LCOV - code coverage report
Current view: top level - gfx/skia/skia/src/pathops - SkOpAngle.cpp (source / functions) Hit Total Coverage
Test: output.info Lines: 0 645 0.0 %
Date: 2017-07-14 16:53:18 Functions: 0 28 0.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*
       2             :  * Copyright 2012 Google Inc.
       3             :  *
       4             :  * Use of this source code is governed by a BSD-style license that can be
       5             :  * found in the LICENSE file.
       6             :  */
       7             : #include "SkOpAngle.h"
       8             : #include "SkOpSegment.h"
       9             : #include "SkPathOpsCurve.h"
      10             : #include "SkTSort.h"
      11             : 
      12             : /* Angles are sorted counterclockwise. The smallest angle has a positive x and the smallest
      13             :    positive y. The largest angle has a positive x and a zero y. */
      14             : 
      15             : #if DEBUG_ANGLE
      16             :     static bool CompareResult(const char* func, SkString* bugOut, SkString* bugPart, int append,
      17             :              bool compare) {
      18             :         SkDebugf("%s %c %d\n", bugOut->c_str(), compare ? 'T' : 'F', append);
      19             :         SkDebugf("%sPart %s\n", func, bugPart[0].c_str());
      20             :         SkDebugf("%sPart %s\n", func, bugPart[1].c_str());
      21             :         SkDebugf("%sPart %s\n", func, bugPart[2].c_str());
      22             :         return compare;
      23             :     }
      24             : 
      25             :     #define COMPARE_RESULT(append, compare) CompareResult(__FUNCTION__, &bugOut, bugPart, append, \
      26             :             compare)
      27             : #else
      28             :     #define COMPARE_RESULT(append, compare) compare
      29             : #endif
      30             : 
      31             : /*             quarter angle values for sector
      32             : 
      33             : 31   x > 0, y == 0              horizontal line (to the right)
      34             : 0    x > 0, y == epsilon        quad/cubic horizontal tangent eventually going +y
      35             : 1    x > 0, y > 0, x > y        nearer horizontal angle
      36             : 2                  x + e == y   quad/cubic 45 going horiz
      37             : 3    x > 0, y > 0, x == y       45 angle
      38             : 4                  x == y + e   quad/cubic 45 going vert
      39             : 5    x > 0, y > 0, x < y        nearer vertical angle
      40             : 6    x == epsilon, y > 0        quad/cubic vertical tangent eventually going +x
      41             : 7    x == 0, y > 0              vertical line (to the top)
      42             : 
      43             :                                       8  7  6
      44             :                                  9       |       5
      45             :                               10         |          4
      46             :                             11           |            3
      47             :                           12  \          |           / 2
      48             :                          13              |              1
      49             :                         14               |               0
      50             :                         15 --------------+------------- 31
      51             :                         16               |              30
      52             :                          17              |             29
      53             :                           18  /          |          \ 28
      54             :                             19           |           27
      55             :                               20         |         26
      56             :                                  21      |      25
      57             :                                      22 23 24
      58             : */
      59             : 
      60             : // return true if lh < this < rh
      61           0 : bool SkOpAngle::after(SkOpAngle* test) {
      62           0 :     SkOpAngle* lh = test;
      63           0 :     SkOpAngle* rh = lh->fNext;
      64           0 :     SkASSERT(lh != rh);
      65           0 :     fPart.fCurve = fOriginalCurvePart;
      66           0 :     lh->fPart.fCurve = lh->fOriginalCurvePart;
      67           0 :     lh->fPart.fCurve.offset(lh->segment()->verb(), fPart.fCurve[0] - lh->fPart.fCurve[0]);
      68           0 :     rh->fPart.fCurve = rh->fOriginalCurvePart;
      69           0 :     rh->fPart.fCurve.offset(rh->segment()->verb(), fPart.fCurve[0] - rh->fPart.fCurve[0]);
      70             : 
      71             : #if DEBUG_ANGLE
      72             :     SkString bugOut;
      73             :     bugOut.printf("%s [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g"
      74             :                   " < [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g"
      75             :                   " < [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g ", __FUNCTION__,
      76             :             lh->segment()->debugID(), lh->debugID(), lh->fSectorStart, lh->fSectorEnd,
