LCOV - code coverage report
Current view: top level - gfx/skia/skia/src/opts - SkXfermode_opts.h (source / functions) Hit Total Coverage
Test: output.info Lines: 0 199 0.0 %
Date: 2017-07-14 16:53:18 Functions: 0 207 0.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*
       2             :  * Copyright 2015 Google Inc.
       3             :  *
       4             :  * Use of this source code is governed by a BSD-style license that can be
       5             :  * found in the LICENSE file.
       6             :  */
       7             : 
       8             : #ifndef Sk4pxXfermode_DEFINED
       9             : #define Sk4pxXfermode_DEFINED
      10             : 
      11             : #include "Sk4px.h"
      12             : #include "SkMSAN.h"
      13             : #include "SkNx.h"
      14             : #include "SkXfermode_proccoeff.h"
      15             : 
      16             : namespace {
      17             : 
      18             : // Most xfermodes can be done most efficiently 4 pixels at a time in 8 or 16-bit fixed point.
      19             : #define XFERMODE(Xfermode) \
      20             :     struct Xfermode { Sk4px operator()(const Sk4px&, const Sk4px&) const; }; \
      21             :     inline Sk4px Xfermode::operator()(const Sk4px& d, const Sk4px& s) const
      22             : 
      23           0 : XFERMODE(Clear) { return Sk4px::DupPMColor(0); }
      24           0 : XFERMODE(Src)   { return s; }
      25           0 : XFERMODE(Dst)   { return d; }
      26           0 : XFERMODE(SrcIn)   { return     s.approxMulDiv255(d.alphas()      ); }
      27           0 : XFERMODE(SrcOut)  { return     s.approxMulDiv255(d.alphas().inv()); }
      28           0 : XFERMODE(SrcOver) { return s + d.approxMulDiv255(s.alphas().inv()); }
      29           0 : XFERMODE(DstIn)   { return SrcIn  ()(s,d); }
      30           0 : XFERMODE(DstOut)  { return SrcOut ()(s,d); }
      31           0 : XFERMODE(DstOver) { return SrcOver()(s,d); }
      32             : 
      33             : // [ S * Da + (1 - Sa) * D]
      34           0 : XFERMODE(SrcATop) { return (s * d.alphas() + d * s.alphas().inv()).div255(); }
      35           0 : XFERMODE(DstATop) { return SrcATop()(s,d); }
      36             : //[ S * (1 - Da) + (1 - Sa) * D ]
      37           0 : XFERMODE(Xor) { return (s * d.alphas().inv() + d * s.alphas().inv()).div255(); }
      38             : // [S + D ]
      39           0 : XFERMODE(Plus) { return s.saturatedAdd(d); }
      40             : // [S * D ]
      41           0 : XFERMODE(Modulate) { return s.approxMulDiv255(d); }
      42             : // [S + D - S * D]
      43           0 : XFERMODE(Screen) {
      44             :     // Doing the math as S + (1-S)*D or S + (D - S*D) means the add and subtract can be done
      45             :     // in 8-bit space without overflow.  S + (1-S)*D is a touch faster because inv() is cheap.
      46           0 :     return s + d.approxMulDiv255(s.inv());
      47             : }
      48           0 : XFERMODE(Multiply) { return (s * d.alphas().inv() + d * s.alphas().inv() + s*d).div255(); }
      49             : // [ Sa + Da - Sa*Da, Sc + Dc - 2*min(Sc*Da, Dc*Sa) ]  (And notice Sa*Da == min(Sa*Da, Da*Sa).)
      50           0 : XFERMODE(Difference) {
      51           0 :     auto m = Sk4px::Wide::Min(s * d.alphas(), d * s.alphas()).div255();
      52             :     // There's no chance of underflow, and if we subtract m before adding s+d, no overflow.
      53           0 :     return (s - m) + (d - m.zeroAlphas());
      54             : }
      55             : // [ Sa + Da - Sa*Da, Sc + Dc - 2*Sc*Dc ]
      56           0 : XFERMODE(Exclusion) {
      57           0 :     auto p = s.approxMulDiv255(d);
      58             :     // There's no chance of underflow, and if we subtract p before adding src+dst, no overflow.
