     fRings[0].rewind();
     141           0 :     fRings[1].rewind();
     142             : #endif
     143           0 : }
     144             : 
     145           0 : void GrAAConvexTessellator::computeBisectors() {
     146           0 :     fBisectors.setCount(fNorms.count());
     147             : 
     148           0 :     int prev = fBisectors.count() - 1;
     149           0 :     for (int cur = 0; cur < fBisectors.count(); prev = cur, ++cur) {
     150           0 :         fBisectors[cur] = fNorms[cur] + fNorms[prev];
     151           0 :         if (!fBisectors[cur].normalize()) {
     152           0 :             SkASSERT(SkPoint::kLeft_Side == fSide || SkPoint::kRight_Side == fSide);
     153           0 :             fBisectors[cur].setOrthog(fNorms[cur], (SkPoint::Side)-fSide);
     154             :             SkVector other;
     155           0 :             other.setOrthog(fNorms[prev], fSide);
     156           0 :             fBisectors[cur] += other;
     157           0 :             SkAssertResult(fBisectors[cur].normalize());
     158             :         } else {
     159           0 :             fBisectors[cur].negate();      // make the bisector face in
     160             :         }
     161           0 :         if (fCurveState[prev] == kIndeterminate_CurveState) {
     162           0 :             if (fCurveState[cur] == kSharp_CurveState) {
     163           0 :                 fCurveState[prev] = kSharp_CurveState;
     164             :             } else {
     165           0 :                 if (SkScalarAbs(fNorms[cur].dot(fNorms[prev])) > kCurveConnectionThreshold) {
     166           0 :                     fCurveState[prev] = kCurve_CurveState;
     167           0 :                     fCurveState[cur]  = kCurve_CurveState;
     168             :                 } else {
     169           0 :                     fCurveState[prev] = kSharp_CurveState;
     170           0 :                     fCurveState[cur]  = kSharp_CurveState;
     171             :                 }
     172             :             }
     173             :         }
     174             : 
     175           0 :         SkASSERT(SkScalarNearlyEqual(1.0f, fBisectors[cur].length()));
     176             :     }
     177           0 : }
     178             : 
     179             : // Create as many rings as we need to (up to a predefined limit) to reach the specified target
     180             : // depth. If we are in fill mode, the final ring will automatically be fanned.
     181           0 : bool GrAAConvexTessellator::createInsetRings(Ring& previousRing, SkScalar initialDepth,
     182             :                                              SkScalar initialCoverage, SkScalar targetDepth,
     183             :                                              SkScalar targetCoverage, Ring** finalRing) {
     184             :     static const int kMaxNumRings = 8;
     185             : 
     186           0 :     if (previousRing.numPts() < 3) {
     187           0 :         return false;
     188             :     }
     189           0 :     Ring* currentRing = &previousRing;
     190             :     int i;
     191           0 :     for (i = 0; i < kMaxNumRings; ++i) {
     192           0 :         Ring* nextRing = this->getNextRing(currentRing);
     193           0 :         SkASSERT(nextRing != currentRing);
     194             : 
     195           0 :         bool done = this->createInsetRing(*currentRing, nextRing, initialDepth, initialCoverage,
     196           0 :                                           targetDepth, targetCoverage, i == 0);
     197           0 :         currentRing = nextRing;
     198           0 :         if (done) {
     199           0 :             break;
     200             :         }
     201           0 :         currentRing->init(*this);
     202             :     }
     203             : 
     204           0 :     if (kMaxNumRings == i) {
     205             :         // Bail if we've exceeded the amount of time we want to throw at this.
     206           0 :         this->terminate(*currentRing);
     207           0 :         return false;
     208             :     }
     209           0 :     bool done = currentRing->numPts() >= 3;
     210           0 :     if (done) {
     211           0 :         currentRing->init(*this);
     212             :     }
     213           0 :     *finalRing = currentRing;
     214           0 :     return done;
     215             : }
     216             : 
     217             : // The general idea here is to, conceptually, start with the original polygon and slide
     218             : // the vertices along the bisectors until the first intersection. At that
     219             : // point two of the edges collapse and the process repeats on the new polygon.
     220             : // The polygon state is captured in the Ring class while the GrAAConvexTessellator
     221             : // controls the iteration. The CandidateVerts holds the formative points for the
     222             : // next ring.
     223           0 : bool GrAAConvexTessellator::tessellate(const SkMatrix& m, const SkPath& path) {
     224           0 :     if (!this->extractFromPath(m, path)) {
     225           0 :         return false;
     226             :     }
     227             : 
     228           0 :     SkScalar coverage = 1.0f;
     229           0 :     SkScalar scaleFactor = 0.0f;
     230             : 
     231           0 :     if (SkStrokeRec::kStrokeAndFill_Style == fStyle) {
     232           0 :         SkASSERT(m.isSimilarity());
     233           0 :         scaleFactor = m.getMaxScale(); // x and y scale are the same
     234           0 :         SkScalar effectiveStrokeWidth = scaleFactor * fStrokeWidth;
     235           0 :         Ring outerStrokeAndAARing;
     236           0 :         this->createOuterRing(fInitialRing,
     237           0 :                               effectiveStrokeWidth / 2 + kAntialiasingRadius, 0.0,
     238           0 :                               &outerStrokeAndAARing);
     239             : 
     240             :         // discard all the triangles added between the originating ring and the new outer ring
     241           0 :         fIndices.rewind();
     242             : 
     243           0 :         outerStrokeAndAARing.init(*this);
     244             : 
     245           0 :         outerStrokeAndAARing.makeOriginalRing();
     246             : 
     247             :         // Add the outer stroke ring's normals to the originating ring's normals
     248             :         // so it can also act as an originating ring
     249           0 :         fNorms.setCount(fNorms.count() + outerStrokeAndAARing.numPts());
     250           0 :         for (int i = 0; i < outerStrokeAndAARing.numPts(); ++i) {
     251           0 :             SkASSERT(outerStrokeAndAARing.index(i) < fNorms.count());
     252           0 :             fNorms[outerStrokeAndAARing.index(i)] = outerStrokeAndAARing.norm(i);
     253             :         }
     254             : 
     255             :         // the bisectors are only needed for the computation of the outer ring
     256           0 :         fBisectors.rewind();
     257             : 
     258             :         Ring* insetAARing;
     259             :         this->createInsetRings(outerStrokeAndAARing,
     260             :                                0.0f, 0.0f, 2*kAntialiasingRadius, 1.0f,
     261           0 :                                &insetAARing);
     262             : 
     263           0 :         SkDEBUGCODE(this->validate();)