      77             :             lh->fStart->t(), lh->fEnd->t(),
      78             :             segment()->debugID(), debugID(), fSectorStart, fSectorEnd, fStart->t(), fEnd->t(),
      79             :             rh->segment()->debugID(), rh->debugID(), rh->fSectorStart, rh->fSectorEnd,
      80             :             rh->fStart->t(), rh->fEnd->t());
      81             :     SkString bugPart[3] = { lh->debugPart(), this->debugPart(), rh->debugPart() };
      82             : #endif
      83           0 :     if (lh->fComputeSector && !lh->computeSector()) {
      84           0 :         return COMPARE_RESULT(1, true);
      85             :     }
      86           0 :     if (fComputeSector && !this->computeSector()) {
      87           0 :         return COMPARE_RESULT(2, true);
      88             :     }
      89           0 :     if (rh->fComputeSector && !rh->computeSector()) {
      90           0 :         return COMPARE_RESULT(3, true);
      91             :     }
      92             : #if DEBUG_ANGLE  // reset bugOut with computed sectors
      93             :     bugOut.printf("%s [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g"
      94             :                   " < [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g"
      95             :                   " < [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g ", __FUNCTION__,
      96             :             lh->segment()->debugID(), lh->debugID(), lh->fSectorStart, lh->fSectorEnd,
      97             :             lh->fStart->t(), lh->fEnd->t(),
      98             :             segment()->debugID(), debugID(), fSectorStart, fSectorEnd, fStart->t(), fEnd->t(),
      99             :             rh->segment()->debugID(), rh->debugID(), rh->fSectorStart, rh->fSectorEnd,
     100             :             rh->fStart->t(), rh->fEnd->t());
     101             : #endif
     102           0 :     bool ltrOverlap = (lh->fSectorMask | rh->fSectorMask) & fSectorMask;
     103           0 :     bool lrOverlap = lh->fSectorMask & rh->fSectorMask;
     104             :     int lrOrder;  // set to -1 if either order works
     105           0 :     if (!lrOverlap) {  // no lh/rh sector overlap
     106           0 :         if (!ltrOverlap) {  // no lh/this/rh sector overlap
     107           0 :             return COMPARE_RESULT(4,  (lh->fSectorEnd > rh->fSectorStart)
     108             :                     ^ (fSectorStart > lh->fSectorEnd) ^ (fSectorStart > rh->fSectorStart));
     109             :         }
     110           0 :         int lrGap = (rh->fSectorStart - lh->fSectorStart + 32) & 0x1f;
     111             :         /* A tiny change can move the start +/- 4. The order can only be determined if
     112             :            lr gap is not 12 to 20 or -12 to -20.
     113             :                -31 ..-21      1
     114             :                -20 ..-12     -1
     115             :                -11 .. -1      0
     116             :                  0          shouldn't get here
     117             :                 11 ..  1      1
     118             :                 12 .. 20     -1
     119             :                 21 .. 31      0
     120             :          */
     121           0 :         lrOrder = lrGap > 20 ? 0 : lrGap > 11 ? -1 : 1;
     122             :     } else {
     123           0 :         lrOrder = (int) lh->orderable(rh);
     124           0 :         if (!ltrOverlap) {
     125           0 :             return COMPARE_RESULT(5, !lrOrder);
     126             :         }
     127             :     }
     128             :     int ltOrder;
     129           0 :     SkASSERT((lh->fSectorMask & fSectorMask) || (rh->fSectorMask & fSectorMask));
     130           0 :     if (lh->fSectorMask & fSectorMask) {
     131           0 :         ltOrder = (int) lh->orderable(this);
     132             :     } else {
     133           0 :         int ltGap = (fSectorStart - lh->fSectorStart + 32) & 0x1f;
     134           0 :         ltOrder = ltGap > 20 ? 0 : ltGap > 11 ? -1 : 1;
     135             :     }
     136             :     int trOrder;
     137           0 :     if (rh->fSectorMask & fSectorMask) {
     138           0 :         trOrder = (int) orderable(rh);
     139             :     } else {
     140           0 :         int trGap = (rh->fSectorStart - fSectorStart + 32) & 0x1f;
     141           0 :         trOrder = trGap > 20 ? 0 : trGap > 11 ? -1 : 1;
     142             :     }
     143           0 :     this->alignmentSameSide(lh, &ltOrder);
     144           0 :     this->alignmentSameSide(rh, &trOrder);
     145           0 :     if (lrOrder >= 0 && ltOrder >= 0 && trOrder >= 0) {
     146           0 :         return COMPARE_RESULT(7, lrOrder ? (ltOrder & trOrder) : (ltOrder | trOrder));
     147             :     }
     148           0 :     SkASSERT(lrOrder >= 0 || ltOrder >= 0 || trOrder >= 0);
     149             : // There's not enough information to sort. Get the pairs of angles in opposite planes.
     150             : // If an order is < 0, the pair is already in an opposite plane. Check the remaining pairs.