      59           0 :     return (s - p) + (d - p.zeroAlphas());
      60             : }
      61             : 
      62             : // We take care to use exact math for these next few modes where alphas
      63             : // and colors are calculated using significantly different math.  We need
      64             : // to preserve premul invariants, and exact math makes this easier.
      65             : //
      66             : // TODO: Some of these implementations might be able to be sped up a bit
      67             : // while maintaining exact math, but let's follow up with that.
      68             : 
      69           0 : XFERMODE(HardLight) {
      70           0 :     auto sa = s.alphas(),
      71           0 :          da = d.alphas();
      72             : 
      73           0 :     auto srcover = s + (d * sa.inv()).div255();
      74             : 
      75           0 :     auto isLite = ((sa-s) < s).widenLoHi();
      76             : 
      77           0 :     auto lite = sa*da - ((da-d)*(sa-s) << 1),
      78           0 :          dark = s*d << 1,
      79           0 :          both = s*da.inv() + d*sa.inv();
      80             : 
      81           0 :     auto alphas = srcover;
      82           0 :     auto colors = (both + isLite.thenElse(lite, dark)).div255();
      83           0 :     return alphas.zeroColors() + colors.zeroAlphas();
      84             : }
      85           0 : XFERMODE(Overlay) { return HardLight()(s,d); }
      86             : 
      87           0 : XFERMODE(Darken) {
      88           0 :     auto sa = s.alphas(),
      89           0 :          da = d.alphas();
      90             : 
      91           0 :     auto sda = (s*da).div255(),
      92           0 :          dsa = (d*sa).div255();
      93             : 
      94           0 :     auto srcover = s + (d * sa.inv()).div255(),
      95           0 :          dstover = d + (s * da.inv()).div255();
      96           0 :     auto alphas = srcover,
      97           0 :          colors = (sda < dsa).thenElse(srcover, dstover);
      98           0 :     return alphas.zeroColors() + colors.zeroAlphas();
      99             : }
     100           0 : XFERMODE(Lighten) {
     101           0 :     auto sa = s.alphas(),
     102           0 :          da = d.alphas();
     103             : 
     104           0 :     auto sda = (s*da).div255(),
     105           0 :          dsa = (d*sa).div255();
     106             : 
     107           0 :     auto srcover = s + (d * sa.inv()).div255(),
     108           0 :          dstover = d + (s * da.inv()).div255();
     109           0 :     auto alphas = srcover,
     110           0 :          colors = (dsa < sda).thenElse(srcover, dstover);
     111           0 :     return alphas.zeroColors() + colors.zeroAlphas();
     112             : }
     113             : #undef XFERMODE
     114             : 
     115             : // Some xfermodes use math like divide or sqrt that's best done in floats 1 pixel at a time.
     116             : #define XFERMODE(Xfermode) \
     117             :     struct Xfermode { Sk4f operator()(const Sk4f&, const Sk4f&) const; }; \
     118             :     inline Sk4f Xfermode::operator()(const Sk4f& d, const Sk4f& s) const
     119             : 
     120           0 : static inline Sk4f a_rgb(const Sk4f& a, const Sk4f& rgb) {
     121             :     static_assert(SK_A32_SHIFT == 24, "");
     122           0 :     return a * Sk4f(0,0,0,1) + rgb * Sk4f(1,1,1,0);
     123             : }
     124           0 : static inline Sk4f alphas(const Sk4f& f) {
     125           0 :     return f[SK_A32_SHIFT/8];
     126             : }
     127             : 
     128           0 : XFERMODE(ColorDodge) {
     129           0 :     auto sa = alphas(s),
     130           0 :          da = alphas(d),
     131           0 :          isa = Sk4f(1)-sa,
     132           0 :          ida = Sk4f(1)-da;
     133             : 
     134           0 :     auto srcover = s + d*isa,
     135           0 :          dstover = d + s*ida,
     136           0 :          otherwise = sa * Sk4f::Min(da, (d*sa)*(sa-s).invert()) + s*ida + d*isa;
     137             : 
     138             :     // Order matters here, preferring d==0 over s==sa.