     264           0 :         return true;
     265             :     }
     266             : 
     267           0 :     if (SkStrokeRec::kStroke_Style == fStyle) {
     268           0 :         SkASSERT(fStrokeWidth >= 0.0f);
     269           0 :         SkASSERT(m.isSimilarity());
     270           0 :         scaleFactor = m.getMaxScale(); // x and y scale are the same
     271           0 :         SkScalar effectiveStrokeWidth = scaleFactor * fStrokeWidth;
     272           0 :         Ring outerStrokeRing;
     273           0 :         this->createOuterRing(fInitialRing, effectiveStrokeWidth / 2 - kAntialiasingRadius,
     274           0 :                               coverage, &outerStrokeRing);
     275           0 :         outerStrokeRing.init(*this);
     276           0 :         Ring outerAARing;
     277           0 :         this->createOuterRing(outerStrokeRing, kAntialiasingRadius * 2, 0.0f, &outerAARing);
     278             :     } else {
     279           0 :         Ring outerAARing;
     280           0 :         this->createOuterRing(fInitialRing, kAntialiasingRadius, 0.0f, &outerAARing);
     281             :     }
     282             : 
     283             :     // the bisectors are only needed for the computation of the outer ring
     284           0 :     fBisectors.rewind();
     285           0 :     if (SkStrokeRec::kStroke_Style == fStyle && fInitialRing.numPts() > 2) {
     286           0 :         SkASSERT(fStrokeWidth >= 0.0f);
     287           0 :         SkScalar effectiveStrokeWidth = scaleFactor * fStrokeWidth;
     288             :         Ring* insetStrokeRing;
     289           0 :         SkScalar strokeDepth = effectiveStrokeWidth / 2 - kAntialiasingRadius;
     290           0 :         if (this->createInsetRings(fInitialRing, 0.0f, coverage, strokeDepth, coverage,
     291             :                                    &insetStrokeRing)) {
     292             :             Ring* insetAARing;
     293           0 :             this->createInsetRings(*insetStrokeRing, strokeDepth, coverage, strokeDepth +
     294           0 :                                    kAntialiasingRadius * 2, 0.0f, &insetAARing);
     295             :         }
     296             :     } else {
     297             :         Ring* insetAARing;
     298           0 :         this->createInsetRings(fInitialRing, 0.0f, 0.5f, kAntialiasingRadius, 1.0f, &insetAARing);
     299             :     }
     300             : 
     301           0 :     SkDEBUGCODE(this->validate();)
     302           0 :     return true;
     303             : }
     304             : 
     305           0 : SkScalar GrAAConvexTessellator::computeDepthFromEdge(int edgeIdx, const SkPoint& p) const {
     306           0 :     SkASSERT(edgeIdx < fNorms.count());
     307             : 
     308           0 :     SkPoint v = p - fPts[edgeIdx];
     309           0 :     SkScalar depth = -fNorms[edgeIdx].dot(v);
     310           0 :     return depth;
     311             : }
     312             : 
     313             : // Find a point that is 'desiredDepth' away from the 'edgeIdx'-th edge and lies
     314             : // along the 'bisector' from the 'startIdx'-th point.
     315           0 : bool GrAAConvexTessellator::computePtAlongBisector(int startIdx,
     316             :                                                    const SkVector& bisector,
     317             :                                                    int edgeIdx,
     318             :                                                    SkScalar desiredDepth,
     319             :                                                    SkPoint* result) const {
     320           0 :     const SkPoint& norm = fNorms[edgeIdx];
     321             : 
     322             :     // First find the point where the edge and the bisector intersect
     323             :     SkPoint newP;
     324             : 
     325           0 :     SkScalar t = perp_intersect(fPts[startIdx], bisector, fPts[edgeIdx], norm);
     326           0 :     if (SkScalarNearlyEqual(t, 0.0f)) {
     327             :         // the start point was one of the original ring points
     328           0 :         SkASSERT(startIdx < fPts.count());
     329           0 :         newP = fPts[startIdx];
     330           0 :     } else if (t < 0.0f) {
     331           0 :         newP = bisector;
     332           0 :         newP.scale(t);
     333           0 :         newP += fPts[startIdx];
     334             :     } else {
     335           0 :         return false;
     336             :     }
     337             : 
     338             :     // Then offset along the bisector from that point the correct distance
     339           0 :     SkScalar dot = bisector.dot(norm);
     340           0 :     t = -desiredDepth / dot;
     341           0 :     *result = bisector;
     342           0 :     result->scale(t);
     343           0 :     *result += newP;
     344             : 
     345           0 :     return true;
     346             : }
     347             : 
     348           0 : bool GrAAConvexTessellator::extractFromPath(const SkMatrix& m, const SkPath& path) {
     349           0 :     SkASSERT(SkPath::kConvex_Convexity == path.getConvexity());
     350             : 
     351             :     // Outer ring: 3*numPts
     352             :     // Middle ring: numPts
     353             :     // Presumptive inner ring: numPts
     354           0 :     this->reservePts(5*path.countPoints());
     355             :     // Outer ring: 12*numPts
     356             :     // Middle ring: 0
     357             :     // Presumptive inner ring: 6*numPts + 6
     358           0 :     fIndices.setReserve(18*path.countPoints() + 6);
     359             : 
     360           0 :     fNorms.setReserve(path.countPoints());
     361             : 
     362             :     // TODO: is there a faster way to extract the points from the path? Perhaps
     363             :     // get all the points via a new entry point, transform them all in bulk
     364             :     // and then walk them to find duplicates?
     365           0 :     SkPath::Iter iter(path, true);
     366             :     SkPoint pts[4];
     367             :     SkPath::Verb verb;
     368           0 :     while ((verb = iter.next(pts, true, true)) != SkPath::kDone_Verb) {
     369           0 :         switch (verb) {
     370             :             case SkPath::kLine_Verb:
     371           0 :                 this->lineTo(m, pts[1], kSharp_CurveState);
     372           0 :                 break;
     373             :             case SkPath::kQuad_Verb:
     374           0 :                 this->quadTo(m, pts);
     375           0 :                 break;
     376             :             case SkPath::kCubic_Verb:
     377           0 :                 this->cubicTo(m, pts);
     378           0 :                 break;
     379             :             case SkPath::kConic_Verb:
     380           0 :                 this->conicTo(m, pts, iter.conicWeight());
     381           0 :                 break;
     382             :             case SkPath::kMove_Verb:
     383             :             case SkPath::kClose_Verb:
     384             :             case SkPath::kDone_Verb:
     385           0 :                 break;
     386             :         }
     387             :     }
     388             : 
     389           0 :     if (this->numPts() < 2) {
     390           0 :         return false;
     391             :     }
     392             : 
     393             :     // check if last point is a duplicate of the first point. If so, remove it.