     151             :     // FIXME : once all variants are understood, rewrite this more simply
     152           0 :     if (ltOrder == 0 && lrOrder == 0) {
     153           0 :         SkASSERT(trOrder < 0);
     154             :         // FIXME : once this is verified to work, remove one opposite angle call
     155           0 :         SkDEBUGCODE(bool lrOpposite = lh->oppositePlanes(rh));
     156           0 :         bool ltOpposite = lh->oppositePlanes(this);
     157           0 :         SkOPASSERT(lrOpposite != ltOpposite);
     158           0 :         return COMPARE_RESULT(8, ltOpposite);
     159           0 :     } else if (ltOrder == 1 && trOrder == 0) {
     160           0 :         SkASSERT(lrOrder < 0);
     161           0 :         bool trOpposite = oppositePlanes(rh);
     162           0 :         return COMPARE_RESULT(9, trOpposite);
     163           0 :     } else if (lrOrder == 1 && trOrder == 1) {
     164           0 :         SkASSERT(ltOrder < 0);
     165             : //        SkDEBUGCODE(bool trOpposite = oppositePlanes(rh));
     166           0 :         bool lrOpposite = lh->oppositePlanes(rh);
     167             : //        SkASSERT(lrOpposite != trOpposite);
     168           0 :         return COMPARE_RESULT(10, lrOpposite);
     169             :     }
     170           0 :     if (lrOrder < 0) {
     171           0 :         if (ltOrder < 0) {
     172           0 :             return COMPARE_RESULT(11, trOrder);
     173             :         }
     174           0 :         return COMPARE_RESULT(12, ltOrder);
     175             :     }
     176           0 :     return COMPARE_RESULT(13, !lrOrder);
     177             : }
     178             : 
     179             : // given a line, see if the opposite curve's convex hull is all on one side
     180             : // returns -1=not on one side    0=this CW of test   1=this CCW of test
     181           0 : int SkOpAngle::allOnOneSide(const SkOpAngle* test) {
     182           0 :     SkASSERT(!fPart.isCurve());
     183           0 :     SkASSERT(test->fPart.isCurve());
     184           0 :     SkDPoint origin = fPart.fCurve[0];
     185           0 :     SkDVector line = fPart.fCurve[1] - origin;
     186             :     double crosses[3];
     187           0 :     SkPath::Verb testVerb = test->segment()->verb();
     188           0 :     int iMax = SkPathOpsVerbToPoints(testVerb);
     189             : //    SkASSERT(origin == test.fCurveHalf[0]);
     190           0 :     const SkDCurve& testCurve = test->fPart.fCurve;
     191           0 :     for (int index = 1; index <= iMax; ++index) {
     192           0 :         double xy1 = line.fX * (testCurve[index].fY - origin.fY);
     193           0 :         double xy2 = line.fY * (testCurve[index].fX - origin.fX);
     194           0 :         crosses[index - 1] = AlmostBequalUlps(xy1, xy2) ? 0 : xy1 - xy2;
     195             :     }
     196           0 :     if (crosses[0] * crosses[1] < 0) {
     197           0 :         return -1;
     198             :     }
     199           0 :     if (SkPath::kCubic_Verb == testVerb) {
     200           0 :         if (crosses[0] * crosses[2] < 0 || crosses[1] * crosses[2] < 0) {
     201           0 :             return -1;
     202             :         }
     203             :     }
     204           0 :     if (crosses[0]) {
     205           0 :         return crosses[0] < 0;
     206             :     }
     207           0 :     if (crosses[1]) {
     208           0 :         return crosses[1] < 0;
     209             :     }
     210           0 :     if (SkPath::kCubic_Verb == testVerb && crosses[2]) {
     211           0 :         return crosses[2] < 0;
     212             :     }
     213           0 :     fUnorderable = true;
     214           0 :     return -1;
     215             : }
     216             : 
     217             : // To sort the angles, all curves are translated to have the same starting point.
     218             : // If the curve's control point in its original position is on one side of a compared line,
     219             : // and translated is on the opposite side, reverse the previously computed order.