     139           0 :     auto colors = (d == Sk4f(0)).thenElse(dstover,
     140           0 :                   (s ==      sa).thenElse(srcover,
     141           0 :                                           otherwise));
     142           0 :     return a_rgb(srcover, colors);
     143             : }
     144           0 : XFERMODE(ColorBurn) {
     145           0 :     auto sa = alphas(s),
     146           0 :          da = alphas(d),
     147           0 :          isa = Sk4f(1)-sa,
     148           0 :          ida = Sk4f(1)-da;
     149             : 
     150           0 :     auto srcover = s + d*isa,
     151           0 :          dstover = d + s*ida,
     152           0 :          otherwise = sa*(da-Sk4f::Min(da, (da-d)*sa*s.invert())) + s*ida + d*isa;
     153             : 
     154             :     // Order matters here, preferring d==da over s==0.
     155           0 :     auto colors = (d ==      da).thenElse(dstover,
     156           0 :                   (s == Sk4f(0)).thenElse(srcover,
     157           0 :                                           otherwise));
     158           0 :     return a_rgb(srcover, colors);
     159             : }
     160           0 : XFERMODE(SoftLight) {
     161           0 :     auto sa = alphas(s),
     162           0 :          da = alphas(d),
     163           0 :          isa = Sk4f(1)-sa,
     164           0 :          ida = Sk4f(1)-da;
     165             : 
     166             :     // Some common terms.
     167           0 :     auto m  = (da > Sk4f(0)).thenElse(d / da, Sk4f(0)),
     168           0 :          s2 = Sk4f(2)*s,
     169           0 :          m4 = Sk4f(4)*m;
     170             : 
     171             :     // The logic forks three ways:
     172             :     //    1. dark src?
     173             :     //    2. light src, dark dst?
     174             :     //    3. light src, light dst?
     175           0 :     auto darkSrc = d*(sa + (s2 - sa)*(Sk4f(1) - m)),        // Used in case 1.
     176           0 :          darkDst = (m4*m4 + m4)*(m - Sk4f(1)) + Sk4f(7)*m,  // Used in case 2.
     177           0 :          liteDst = m.sqrt() - m,                            // Used in case 3.
     178           0 :          liteSrc = d*sa + da*(s2-sa)*(Sk4f(4)*d <= da).thenElse(darkDst, liteDst); // Case 2 or 3?
     179             : 
     180           0 :     auto alpha  = s + d*isa;
     181           0 :     auto colors = s*ida + d*isa + (s2 <= sa).thenElse(darkSrc, liteSrc);           // Case 1 or 2/3?
     182             : 
     183           0 :     return a_rgb(alpha, colors);
     184             : }
     185             : #undef XFERMODE
     186             : 
     187             : // A reasonable fallback mode for doing AA is to simply apply the transfermode first,
     188             : // then linearly interpolate the AA.
     189             : template <typename Xfermode>
     190           0 : static Sk4px xfer_aa(const Sk4px& d, const Sk4px& s, const Sk4px& aa) {
     191           0 :     Sk4px bw = Xfermode()(d, s);
     192           0 :     return (bw * aa + d * aa.inv()).div255();
     193             : }
     194             : 
     195             : // For some transfermodes we specialize AA, either for correctness or performance.
     196             : #define XFERMODE_AA(Xfermode) \
     197             :     template <> Sk4px xfer_aa<Xfermode>(const Sk4px& d, const Sk4px& s, const Sk4px& aa)
     198             : 
     199             : // Plus' clamp needs to happen after AA.  skia:3852
     200           0 : XFERMODE_AA(Plus) {  // [ clamp( (1-AA)D + (AA)(S+D) ) == clamp(D + AA*S) ]
     201           0 :     return d.saturatedAdd(s.approxMulDiv255(aa));
     202             : }
     203             : 
     204             : #undef XFERMODE_AA
     205             : 
     206             : // Src and Clear modes are safe to use with unitialized dst buffers,
     207             : // even if the implementation branches based on bytes from dst (e.g. asserts in Debug mode).