     394           0 :     if (duplicate_pt(fPts[this->numPts()-1], fPts[0])) {
     395           0 :         this->popLastPt();
     396           0 :         fNorms.pop();
     397             :     }
     398             : 
     399           0 :     SkASSERT(fPts.count() == fNorms.count()+1);
     400           0 :     if (this->numPts() >= 3) {
     401           0 :         if (abs_dist_from_line(fPts.top(), fNorms.top(), fPts[0]) < kClose) {
     402             :             // The last point is on the line from the second to last to the first point.
     403           0 :             this->popLastPt();
     404           0 :             fNorms.pop();
     405             :         }
     406             : 
     407           0 :         *fNorms.push() = fPts[0] - fPts.top();
     408           0 :         SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms.top());
     409           0 :         SkASSERT(len > 0.0f);
     410           0 :         SkASSERT(fPts.count() == fNorms.count());
     411             :     }
     412             : 
     413           0 :     if (this->numPts() >= 3 && abs_dist_from_line(fPts[0], fNorms.top(), fPts[1]) < kClose) {
     414             :         // The first point is on the line from the last to the second.
     415           0 :         this->popFirstPtShuffle();
     416           0 :         fNorms.removeShuffle(0);
     417           0 :         fNorms[0] = fPts[1] - fPts[0];
     418           0 :         SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms[0]);
     419           0 :         SkASSERT(len > 0.0f);
     420           0 :         SkASSERT(SkScalarNearlyEqual(1.0f, fNorms[0].length()));
     421             :     }
     422             : 
     423           0 :     if (this->numPts() >= 3) {
     424             :         // Check the cross product of the final trio
     425           0 :         SkScalar cross = SkPoint::CrossProduct(fNorms[0], fNorms.top());
     426           0 :         if (cross > 0.0f) {
     427           0 :             fSide = SkPoint::kRight_Side;
     428             :         } else {
     429           0 :             fSide = SkPoint::kLeft_Side;
     430             :         }
     431             : 
     432             :         // Make all the normals face outwards rather than along the edge
     433           0 :         for (int cur = 0; cur < fNorms.count(); ++cur) {
     434           0 :             fNorms[cur].setOrthog(fNorms[cur], fSide);
     435           0 :             SkASSERT(SkScalarNearlyEqual(1.0f, fNorms[cur].length()));
     436             :         }
     437             : 
     438           0 :         this->computeBisectors();
     439           0 :     } else if (this->numPts() == 2) {
     440             :         // We've got two points, so we're degenerate.
     441           0 :         if (fStyle == SkStrokeRec::kFill_Style) {
     442             :             // it's a fill, so we don't need to worry about degenerate paths
     443           0 :             return false;
     444             :         }
     445             :         // For stroking, we still need to process the degenerate path, so fix it up
     446           0 :         fSide = SkPoint::kLeft_Side;
     447             : 
     448             :         // Make all the normals face outwards rather than along the edge
     449           0 :         for (int cur = 0; cur < fNorms.count(); ++cur) {
     450           0 :             fNorms[cur].setOrthog(fNorms[cur], fSide);
     451           0 :             SkASSERT(SkScalarNearlyEqual(1.0f, fNorms[cur].length()));
     452             :         }
     453             : 
     454           0 :         fNorms.push(SkPoint::Make(-fNorms[0].fX, -fNorms[0].fY));
     455             :         // we won't actually use the bisectors, so just push zeroes
     456           0 :         fBisectors.push(SkPoint::Make(0.0, 0.0));
     457           0 :         fBisectors.push(SkPoint::Make(0.0, 0.0));
     458             :     } else {
     459           0 :         return false;
     460             :     }
     461             : 
     462           0 :     fCandidateVerts.setReserve(this->numPts());
     463           0 :     fInitialRing.setReserve(this->numPts());
     464           0 :     for (int i = 0; i < this->numPts(); ++i) {
     465           0 :         fInitialRing.addIdx(i, i);
     466             :     }
     467           0 :     fInitialRing.init(fNorms, fBisectors);
     468             : 
     469           0 :     this->validate();
     470           0 :     return true;
     471             : }
     472             : 
     473           0 : GrAAConvexTessellator::Ring* GrAAConvexTessellator::getNextRing(Ring* lastRing) {
     474             : #if GR_AA_CONVEX_TESSELLATOR_VIZ
     475             :     Ring* ring = *fRings.push() = new Ring;
     476             :     ring->setReserve(fInitialRing.numPts());
     477             :     ring->rewind();
     478             :     return ring;
     479             : #else
     480             :     // Flip flop back and forth between fRings[0] & fRings[1]
     481           0 :     int nextRing = (lastRing == &fRings[0]) ? 1 : 0;
     482           0 :     fRings[nextRing].setReserve(fInitialRing.numPts());
     483           0 :     fRings[nextRing].rewind();
     484           0 :     return &fRings[nextRing];
     485             : #endif
     486             : }
     487             : 
     488           0 : void GrAAConvexTessellator::fanRing(const Ring& ring) {
     489             :     // fan out from point 0
     490           0 :     int startIdx = ring.index(0);
     491           0 :     for (int cur = ring.numPts() - 2; cur >= 0; --cur) {
     492           0 :         this->addTri(startIdx, ring.index(cur), ring.index(cur + 1));
     493             :     }
     494           0 : }
     495             : 
     496           0 : void GrAAConvexTessellator::createOuterRing(const Ring& previousRing, SkScalar outset,
     497             :                                             SkScalar coverage, Ring* nextRing) {
     498           0 :     const int numPts = previousRing.numPts();
     499           0 :     if (numPts == 0) {
     500           0 :         return;
     501             :     }
     502             : 
     503           0 :     int prev = numPts - 1;
     504           0 :     int lastPerpIdx = -1, firstPerpIdx = -1;
     505             : 
     506           0 :     const SkScalar outsetSq = outset * outset;
     507           0 :     SkScalar miterLimitSq = outset * fMiterLimit;
     508           0 :     miterLimitSq = miterLimitSq * miterLimitSq;
     509           0 :     for (int cur = 0; cur < numPts; ++cur) {
     510           0 :         int originalIdx = previousRing.index(cur);
     511             :         // For each vertex of the original polygon we add at least two points to the
     512             :         // outset polygon - one extending perpendicular to each impinging edge. Connecting these
     513             :         // two points yields a bevel join. We need one additional point for a mitered join, and
     514             :         // a round join requires one or more points depending upon curvature.