     220           0 : void SkOpAngle::alignmentSameSide(const SkOpAngle* test, int* order) const {
     221           0 :     if (*order < 0) {
     222           0 :         return;
     223             :     }
     224           0 :     if (fPart.isCurve()) {
     225             :         // This should support all curve types, but only bug that requires this has lines
     226             :         // Turning on for curves causes existing tests to fail
     227           0 :         return;
     228             :     }
     229           0 :     if (test->fPart.isCurve()) {
     230           0 :         return;
     231             :     }
     232           0 :     const SkDPoint& xOrigin = test->fPart.fCurve.fLine[0];
     233           0 :     const SkDPoint& oOrigin = test->fOriginalCurvePart.fLine[0];
     234           0 :     if (xOrigin == oOrigin) {
     235           0 :         return;
     236             :     }
     237           0 :     int iMax = SkPathOpsVerbToPoints(this->segment()->verb());
     238           0 :     SkDVector xLine = test->fPart.fCurve.fLine[1] - xOrigin;
     239           0 :     SkDVector oLine = test->fOriginalCurvePart.fLine[1] - oOrigin;
     240           0 :     for (int index = 1; index <= iMax; ++index) {
     241           0 :         const SkDPoint& testPt = fPart.fCurve[index];
     242           0 :         double xCross = oLine.crossCheck(testPt - xOrigin);
     243           0 :         double oCross = xLine.crossCheck(testPt - oOrigin);
     244           0 :         if (oCross * xCross < 0) {
     245           0 :             *order ^= 1;
     246           0 :             break;
     247             :         }
     248             :     }
     249             : }
     250             : 
     251           0 : bool SkOpAngle::checkCrossesZero() const {
     252           0 :     int start = SkTMin(fSectorStart, fSectorEnd);
     253           0 :     int end = SkTMax(fSectorStart, fSectorEnd);
     254           0 :     bool crossesZero = end - start > 16;
     255           0 :     return crossesZero;
     256             : }
     257             : 
     258           0 : bool SkOpAngle::checkParallel(SkOpAngle* rh) {
     259             :     SkDVector scratch[2];
     260             :     const SkDVector* sweep, * tweep;
     261           0 :     if (this->fPart.isOrdered()) {
     262           0 :         sweep = this->fPart.fSweep;
     263             :     } else {
     264           0 :         scratch[0] = this->fPart.fCurve[1] - this->fPart.fCurve[0];
     265           0 :         sweep = &scratch[0];
     266             :     }
     267           0 :     if (rh->fPart.isOrdered()) {
     268           0 :         tweep = rh->fPart.fSweep;
     269             :     } else {
     270           0 :         scratch[1] = rh->fPart.fCurve[1] - rh->fPart.fCurve[0];
     271           0 :         tweep = &scratch[1];
     272             :     }
     273           0 :     double s0xt0 = sweep->crossCheck(*tweep);
     274           0 :     if (tangentsDiverge(rh, s0xt0)) {
     275           0 :         return s0xt0 < 0;
     276             :     }
     277             :     // compute the perpendicular to the endpoints and see where it intersects the opposite curve
     278             :     // if the intersections within the t range, do a cross check on those
     279             :     bool inside;
     280           0 :     if (!fEnd->contains(rh->fEnd)) {
     281           0 :         if (this->endToSide(rh, &inside)) {
     282           0 :             return inside;
     283             :         }
     284           0 :         if (rh->endToSide(this, &inside)) {
     285           0 :             return !inside;
     286             :         }
     287             :     }
     288           0 :     if (this->midToSide(rh, &inside)) {
     289           0 :         return inside;
     290             :     }
     291           0 :     if (rh->midToSide(this, &inside)) {
     292           0 :         return !inside;
     293             :     }
     294             :     // compute the cross check from the mid T values (last resort)
     295           0 :     SkDVector m0 = segment()->dPtAtT(this->midT()) - this->fPart.fCurve[0];
     296           0 :     SkDVector m1 = rh->segment()->dPtAtT(rh->midT()) - rh->fPart.fCurve[0];
     297           0 :     double m0xm1 = m0.crossCheck(m1);
     298           0 :     if (m0xm1 == 0) {
     299           0 :         this->fUnorderable = true;
     300           0 :         rh->fUnorderable = true;
     301           0 :         return true;
     302             :     }
     303           0 :     return m0xm1 < 0;
     304             : }
     305             : 
     306             : // the original angle is too short to get meaningful sector information
     307             : // lengthen it until it is long enough to be meaningful or leave it unset if lengthening it
     308             : // would cause it to intersect one of the adjacent angles