     208             : // For those modes, just lie to MSAN that dst is always intialized.
     209           0 : template <typename Xfermode> static void mark_dst_initialized_if_safe(void*, void*) {}
     210           0 : template <> void mark_dst_initialized_if_safe<Src>(void* dst, void* end) {
     211           0 :     sk_msan_mark_initialized(dst, end, "Src doesn't read dst.");
     212           0 : }
     213           0 : template <> void mark_dst_initialized_if_safe<Clear>(void* dst, void* end) {
     214           0 :     sk_msan_mark_initialized(dst, end, "Clear doesn't read dst.");
     215           0 : }
     216             : 
     217             : template <typename Xfermode>
     218           0 : class Sk4pxXfermode : public SkProcCoeffXfermode {
     219             : public:
     220           0 :     Sk4pxXfermode(const ProcCoeff& rec, SkBlendMode mode)
     221           0 :         : INHERITED(rec, mode) {}
     222             : 
     223           0 :     void xfer32(SkPMColor dst[], const SkPMColor src[], int n, const SkAlpha aa[]) const override {
     224           0 :         mark_dst_initialized_if_safe<Xfermode>(dst, dst+n);
     225           0 :         if (nullptr == aa) {
     226           0 :             Sk4px::MapDstSrc(n, dst, src, Xfermode());
     227             :         } else {
     228           0 :             Sk4px::MapDstSrcAlpha(n, dst, src, aa, xfer_aa<Xfermode>);
     229             :         }
     230           0 :     }
     231             : 
     232           0 :     void xfer16(uint16_t dst[], const SkPMColor src[], int n, const SkAlpha aa[]) const override {
     233           0 :         mark_dst_initialized_if_safe<Xfermode>(dst, dst+n);
     234             :         SkPMColor dst32[4];
     235           0 :         while (n >= 4) {
     236           0 :             dst32[0] = SkPixel16ToPixel32(dst[0]);
     237           0 :             dst32[1] = SkPixel16ToPixel32(dst[1]);
     238           0 :             dst32[2] = SkPixel16ToPixel32(dst[2]);
     239           0 :             dst32[3] = SkPixel16ToPixel32(dst[3]);
     240             : 
     241           0 :             this->xfer32(dst32, src, 4, aa);
     242             : 
     243           0 :             dst[0] = SkPixel32ToPixel16(dst32[0]);
     244           0 :             dst[1] = SkPixel32ToPixel16(dst32[1]);
     245           0 :             dst[2] = SkPixel32ToPixel16(dst32[2]);
     246           0 :             dst[3] = SkPixel32ToPixel16(dst32[3]);
     247             : 
     248           0 :             dst += 4;
     249           0 :             src += 4;
     250           0 :             aa  += aa ? 4 : 0;
     251           0 :             n -= 4;
     252             :         }
     253           0 :         while (n) {
     254           0 :             SkPMColor dst32 = SkPixel16ToPixel32(*dst);
     255           0 :             this->xfer32(&dst32, src, 1, aa);
     256           0 :             *dst = SkPixel32ToPixel16(dst32);
     257             : 
     258           0 :             dst += 1;
     259           0 :             src += 1;
     260           0 :             aa  += aa ? 1 : 0;
     261           0 :             n   -= 1;
     262             :         }
     263           0 :     }
     264             : 
     265             : private:
     266             :     typedef SkProcCoeffXfermode INHERITED;
     267             : };
     268             : 
     269             : template <typename Xfermode>
     270           0 : class Sk4fXfermode : public SkProcCoeffXfermode {
     271             : public:
     272           0 :     Sk4fXfermode(const ProcCoeff& rec, SkBlendMode mode)
     273           0 :         : INHERITED(rec, mode) {}
     274             : 
     275           0 :     void xfer32(SkPMColor dst[], const SkPMColor src[], int n, const SkAlpha aa[]) const override {
     276           0 :         for (int i = 0; i < n; i++) {