     515             : 
     516             :         // The perpendicular point for the last edge
     517           0 :         SkPoint normal1 = previousRing.norm(prev);
     518           0 :         SkPoint perp1 = normal1;
     519           0 :         perp1.scale(outset);
     520           0 :         perp1 += this->point(originalIdx);
     521             : 
     522             :         // The perpendicular point for the next edge.
     523           0 :         SkPoint normal2 = previousRing.norm(cur);
     524           0 :         SkPoint perp2 = normal2;
     525           0 :         perp2.scale(outset);
     526           0 :         perp2 += fPts[originalIdx];
     527             : 
     528           0 :         CurveState curve = fCurveState[originalIdx];
     529             : 
     530             :         // We know it isn't a duplicate of the prior point (since it and this
     531             :         // one are just perpendicular offsets from the non-merged polygon points)
     532           0 :         int perp1Idx = this->addPt(perp1, -outset, coverage, false, curve);
     533           0 :         nextRing->addIdx(perp1Idx, originalIdx);
     534             : 
     535             :         int perp2Idx;
     536             :         // For very shallow angles all the corner points could fuse.
     537           0 :         if (duplicate_pt(perp2, this->point(perp1Idx))) {
     538           0 :             perp2Idx = perp1Idx;
     539             :         } else {
     540           0 :             perp2Idx = this->addPt(perp2, -outset, coverage, false, curve);
     541             :         }
     542             : 
     543           0 :         if (perp2Idx != perp1Idx) {
     544           0 :             if (curve == kCurve_CurveState) {
     545             :                 // bevel or round depending upon curvature
     546           0 :                 SkScalar dotProd = normal1.dot(normal2);
     547           0 :                 if (dotProd < kRoundCapThreshold) {
     548             :                     // Currently we "round" by creating a single extra point, which produces
     549             :                     // good results for common cases. For thick strokes with high curvature, we will
     550             :                     // need to add more points; for the time being we simply fall back to software
     551             :                     // rendering for thick strokes.
     552           0 :                     SkPoint miter = previousRing.bisector(cur);
     553           0 :                     miter.setLength(-outset);
     554           0 :                     miter += fPts[originalIdx];
     555             : 
     556             :                     // For very shallow angles all the corner points could fuse
     557           0 :                     if (!duplicate_pt(miter, this->point(perp1Idx))) {
     558             :                         int miterIdx;
     559           0 :                         miterIdx = this->addPt(miter, -outset, coverage, false, kSharp_CurveState);
     560           0 :                         nextRing->addIdx(miterIdx, originalIdx);
     561             :                         // The two triangles for the corner
     562           0 :                         this->addTri(originalIdx, perp1Idx, miterIdx);
     563           0 :                         this->addTri(originalIdx, miterIdx, perp2Idx);
     564             :                     }
     565             :                 } else {
     566           0 :                     this->addTri(originalIdx, perp1Idx, perp2Idx);
     567             :                 }
     568             :             } else {
     569           0 :                 switch (fJoin) {
     570             :                     case SkPaint::Join::kMiter_Join: {
     571             :                         // The bisector outset point
     572           0 :                         SkPoint miter = previousRing.bisector(cur);
     573           0 :                         SkScalar dotProd = normal1.dot(normal2);
     574           0 :                         SkScalar sinHalfAngleSq = SkScalarHalf(SK_Scalar1 + dotProd);
     575           0 :                         SkScalar lengthSq = outsetSq / sinHalfAngleSq;
     576           0 :                         if (lengthSq > miterLimitSq) {
     577             :                             // just bevel it
     578           0 :                             this->addTri(originalIdx, perp1Idx, perp2Idx);
     579           0 :                             break;
     580             :                         }
     581           0 :                         miter.setLength(-SkScalarSqrt(lengthSq));
     582           0 :                         miter += fPts[originalIdx];
     583             : 
     584             :                         // For very shallow angles all the corner points could fuse
     585           0 :                         if (!duplicate_pt(miter, this->point(perp1Idx))) {
     586             :                             int miterIdx;
     587           0 :                             miterIdx = this->addPt(miter, -outset, coverage, false, 
     588           0 :                                                    kSharp_CurveState);
     589           0 :                             nextRing->addIdx(miterIdx, originalIdx);
     590             :                             // The two triangles for the corner
     591           0 :                             this->addTri(originalIdx, perp1Idx, miterIdx);
     592           0 :                             this->addTri(originalIdx, miterIdx, perp2Idx);
     593             :                         }
     594           0 :                         break;
     595             :                     }
     596             :                     case SkPaint::Join::kBevel_Join:
     597           0 :                         this->addTri(originalIdx, perp1Idx, perp2Idx);
     598           0 :                         break;
     599             :                     default:
     600             :                         // kRound_Join is unsupported for now. GrAALinearizingConvexPathRenderer is
     601             :                         // only willing to draw mitered or beveled, so we should never get here.
     602           0 :                         SkASSERT(false);
     603             :                 }
     604             :             }
     605             : 
     606           0 :             nextRing->addIdx(perp2Idx, originalIdx);
     607             :         }
     608             : 
     609           0 :         if (0 == cur) {
     610             :             // Store the index of the first perpendicular point to finish up
     611           0 :             firstPerpIdx = perp1Idx;
     612           0 :             SkASSERT(-1 == lastPerpIdx);
     613             :         } else {
     614             :             // The triangles for the previous edge
     615           0 :             int prevIdx = previousRing.index(prev);
     616           0 :             this->addTri(prevIdx, perp1Idx, originalIdx);
     617           0 :             this->addTri(prevIdx, lastPerpIdx, perp1Idx);
     618             :         }
     619             : 
     620             :         // Track the last perpendicular outset point so we can construct the
     621             :         // trailing edge triangles.
     622           0 :         lastPerpIdx = perp2Idx;
     623           0 :         prev = cur;
     624             :     }
     625             : 
     626             :     // pick up the final edge rect
     627           0 :     int lastIdx = previousRing.index(numPts - 1);
     628           0 :     this->addTri(lastIdx, firstPerpIdx, previousRing.index(0));
     629           0 :     this->addTri(lastIdx, lastPerpIdx, firstPerpIdx);
     630             : 
     631           0 :     this->validate();
     632             : }
     633             : 
     634             : // Something went wrong in the creation of the next ring. If we're filling the shape, just go ahead
     635             : // and fan it.
