LCOV - code coverage report
Current view: top level - gfx/skia/skia/src/pathops - SkDLineIntersection.cpp (source / functions) Hit Total Coverage
Test: output.info Lines: 0 198 0.0 %
Date: 2017-07-14 16:53:18 Functions: 0 10 0.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*
       2             :  * Copyright 2012 Google Inc.
       3             :  *
       4             :  * Use of this source code is governed by a BSD-style license that can be
       5             :  * found in the LICENSE file.
       6             :  */
       7             : #include "SkIntersections.h"
       8             : #include "SkPathOpsLine.h"
       9             : 
      10           0 : void SkIntersections::cleanUpParallelLines(bool parallel) {
      11           0 :     while (fUsed > 2) {
      12           0 :         removeOne(1);
      13             :     }
      14           0 :     if (fUsed == 2 && !parallel) {
      15           0 :         bool startMatch = fT[0][0] == 0 || zero_or_one(fT[1][0]);
      16           0 :         bool endMatch = fT[0][1] == 1 || zero_or_one(fT[1][1]);
      17           0 :         if ((!startMatch && !endMatch) || approximately_equal(fT[0][0], fT[0][1])) {
      18           0 :             SkASSERT(startMatch || endMatch);
      19           0 :             if (startMatch && endMatch && (fT[0][0] != 0 || !zero_or_one(fT[1][0]))
      20           0 :                     && fT[0][1] == 1 && zero_or_one(fT[1][1])) {
      21           0 :                 removeOne(0);
      22             :             } else {
      23           0 :                 removeOne(endMatch);
      24             :             }
      25             :         }
      26             :     }
      27           0 :     if (fUsed == 2) {
      28           0 :         fIsCoincident[0] = fIsCoincident[1] = 0x03;
      29             :     }
      30           0 : }
      31             : 
      32           0 : void SkIntersections::computePoints(const SkDLine& line, int used) {
      33           0 :     fPt[0] = line.ptAtT(fT[0][0]);
      34           0 :     if ((fUsed = used) == 2) {
      35           0 :         fPt[1] = line.ptAtT(fT[0][1]);
      36             :     }
      37           0 : }
      38             : 
      39           0 : int SkIntersections::intersectRay(const SkDLine& a, const SkDLine& b) {
      40           0 :     fMax = 2;
      41           0 :     SkDVector aLen = a[1] - a[0];
      42           0 :     SkDVector bLen = b[1] - b[0];
      43             :     /* Slopes match when denom goes to zero:
      44             :                       axLen / ayLen ==                   bxLen / byLen
      45             :     (ayLen * byLen) * axLen / ayLen == (ayLen * byLen) * bxLen / byLen
      46             :              byLen  * axLen         ==  ayLen          * bxLen
      47             :              byLen  * axLen         -   ayLen          * bxLen == 0 ( == denom )
      48             :      */
      49           0 :     double denom = bLen.fY * aLen.fX - aLen.fY * bLen.fX;
      50           0 :     SkDVector ab0 = a[0] - b[0];
      51           0 :     double numerA = ab0.fY * bLen.fX - bLen.fY * ab0.fX;
      52           0 :     double numerB = ab0.fY * aLen.fX - aLen.fY * ab0.fX;
      53           0 :     numerA /= denom;
      54           0 :     numerB /= denom;
      55             :     int used;
      56           0 :     if (!approximately_zero(denom)) {
      57           0 :         fT[0][0] = numerA;
      58           0 :         fT[1][0] = numerB;
      59           0 :         used = 1;
      60             :     } else {
      61             :        /* See if the axis intercepts match:
      62             :                   ay - ax * ayLen / axLen  ==          by - bx * ayLen / axLen
      63             :          axLen * (ay - ax * ayLen / axLen) == axLen * (by - bx * ayLen / axLen)
      64             :          axLen *  ay - ax * ayLen          == axLen *  by - bx * ayLen
      65             :         */
      66           0 :         if (!AlmostEqualUlps(aLen.fX * a[0].fY - aLen.fY * a[0].fX,
      67           0 :                 aLen.fX * b[0].fY - aLen.fY * b[0].fX)) {
      68           0 :             return fUsed = 0;
      69             :         }
      70             :         // there's no great answer for intersection points for coincident rays, but return something
      71           0 :         fT[0][0] = fT[1][0] = 0;
      72           0 :         fT[1][0] = fT[1][1] = 1;
      73           0 :         used = 2;
      74             :     }