     277           0 :             dst[i] = Xfer32_1(dst[i], src[i], aa ? aa+i : nullptr);
     278             :         }
     279           0 :     }
     280             : 
     281           0 :     void xfer16(uint16_t dst[], const SkPMColor src[], int n, const SkAlpha aa[]) const override {
     282           0 :         for (int i = 0; i < n; i++) {
     283           0 :             SkPMColor dst32 = SkPixel16ToPixel32(dst[i]);
     284           0 :             dst32 = Xfer32_1(dst32, src[i], aa ? aa+i : nullptr);
     285           0 :             dst[i] = SkPixel32ToPixel16(dst32);
     286             :         }
     287           0 :     }
     288             : 
     289             : private:
     290           0 :     static SkPMColor Xfer32_1(SkPMColor dst, const SkPMColor src, const SkAlpha* aa) {
     291           0 :         Sk4f d = Load(dst),
     292           0 :              s = Load(src),
     293           0 :              b = Xfermode()(d, s);
     294           0 :         if (aa) {
     295           0 :             Sk4f a = Sk4f(*aa) * Sk4f(1.0f/255);
     296           0 :             b = b*a + d*(Sk4f(1)-a);
     297             :         }
     298           0 :         return Round(b);
     299             :     }
     300             : 
     301           0 :     static Sk4f Load(SkPMColor c) {
     302           0 :         return SkNx_cast<float>(Sk4b::Load(&c)) * Sk4f(1.0f/255);
     303             :     }
     304             : 
     305           0 :     static SkPMColor Round(const Sk4f& f) {
     306             :         SkPMColor c;
     307           0 :         SkNx_cast<uint8_t>(f * Sk4f(255) + Sk4f(0.5f)).store(&c);
     308           0 :         return c;
     309             :     }
     310             : 
     311             :     typedef SkProcCoeffXfermode INHERITED;
     312             : };
     313             : 
     314             : } // namespace
     315             : 
     316             : namespace SK_OPTS_NS {
     317             : 
     318           0 : static SkXfermode* create_xfermode(const ProcCoeff& rec, SkBlendMode mode) {
     319           0 :     switch (mode) {
     320             : #define CASE(Xfermode) \
     321             :     case SkBlendMode::k##Xfermode: return new Sk4pxXfermode<Xfermode>(rec, mode)
     322           0 :         CASE(Clear);
     323           0 :         CASE(Src);
     324           0 :         CASE(Dst);
     325           0 :         CASE(SrcOver);
     326           0 :         CASE(DstOver);
     327           0 :         CASE(SrcIn);
     328           0 :         CASE(DstIn);
     329           0 :         CASE(SrcOut);
     330           0 :         CASE(DstOut);
     331           0 :         CASE(SrcATop);
     332           0 :         CASE(DstATop);
     333           0 :         CASE(Xor);
     334           0 :         CASE(Plus);
     335           0 :         CASE(Modulate);
     336           0 :         CASE(Screen);
     337           0 :         CASE(Multiply);
     338           0 :         CASE(Difference);
     339           0 :         CASE(Exclusion);
     340           0 :         CASE(HardLight);
     341           0 :         CASE(Overlay);
     342           0 :         CASE(Darken);
     343           0 :         CASE(Lighten);
     344             :     #undef CASE
     345             : 
     346             : #define CASE(Xfermode) \
     347             :     case SkBlendMode::k##Xfermode: return new Sk4fXfermode<Xfermode>(rec, mode)
     348           0 :         CASE(ColorDodge);
     349           0 :         CASE(ColorBurn);
     350           0 :         CASE(SoftLight);
     351             :     #undef CASE
     352             : 
     353           0 :         default: break;
     354             :     }
     355           0 :     return nullptr;
     356             : }
     357             : 
     358             : } // namespace SK_OPTS_NS
     359             : 
     360             : #endif//Sk4pxXfermode_DEFINED

Generated by: LCOV version 1.13