     636           0 : void GrAAConvexTessellator::terminate(const Ring& ring) {
     637           0 :     if (fStyle != SkStrokeRec::kStroke_Style) {
     638           0 :         this->fanRing(ring);
     639             :     }
     640           0 : }
     641             : 
     642           0 : static SkScalar compute_coverage(SkScalar depth, SkScalar initialDepth, SkScalar initialCoverage,
     643             :                                 SkScalar targetDepth, SkScalar targetCoverage) {
     644           0 :     if (SkScalarNearlyEqual(initialDepth, targetDepth)) {
     645           0 :         return targetCoverage;
     646             :     }
     647           0 :     SkScalar result = (depth - initialDepth) / (targetDepth - initialDepth) *
     648           0 :             (targetCoverage - initialCoverage) + initialCoverage;
     649           0 :     return SkScalarClampMax(result, 1.0f);
     650             : }
     651             : 
     652             : // return true when processing is complete
     653           0 : bool GrAAConvexTessellator::createInsetRing(const Ring& lastRing, Ring* nextRing,
     654             :                                             SkScalar initialDepth, SkScalar initialCoverage,
     655             :                                             SkScalar targetDepth, SkScalar targetCoverage,
     656             :                                             bool forceNew) {
     657           0 :     bool done = false;
     658             : 
     659           0 :     fCandidateVerts.rewind();
     660             : 
     661             :     // Loop through all the points in the ring and find the intersection with the smallest depth
     662           0 :     SkScalar minDist = SK_ScalarMax, minT = 0.0f;
     663           0 :     int minEdgeIdx = -1;
     664             : 
     665           0 :     for (int cur = 0; cur < lastRing.numPts(); ++cur) {
     666           0 :         int next = (cur + 1) % lastRing.numPts();
     667             : 
     668             :         SkScalar t;
     669           0 :         bool result = intersect(this->point(lastRing.index(cur)),  lastRing.bisector(cur),
     670             :                                 this->point(lastRing.index(next)), lastRing.bisector(next),
     671           0 :                                 &t);
     672           0 :         if (!result) {
     673           0 :             continue;
     674             :         }
     675           0 :         SkScalar dist = -t * lastRing.norm(cur).dot(lastRing.bisector(cur));
     676             : 
     677           0 :         if (minDist > dist) {
     678           0 :             minDist = dist;
     679           0 :             minT = t;
     680           0 :             minEdgeIdx = cur;
     681             :         }
     682             :     }
     683             : 
     684           0 :     if (minEdgeIdx == -1) {
     685           0 :         return false;
     686             :     }
     687           0 :     SkPoint newPt = lastRing.bisector(minEdgeIdx);
     688           0 :     newPt.scale(minT);
     689           0 :     newPt += this->point(lastRing.index(minEdgeIdx));
     690             : 
     691           0 :     SkScalar depth = this->computeDepthFromEdge(lastRing.origEdgeID(minEdgeIdx), newPt);
     692           0 :     if (depth >= targetDepth) {
     693             :         // None of the bisectors intersect before reaching the desired depth.
     694             :         // Just step them all to the desired depth
     695           0 :         depth = targetDepth;
     696           0 :         done = true;
     697             :     }
     698             : 
     699             :     // 'dst' stores where each point in the last ring maps to/transforms into
     700             :     // in the next ring.
     701           0 :     SkTDArray<int> dst;
     702           0 :     dst.setCount(lastRing.numPts());
     703             : 
     704             :     // Create the first point (who compares with no one)
     705           0 :     if (!this->computePtAlongBisector(lastRing.index(0),
     706           0 :                                       lastRing.bisector(0),
     707             :                                       lastRing.origEdgeID(0),
     708             :                                       depth, &newPt)) {
     709           0 :         this->terminate(lastRing);
     710           0 :         return true;
     711             :     }
     712           0 :     dst[0] = fCandidateVerts.addNewPt(newPt,
     713             :                                       lastRing.index(0), lastRing.origEdgeID(0),
     714           0 :                                       !this->movable(lastRing.index(0)));
     715             : 
     716             :     // Handle the middle points (who only compare with the prior point)
     717           0 :     for (int cur = 1; cur < lastRing.numPts()-1; ++cur) {
     718           0 :         if (!this->computePtAlongBisector(lastRing.index(cur),
     719           0 :                                           lastRing.bisector(cur),
     720             :                                           lastRing.origEdgeID(cur),
     721             :                                           depth, &newPt)) {
     722           0 :             this->terminate(lastRing);
     723           0 :             return true;
     724             :         }
     725           0 :         if (!duplicate_pt(newPt, fCandidateVerts.lastPoint())) {
     726           0 :             dst[cur] = fCandidateVerts.addNewPt(newPt,
     727             :                                                 lastRing.index(cur), lastRing.origEdgeID(cur),
     728           0 :                                                 !this->movable(lastRing.index(cur)));
     729             :         } else {
     730           0 :             dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur));
     731             :         }
     732             :     }
     733             : 
     734             :     // Check on the last point (handling the wrap around)
     735           0 :     int cur = lastRing.numPts()-1;
     736           0 :     if  (!this->computePtAlongBisector(lastRing.index(cur),
     737           0 :                                        lastRing.bisector(cur),
     738             :                                        lastRing.origEdgeID(cur),
     739             :                                        depth, &newPt)) {
     740           0 :         this->terminate(lastRing);
     741           0 :         return true;
     742             :     }
     743           0 :     bool dupPrev = duplicate_pt(newPt, fCandidateVerts.lastPoint());
     744           0 :     bool dupNext = duplicate_pt(newPt, fCandidateVerts.firstPoint());
     745             : 
     746           0 :     if (!dupPrev && !dupNext) {
     747           0 :         dst[cur] = fCandidateVerts.addNewPt(newPt,
     748             :                                             lastRing.index(cur), lastRing.origEdgeID(cur),
     749           0 :                                             !this->movable(lastRing.index(cur)));