      75           0 :     computePoints(a, used);
      76           0 :     return fUsed;
      77             : }
      78             : 
      79             : // note that this only works if both lines are neither horizontal nor vertical
      80           0 : int SkIntersections::intersect(const SkDLine& a, const SkDLine& b) {
      81           0 :     fMax = 3;  // note that we clean up so that there is no more than two in the end
      82             :     // see if end points intersect the opposite line
      83             :     double t;
      84           0 :     for (int iA = 0; iA < 2; ++iA) {
      85           0 :         if ((t = b.exactPoint(a[iA])) >= 0) {
      86           0 :             insert(iA, t, a[iA]);
      87             :         }
      88             :     }
      89           0 :     for (int iB = 0; iB < 2; ++iB) {
      90           0 :         if ((t = a.exactPoint(b[iB])) >= 0) {
      91           0 :             insert(t, iB, b[iB]);
      92             :         }
      93             :     }
      94             :     /* Determine the intersection point of two line segments
      95             :        Return FALSE if the lines don't intersect
      96             :        from: http://paulbourke.net/geometry/lineline2d/ */
      97           0 :     double axLen = a[1].fX - a[0].fX;
      98           0 :     double ayLen = a[1].fY - a[0].fY;
      99           0 :     double bxLen = b[1].fX - b[0].fX;
     100           0 :     double byLen = b[1].fY - b[0].fY;
     101             :     /* Slopes match when denom goes to zero:
     102             :                       axLen / ayLen ==                   bxLen / byLen
     103             :     (ayLen * byLen) * axLen / ayLen == (ayLen * byLen) * bxLen / byLen
     104             :              byLen  * axLen         ==  ayLen          * bxLen
     105             :              byLen  * axLen         -   ayLen          * bxLen == 0 ( == denom )
     106             :      */
     107           0 :     double axByLen = axLen * byLen;
     108           0 :     double ayBxLen = ayLen * bxLen;
     109             :     // detect parallel lines the same way here and in SkOpAngle operator <
     110             :     // so that non-parallel means they are also sortable
     111           0 :     bool unparallel = fAllowNear ? NotAlmostEqualUlps_Pin(axByLen, ayBxLen)
     112           0 :             : NotAlmostDequalUlps(axByLen, ayBxLen);
     113           0 :     if (unparallel && fUsed == 0) {
     114           0 :         double ab0y = a[0].fY - b[0].fY;
     115           0 :         double ab0x = a[0].fX - b[0].fX;
     116           0 :         double numerA = ab0y * bxLen - byLen * ab0x;
     117           0 :         double numerB = ab0y * axLen - ayLen * ab0x;
     118           0 :         double denom = axByLen - ayBxLen;
     119           0 :         if (between(0, numerA, denom) && between(0, numerB, denom)) {
     120           0 :             fT[0][0] = numerA / denom;
     121           0 :             fT[1][0] = numerB / denom;
     122           0 :             computePoints(a, 1);
     123             :         }
     124             :     }
     125             : /* Allow tracking that both sets of end points are near each other -- the lines are entirely 
     126             :    coincident -- even when the end points are not exactly the same.
     127             :    Mark this as a 'wild card' for the end points, so that either point is considered totally
     128             :    coincident. Then, avoid folding the lines over each other, but allow either end to mate 
     129             :    to the next set of lines.
     130             :  */
     131           0 :     if (fAllowNear || !unparallel) {
     132             :         double aNearB[2];
     133             :         double bNearA[2];
     134           0 :         bool aNotB[2] = {false, false};
     135           0 :         bool bNotA[2] = {false, false};
     136           0 :         int nearCount = 0;
     137           0 :         for (int index = 0; index < 2; ++index) {
     138           0 :             aNearB[index] = t = b.nearPoint(a[index], &aNotB[index]);
     139           0 :             nearCount += t >= 0;
     140           0 :             bNearA[index] = t = a.nearPoint(b[index], &bNotA[index]);
     141           0 :             nearCount += t >= 0;
     142             :         }
     143           0 :         if (nearCount > 0) {
     144             :             // Skip if each segment contributes to one end point.
     145           0 :             if (nearCount != 2 || aNotB[0] == aNotB[1]) {
     146           0 :                 for (int iA = 0; iA < 2; ++iA) {
     147           0 :                     if (!aNotB[iA]) {
     148           0 :                         continue;
     149             :                     }
     150           0 :                     int nearer = aNearB[iA] > 0.5;
     151           0 :                     if (!bNotA[nearer]) {
     152           0 :                         continue;
     153             :                     }
     154           0 :                     SkASSERT(a[iA] != b[nearer]);
     155           0 :                     SkOPASSERT(iA == (bNearA[nearer] > 0.5));
     156           0 :                     insertNear(iA, nearer, a[iA], b[nearer]);
     157           0 :                     aNearB[iA] = -1;
     158           0 :                     bNearA[nearer] = -1;
     159           0 :                     nearCount -= 2;
     160             :                 }
     161             :             }
     162           0 :             if (nearCount > 0) {
     163           0 :                 for (int iA = 0; iA < 2; ++iA) {
     164           0 :                     if (aNearB[iA] >= 0) {
     165           0 :                         insert(iA, aNearB[iA], a[iA]);
     166             :                     }
     167             :                 }
     168           0 :                 for (int iB = 0; iB < 2; ++iB) {
     169           0 :                     if (bNearA[iB] >= 0) {
     170           0 :                         insert(bNearA[iB], iB, b[iB]);
     171             :                     }
     172             :                 }
     173             :             }
     174             :         }
     175             :     }
     176           0 :     cleanUpParallelLines(!unparallel);
     177           0 :     SkASSERT(fUsed <= 2);
     178           0 :     return fUsed;
     179             : }
     180             : 
     181           0 : static int horizontal_coincident(const SkDLine& line, double y) {
     182           0 :     double min = line[0].fY;
     183           0 :     double max = line[1].fY;
     184           0 :     if (min > max) {
     185           0 :         SkTSwap(min, max);
     186             :     }
     187           0 :     if (min > y || max < y) {
     188           0 :         return 0;
     189             :     }
     190           0 :     if (AlmostEqualUlps(min, max) && max - min < fabs(line[0].fX - line[1].fX)) {
     191           0 :         return 2;
     192             :     }
     193           0 :     return 1;
     194             : }
     195             : 
     196           0 : double SkIntersections::HorizontalIntercept(const SkDLine& line, double y) {
     197           0 :      return SkPinT((y - line[0].fY) / (line[1].fY - line[0].fY));
     198             : }
     199             : 
     200           0 : int SkIntersections::horizontal(const SkDLine& line, double left, double right,
     201             :                                 double y, bool flipped) {
     202           0 :     fMax = 3;  // clean up parallel at the end will limit the result to 2 at the most
     203             :     // see if end points intersect the opposite line
     204             :     double t;
     205           0 :     const SkDPoint leftPt = { left, y };
     206           0 :     if ((t = line.exactPoint(leftPt)) >= 0) {
     207           0 :         insert(t, (double) flipped, leftPt);
     208             :     }
     209           0 :     if (left != right) {
     210           0 :         const SkDPoint rightPt = { right, y };
     211           0 :         if ((t = line.exactPoint(rightPt)) >= 0) {
     212           0 :             insert(t, (double) !flipped, rightPt);
     213             :         }
     214           0 :         for (int index = 0; index < 2; ++index) {
     215           0 :             if ((t = SkDLine::ExactPointH(line[index], left, right, y)) >= 0) {
     216           0 :                 insert((double) index, flipped ? 1 - t : t, line[index]);
     217             :             }
     218             :         }
     219             :     }
     220           0 :     int result = horizontal_coincident(line, y);
     221           0 :     if (result == 1 && fUsed == 0) {
     222           0 :         fT[0][0] = HorizontalIntercept(line, y);
     223           0 :         double xIntercept = line[0].fX + fT[0][0] * (line[1].fX - line[0].fX);
     224           0 :         if (between(left, xIntercept, right)) {
     225           0 :             fT[1][0] = (xIntercept - left) / (right - left);
     226           0 :             if (flipped) {
     227             :                 // OPTIMIZATION: ? instead of swapping, pass original line, use [1].fX - [0].fX
     228           0 :                 for (int index = 0; index < result; ++index) {
     229           0 :                     fT[1][index] = 1 - fT[1][index];
     230             :                 }
     231             :             }
     232           0 :             fPt[0].fX = xIntercept;
     233           0 :             fPt[0].fY = y;
     234           0 :             fUsed = 1;
     235             :         }
     236             :     }
     237           0 :     if (fAllowNear || result == 2) {
     238           0 :         if ((t = line.nearPoint(leftPt, nullptr)) >= 0) {