     750           0 :     } else if (dupPrev && !dupNext) {
     751           0 :         dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur));
     752           0 :     } else if (!dupPrev && dupNext) {
     753           0 :         dst[cur] = fCandidateVerts.fuseWithNext();
     754             :     } else {
     755           0 :         bool dupPrevVsNext = duplicate_pt(fCandidateVerts.firstPoint(), fCandidateVerts.lastPoint());
     756             : 
     757           0 :         if (!dupPrevVsNext) {
     758           0 :             dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur));
     759             :         } else {
     760           0 :             const int fused = fCandidateVerts.fuseWithBoth();
     761           0 :             dst[cur] = fused;
     762           0 :             const int targetIdx = dst[cur - 1];
     763           0 :             for (int i = cur - 1; i >= 0 && dst[i] == targetIdx; i--) {
     764           0 :                 dst[i] = fused;
     765             :             }
     766             :         }
     767             :     }
     768             : 
     769             :     // Fold the new ring's points into the global pool
     770           0 :     for (int i = 0; i < fCandidateVerts.numPts(); ++i) {
     771             :         int newIdx;
     772           0 :         if (fCandidateVerts.needsToBeNew(i) || forceNew) {
     773             :             // if the originating index is still valid then this point wasn't
     774             :             // fused (and is thus movable)
     775             :             SkScalar coverage = compute_coverage(depth, initialDepth, initialCoverage,
     776           0 :                                                  targetDepth, targetCoverage);
     777           0 :             newIdx = this->addPt(fCandidateVerts.point(i), depth, coverage,
     778           0 :                                  fCandidateVerts.originatingIdx(i) != -1, kSharp_CurveState);
     779             :         } else {
     780           0 :             SkASSERT(fCandidateVerts.originatingIdx(i) != -1);
     781           0 :             this->updatePt(fCandidateVerts.originatingIdx(i), fCandidateVerts.point(i), depth,
     782           0 :                            targetCoverage);
     783           0 :             newIdx = fCandidateVerts.originatingIdx(i);
     784             :         }
     785             : 
     786           0 :         nextRing->addIdx(newIdx, fCandidateVerts.origEdge(i));
     787             :     }
     788             : 
     789             :     // 'dst' currently has indices into the ring. Remap these to be indices
     790             :     // into the global pool since the triangulation operates in that space.
     791           0 :     for (int i = 0; i < dst.count(); ++i) {
     792           0 :         dst[i] = nextRing->index(dst[i]);
     793             :     }
     794             : 
     795           0 :     for (int i = 0; i < lastRing.numPts(); ++i) {
     796           0 :         int next = (i + 1) % lastRing.numPts();
     797             : 
     798           0 :         this->addTri(lastRing.index(i), lastRing.index(next), dst[next]);
     799           0 :         this->addTri(lastRing.index(i), dst[next], dst[i]);
     800             :     }
     801             : 
     802           0 :     if (done && fStyle != SkStrokeRec::kStroke_Style) {
     803             :         // fill or stroke-and-fill
     804           0 :         this->fanRing(*nextRing);
     805             :     }
     806             : 
     807           0 :     if (nextRing->numPts() < 3) {
     808           0 :         done = true;
     809             :     }
     810           0 :     return done;
     811             : }
     812             : 
     813           0 : void GrAAConvexTessellator::validate() const {
     814           0 :     SkASSERT(fPts.count() == fMovable.count());
     815           0 :     SkASSERT(fPts.count() == fCoverages.count());
     816           0 :     SkASSERT(fPts.count() == fCurveState.count());
     817           0 :     SkASSERT(0 == (fIndices.count() % 3));
     818           0 :     SkASSERT(!fBisectors.count() || fBisectors.count() == fNorms.count());
     819           0 : }
     820             : 
     821             : //////////////////////////////////////////////////////////////////////////////
     822           0 : void GrAAConvexTessellator::Ring::init(const GrAAConvexTessellator& tess) {
     823           0 :     this->computeNormals(tess);
     824           0 :     this->computeBisectors(tess);
     825           0 : }
     826             : 
     827           0 : void GrAAConvexTessellator::Ring::init(const SkTDArray<SkVector>& norms,
     828             :                                        const SkTDArray<SkVector>& bisectors) {
     829           0 :     for (int i = 0; i < fPts.count(); ++i) {
     830           0 :         fPts[i].fNorm = norms[i];
     831           0 :         fPts[i].fBisector = bisectors[i];
     832             :     }
     833           0 : }
     834             : 
     835             : // Compute the outward facing normal at each vertex.
     836           0 : void GrAAConvexTessellator::Ring::computeNormals(const GrAAConvexTessellator& tess) {
     837           0 :     for (int cur = 0; cur < fPts.count(); ++cur) {
     838           0 :         int next = (cur + 1) % fPts.count();
     839             : 
     840           0 :         fPts[cur].fNorm = tess.point(fPts[next].fIndex) - tess.point(fPts[cur].fIndex);
     841           0 :         SkPoint::Normalize(&fPts[cur].fNorm);
     842           0 :         fPts[cur].fNorm.setOrthog(fPts[cur].fNorm, tess.side());
     843             :     }
     844           0 : }
     845             : 
     846           0 : void GrAAConvexTessellator::Ring::computeBisectors(const GrAAConvexTessellator& tess) {
     847           0 :     int prev = fPts.count() - 1;
     848           0 :     for (int cur = 0; cur < fPts.count(); prev = cur, ++cur) {
     849           0 :         fPts[cur].fBisector = fPts[cur].fNorm + fPts[prev].fNorm;
     850           0 :         if (!fPts[cur].fBisector.normalize()) {
     851           0 :             SkASSERT(SkPoint::kLeft_Side == tess.side() || SkPoint::kRight_Side == tess.side());
     852           0 :             fPts[cur].fBisector.setOrthog(fPts[cur].fNorm, (SkPoint::Side)-tess.side());
     853             :             SkVector other;
     854           0 :             other.setOrthog(fPts[prev].fNorm, tess.side());
     855           0 :             fPts[cur].fBisector += other;
     856           0 :             SkAssertResult(fPts[cur].fBisector.normalize());
     857             :         } else {
     858           0 :             fPts[cur].fBisector.negate();      // make the bisector face in
     859             :         }
     860             :     }
     861           0 : }
     862             : 
     863             : //////////////////////////////////////////////////////////////////////////////
     864             : #ifdef SK_DEBUG
     865             : // Is this ring convex?