     239           0 :             insert(t, (double) flipped, leftPt);
     240             :         }
     241           0 :         if (left != right) {
     242           0 :             const SkDPoint rightPt = { right, y };
     243           0 :             if ((t = line.nearPoint(rightPt, nullptr)) >= 0) {
     244           0 :                 insert(t, (double) !flipped, rightPt);
     245             :             }
     246           0 :             for (int index = 0; index < 2; ++index) {
     247           0 :                 if ((t = SkDLine::NearPointH(line[index], left, right, y)) >= 0) {
     248           0 :                     insert((double) index, flipped ? 1 - t : t, line[index]);
     249             :                 }
     250             :             }
     251             :         }
     252             :     }
     253           0 :     cleanUpParallelLines(result == 2);
     254           0 :     return fUsed;
     255             : }
     256             : 
     257           0 : static int vertical_coincident(const SkDLine& line, double x) {
     258           0 :     double min = line[0].fX;
     259           0 :     double max = line[1].fX;
     260           0 :     if (min > max) {
     261           0 :         SkTSwap(min, max);
     262             :     }
     263           0 :     if (!precisely_between(min, x, max)) {
     264           0 :         return 0;
     265             :     }
     266           0 :     if (AlmostEqualUlps(min, max)) {
     267           0 :         return 2;
     268             :     }
     269           0 :     return 1;
     270             : }
     271             : 
     272           0 : double SkIntersections::VerticalIntercept(const SkDLine& line, double x) {
     273           0 :     return SkPinT((x - line[0].fX) / (line[1].fX - line[0].fX));
     274             : }
     275             : 
     276           0 : int SkIntersections::vertical(const SkDLine& line, double top, double bottom,
     277             :                               double x, bool flipped) {
     278           0 :     fMax = 3;  // cleanup parallel lines will bring this back line
     279             :     // see if end points intersect the opposite line
     280             :     double t;
     281           0 :     SkDPoint topPt = { x, top };
     282           0 :     if ((t = line.exactPoint(topPt)) >= 0) {
     283           0 :         insert(t, (double) flipped, topPt);
     284             :     }
     285           0 :     if (top != bottom) {
     286           0 :         SkDPoint bottomPt = { x, bottom };
     287           0 :         if ((t = line.exactPoint(bottomPt)) >= 0) {
     288           0 :             insert(t, (double) !flipped, bottomPt);
     289             :         }
     290           0 :         for (int index = 0; index < 2; ++index) {
     291           0 :             if ((t = SkDLine::ExactPointV(line[index], top, bottom, x)) >= 0) {
     292           0 :                 insert((double) index, flipped ? 1 - t : t, line[index]);
     293             :             }
     294             :         }
     295             :     }
     296           0 :     int result = vertical_coincident(line, x);
     297           0 :     if (result == 1 && fUsed == 0) {
     298           0 :         fT[0][0] = VerticalIntercept(line, x);
     299           0 :         double yIntercept = line[0].fY + fT[0][0] * (line[1].fY - line[0].fY);
     300           0 :         if (between(top, yIntercept, bottom)) {
     301           0 :             fT[1][0] = (yIntercept - top) / (bottom - top);
     302           0 :             if (flipped) {
     303             :                 // OPTIMIZATION: instead of swapping, pass original line, use [1].fY - [0].fY
     304           0 :                 for (int index = 0; index < result; ++index) {
     305           0 :                     fT[1][index] = 1 - fT[1][index];
     306             :                 }
     307             :             }
     308           0 :             fPt[0].fX = x;
     309           0 :             fPt[0].fY = yIntercept;
     310           0 :             fUsed = 1;
     311             :         }
     312             :     }
     313           0 :     if (fAllowNear || result == 2) {
     314           0 :         if ((t = line.nearPoint(topPt, nullptr)) >= 0) {
     315           0 :             insert(t, (double) flipped, topPt);
     316             :         }
     317           0 :         if (top != bottom) {
     318           0 :             SkDPoint bottomPt = { x, bottom };
     319           0 :             if ((t = line.nearPoint(bottomPt, nullptr)) >= 0) {
     320           0 :                 insert(t, (double) !flipped, bottomPt);
     321             :             }
     322           0 :             for (int index = 0; index < 2; ++index) {
     323           0 :                 if ((t = SkDLine::NearPointV(line[index], top, bottom, x)) >= 0) {
     324           0 :                     insert((double) index, flipped ? 1 - t : t, line[index]);
     325             :                 }
     326             :             }
     327             :         }
     328             :     }
     329           0 :     cleanUpParallelLines(result == 2);
     330           0 :     SkASSERT(fUsed <= 2);
     331           0 :     return fUsed;
     332             : }
     333             : 

Generated by: LCOV version 1.13