     866           0 : bool GrAAConvexTessellator::Ring::isConvex(const GrAAConvexTessellator& tess) const {
     867           0 :     if (fPts.count() < 3) {
     868           0 :         return true;
     869             :     }
     870             : 
     871           0 :     SkPoint prev = tess.point(fPts[0].fIndex) - tess.point(fPts.top().fIndex);
     872           0 :     SkPoint cur  = tess.point(fPts[1].fIndex) - tess.point(fPts[0].fIndex);
     873           0 :     SkScalar minDot = prev.fX * cur.fY - prev.fY * cur.fX;
     874           0 :     SkScalar maxDot = minDot;
     875             : 
     876           0 :     prev = cur;
     877           0 :     for (int i = 1; i < fPts.count(); ++i) {
     878           0 :         int next = (i + 1) % fPts.count();
     879             : 
     880           0 :         cur  = tess.point(fPts[next].fIndex) - tess.point(fPts[i].fIndex);
     881           0 :         SkScalar dot = prev.fX * cur.fY - prev.fY * cur.fX;
     882             : 
     883           0 :         minDot = SkMinScalar(minDot, dot);
     884           0 :         maxDot = SkMaxScalar(maxDot, dot);
     885             : 
     886           0 :         prev = cur;
     887             :     }
     888             : 
     889           0 :     if (SkScalarNearlyEqual(maxDot, 0.0f, 0.005f)) {
     890           0 :         maxDot = 0;
     891             :     }
     892           0 :     if (SkScalarNearlyEqual(minDot, 0.0f, 0.005f)) {
     893           0 :         minDot = 0;
     894             :     }
     895           0 :     return (maxDot >= 0.0f) == (minDot >= 0.0f);
     896             : }
     897             : 
     898             : #endif
     899             : 
     900           0 : void GrAAConvexTessellator::lineTo(const SkPoint& p, CurveState curve) {
     901           0 :     if (this->numPts() > 0 && duplicate_pt(p, this->lastPoint())) {
     902           0 :         return;
     903             :     }
     904             : 
     905           0 :     SkASSERT(fPts.count() <= 1 || fPts.count() == fNorms.count()+1);
     906           0 :     if (this->numPts() >= 2 && abs_dist_from_line(fPts.top(), fNorms.top(), p) < kClose) {
     907             :         // The old last point is on the line from the second to last to the new point
     908           0 :         this->popLastPt();
     909           0 :         fNorms.pop();
     910             :         // double-check that the new last point is not a duplicate of the new point. In an ideal
     911             :         // world this wouldn't be necessary (since it's only possible for non-convex paths), but
     912             :         // floating point precision issues mean it can actually happen on paths that were
     913             :         // determined to be convex.
     914           0 :         if (duplicate_pt(p, this->lastPoint())) {
     915           0 :             return;
     916             :         }
     917             :     }
     918           0 :     SkScalar initialRingCoverage = (SkStrokeRec::kFill_Style == fStyle) ? 0.5f : 1.0f;
     919           0 :     this->addPt(p, 0.0f, initialRingCoverage, false, curve);
     920           0 :     if (this->numPts() > 1) {
     921           0 :         *fNorms.push() = fPts.top() - fPts[fPts.count()-2];
     922           0 :         SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms.top());
     923           0 :         SkASSERT(len > 0.0f);
     924           0 :         SkASSERT(SkScalarNearlyEqual(1.0f, fNorms.top().length()));
     925             :     }
     926             : }
     927             : 
     928           0 : void GrAAConvexTessellator::lineTo(const SkMatrix& m, SkPoint p, CurveState curve) {
     929           0 :     m.mapPoints(&p, 1);
     930           0 :     this->lineTo(p, curve);
     931           0 : }
     932             : 
     933           0 : void GrAAConvexTessellator::quadTo(const SkPoint pts[3]) {
     934           0 :     int maxCount = GrPathUtils::quadraticPointCount(pts, kQuadTolerance);
     935           0 :     fPointBuffer.setReserve(maxCount);
     936           0 :     SkPoint* target = fPointBuffer.begin();
     937           0 :     int count = GrPathUtils::generateQuadraticPoints(pts[0], pts[1], pts[2],
     938           0 :                                                      kQuadTolerance, &target, maxCount);
     939           0 :     fPointBuffer.setCount(count);
     940           0 :     for (int i = 0; i < count - 1; i++) {
     941           0 :         this->lineTo(fPointBuffer[i], kCurve_CurveState);
     942             :     }
     943           0 :     this->lineTo(fPointBuffer[count - 1], kIndeterminate_CurveState);
     944           0 : }
     945             : 
     946           0 : void GrAAConvexTessellator::quadTo(const SkMatrix& m, SkPoint pts[3]) {
     947           0 :     m.mapPoints(pts, 3);
     948           0 :     this->quadTo(pts);
     949           0 : }
     950             : 
     951           0 : void GrAAConvexTessellator::cubicTo(const SkMatrix& m, SkPoint pts[4]) {
     952           0 :     m.mapPoints(pts, 4);
     953           0 :     int maxCount = GrPathUtils::cubicPointCount(pts, kCubicTolerance);
     954           0 :     fPointBuffer.setReserve(maxCount);
     955           0 :     SkPoint* target = fPointBuffer.begin();
     956           0 :     int count = GrPathUtils::generateCubicPoints(pts[0], pts[1], pts[2], pts[3],
     957           0 :             kCubicTolerance, &target, maxCount);
     958           0 :     fPointBuffer.setCount(count);
     959           0 :     for (int i = 0; i < count - 1; i++) {
     960           0 :         this->lineTo(fPointBuffer[i], kCurve_CurveState);
     961             :     }
     962           0 :     this->lineTo(fPointBuffer[count - 1], kIndeterminate_CurveState);
     963           0 : }
     964             : 
     965             : // include down here to avoid compilation errors caused by "-" overload in SkGeometry.h
     966             : #include "SkGeometry.h"
     967             : 
     968           0 : void GrAAConvexTessellator::conicTo(const SkMatrix& m, SkPoint pts[3], SkScalar w) {
     969           0 :     m.mapPoints(pts, 3);
     970           0 :     SkAutoConicToQuads quadder;
     971           0 :     const SkPoint* quads = quadder.computeQuads(pts, w, kConicTolerance);
     972           0 :     SkPoint lastPoint = *(quads++);
     973           0 :     int count = quadder.countQuads();
     974           0 :     for (int i = 0; i < count; ++i) {
     975             :         SkPoint quadPts[3];
     976           0 :         quadPts[0] = lastPoint;
     977           0 :         quadPts[1] = quads[0];
     978           0 :         quadPts[2] = i == count - 1 ? pts[2] : quads[1];
     979           0 :         this->quadTo(quadPts);
     980           0 :         lastPoint = quadPts[2];
     981           0 :         quads += 2;
     982             :     }
     983           0 : }
     984             : 
     985             : //////////////////////////////////////////////////////////////////////////////
     986             : #if GR_AA_CONVEX_TESSELLATOR_VIZ
     987             : static const SkScalar kPointRadius = 0.02f;
     988             : static const SkScalar kArrowStrokeWidth = 0.0f;
     989             : static const SkScalar kArrowLength = 0.2f;
     990             : static const SkScalar kEdgeTextSize = 0.1f;
     991             : static const SkScalar kPointTextSize = 0.02f;
     992             : 
     993             : static void draw_point(SkCanvas* canvas, const SkPoint& p, SkScalar paramValue, bool stroke) {
     994             :     SkPaint paint;
     995             :     SkASSERT(paramValue <= 1.0f);
     996             :     int gs = int(255*paramValue);
     997             :     paint.setARGB(255, gs, gs, gs);
     998             : 
     999             :     canvas->drawCircle(p.fX, p.fY, kPointRadius, paint);
    1000             : 
    1001             :     if (stroke) {
    1002             :         SkPaint stroke;
    1003             :         stroke.setColor(SK_ColorYELLOW);
    1004             :         stroke.setStyle(SkPaint::kStroke_Style);
    1005             :         stroke.setStrokeWidth(kPointRadius/3.0f);
    1006             :         canvas->drawCircle(p.fX, p.fY, kPointRadius, stroke);
    1007             :     }
    1008             : }
    1009             : 
    1010             : static void draw_line(SkCanvas* canvas, const SkPoint& p0, const SkPoint& p1, SkColor color) {
    1011             :     SkPaint p;
    1012             :     p.setColor(color);
    1013             : 
    1014             :     canvas->drawLine(p0.fX, p0.fY, p1.fX, p1.fY, p);
    1015             : }
    1016             : 
    1017             : static void draw_arrow(SkCanvas*canvas, const SkPoint& p, const SkPoint &n,
    1018             :                        SkScalar len, SkColor color) {
    1019             :     SkPaint paint;
    1020             :     paint.setColor(color);
    1021             :     paint.setStrokeWidth(kArrowStrokeWidth);
    1022             :     paint.setStyle(SkPaint::kStroke_Style);
    1023             : 
    1024             :     canvas->drawLine(p.fX, p.fY,
    1025             :                      p.fX + len * n.fX, p.fY + len * n.fY,
    1026             :                      paint);
    1027             : }
    1028             : 
    1029             : void GrAAConvexTessellator::Ring::draw(SkCanvas* canvas, const GrAAConvexTessellator& tess) const {
    1030             :     SkPaint paint;
    1031             :     paint.setTextSize(kEdgeTextSize);
    1032             : 
    1033             :     for (int cur = 0; cur < fPts.count(); ++cur) {
    1034             :         int next = (cur + 1) % fPts.count();
    1035             : 
    1036             :         draw_line(canvas,
    1037             :                   tess.point(fPts[cur].fIndex),
    1038             :                   tess.point(fPts[next].fIndex),
    1039             :                   SK_ColorGREEN);
    1040             : 
    1041             :         SkPoint mid = tess.point(fPts[cur].fIndex) + tess.point(fPts[next].fIndex);
    1042             :         mid.scale(0.5f);
    1043             : 
    1044             :         if (fPts.count()) {
    1045             :             draw_arrow(canvas, mid, fPts[cur].fNorm, kArrowLength, SK_ColorRED);
    1046             :             mid.fX += (kArrowLength/2) * fPts[cur].fNorm.fX;
    1047             :             mid.fY += (kArrowLength/2) * fPts[cur].fNorm.fY;
    1048             :         }
    1049             : 
    1050             :         SkString num;
    1051             :         num.printf("%d", this->origEdgeID(cur));
    1052             :         canvas->drawText(num.c_str(), num.size(), mid.fX, mid.fY, paint);
    1053             : 
    1054             :         if (fPts.count()) {
    1055             :             draw_arrow(canvas, tess.point(fPts[cur].fIndex), fPts[cur].fBisector,
    1056             :                        kArrowLength, SK_ColorBLUE);
    1057             :         }
    1058             :     }
    1059             : }
    1060             : 
    1061             : void GrAAConvexTessellator::draw(SkCanvas* canvas) const {
    1062             :     for (int i = 0; i < fIndices.count(); i += 3) {
    1063             :         SkASSERT(fIndices[i] < this->numPts()) ;
    1064             :         SkASSERT(fIndices[i+1] < this->numPts()) ;
    1065             :         SkASSERT(fIndices[i+2] < this->numPts()) ;
    1066             : 
    1067             :         draw_line(canvas,
    1068             :                   this->point(this->fIndices[i]), this->point(this->fIndices[i+1]),
    1069             :                   SK_ColorBLACK);
    1070             :         draw_line(canvas,
    1071             :                   this->point(this->fIndices[i+1]), this->point(this->fIndices[i+2]),
    1072             :                   SK_ColorBLACK);
    1073             :         draw_line(canvas,
    1074             :                   this->point(this->fIndices[i+2]), this->point(this->fIndices[i]),
    1075             :                   SK_ColorBLACK);
    1076             :     }
    1077             : 
    1078             :     fInitialRing.draw(canvas, *this);
    1079             :     for (int i = 0; i < fRings.count(); ++i) {
    1080             :         fRings[i]->draw(canvas, *this);
    1081             :     }
    1082             : 
    1083             :     for (int i = 0; i < this->numPts(); ++i) {
    1084             :         draw_point(canvas,
    1085             :                    this->point(i), 0.5f + (this->depth(i)/(2 * kAntialiasingRadius)),
    1086             :                    !this->movable(i));
    1087             : 
    1088             :         SkPaint paint;
    1089             :         paint.setTextSize(kPointTextSize);
    1090             :         paint.setTextAlign(SkPaint::kCenter_Align);
    1091             :         if (this->depth(i) <= -kAntialiasingRadius) {
    1092             :             paint.setColor(SK_ColorWHITE);
    1093             :         }
    1094             : 
    1095             :         SkString num;
    1096             :         num.printf("%d", i);
    1097             :         canvas->drawText(num.c_str(), num.size(),
    1098             :                          this->point(i).fX, this->point(i).fY+(kPointRadius/2.0f),
    1099             :                          paint);
    1100             :     }
    1101             : }
    1102             : 
    1103             : #endif

Generated by: LCOV version 1.13