     309           0 : bool SkOpAngle::computeSector() {
     310           0 :     if (fComputedSector) {
     311           0 :         return !fUnorderable;
     312             :     }
     313           0 :     fComputedSector = true;
     314           0 :     bool stepUp = fStart->t() < fEnd->t();
     315           0 :     SkOpSpanBase* checkEnd = fEnd;
     316           0 :     if (checkEnd->final() && stepUp) {
     317           0 :         fUnorderable = true;
     318           0 :         return false;
     319             :     }
     320           0 :     do {
     321             : // advance end
     322           0 :         const SkOpSegment* other = checkEnd->segment();
     323           0 :         const SkOpSpanBase* oSpan = other->head();
     324           0 :         do {
     325           0 :             if (oSpan->segment() != segment()) {
     326           0 :                 continue;
     327             :             }
     328           0 :             if (oSpan == checkEnd) {
     329           0 :                 continue;
     330             :             }
     331           0 :             if (!approximately_equal(oSpan->t(), checkEnd->t())) {
     332           0 :                 continue;
     333             :             }
     334           0 :             goto recomputeSector;
     335           0 :         } while (!oSpan->final() && (oSpan = oSpan->upCast()->next()));
     336           0 :         checkEnd = stepUp ? !checkEnd->final()
     337           0 :                 ? checkEnd->upCast()->next() : nullptr
     338             :                 : checkEnd->prev();
     339           0 :     } while (checkEnd);
     340             : recomputeSector:
     341           0 :     SkOpSpanBase* computedEnd = stepUp ? checkEnd ? checkEnd->prev() : fEnd->segment()->head()
     342           0 :             : checkEnd ? checkEnd->upCast()->next() : fEnd->segment()->tail();
     343           0 :     if (checkEnd == fEnd || computedEnd == fEnd || computedEnd == fStart) {
     344           0 :         fUnorderable = true;
     345           0 :         return false;
     346             :     }
     347           0 :     if (stepUp != (fStart->t() < computedEnd->t())) {
     348           0 :         fUnorderable = true;
     349           0 :         return false;
     350             :     }
     351           0 :     SkOpSpanBase* saveEnd = fEnd;
     352           0 :     fComputedEnd = fEnd = computedEnd;
     353           0 :     setSpans();
     354           0 :     setSector();
     355           0 :     fEnd = saveEnd;
     356           0 :     return !fUnorderable;
     357             : }
     358             : 
     359           0 : int SkOpAngle::convexHullOverlaps(const SkOpAngle* rh) {
     360           0 :     const SkDVector* sweep = this->fPart.fSweep;
     361           0 :     const SkDVector* tweep = rh->fPart.fSweep;
     362           0 :     double s0xs1 = sweep[0].crossCheck(sweep[1]);
     363           0 :     double s0xt0 = sweep[0].crossCheck(tweep[0]);
     364           0 :     double s1xt0 = sweep[1].crossCheck(tweep[0]);
     365           0 :     bool tBetweenS = s0xs1 > 0 ? s0xt0 > 0 && s1xt0 < 0 : s0xt0 < 0 && s1xt0 > 0;
     366           0 :     double s0xt1 = sweep[0].crossCheck(tweep[1]);
     367           0 :     double s1xt1 = sweep[1].crossCheck(tweep[1]);
     368           0 :     tBetweenS |= s0xs1 > 0 ? s0xt1 > 0 && s1xt1 < 0 : s0xt1 < 0 && s1xt1 > 0;
     369           0 :     double t0xt1 = tweep[0].crossCheck(tweep[1]);
     370           0 :     if (tBetweenS) {
     371           0 :         return -1;
     372             :     }
     373           0 :     if ((s0xt0 == 0 && s1xt1 == 0) || (s1xt0 == 0 && s0xt1 == 0)) {  // s0 to s1 equals t0 to t1
     374           0 :         return -1;
     375             :     }
     376           0 :     bool sBetweenT = t0xt1 > 0 ? s0xt0 < 0 && s0xt1 > 0 : s0xt0 > 0 && s0xt1 < 0;
     377           0 :     sBetweenT |= t0xt1 > 0 ? s1xt0 < 0 && s1xt1 > 0 : s1xt0 > 0 && s1xt1 < 0;
     378           0 :     if (sBetweenT) {
     379           0 :         return -1;
     380             :     }
     381             :     // if all of the sweeps are in the same half plane, then the order of any pair is enough
     382           0 :     if (s0xt0 >= 0 && s0xt1 >= 0 && s1xt0 >= 0 && s1xt1 >= 0) {
     383           0 :         return 0;
     384             :     }
     385           0 :     if (s0xt0 <= 0 && s0xt1 <= 0 && s1xt0 <= 0 && s1xt1 <= 0) {
     386           0 :         return 1;
     387             :     }
     388             :     // if the outside sweeps are greater than 180 degress:
     389             :         // first assume the inital tangents are the ordering
     390             :         // if the midpoint direction matches the inital order, that is enough
     391           0 :     SkDVector m0 = this->segment()->dPtAtT(this->midT()) - this->fPart.fCurve[0];
     392           0 :     SkDVector m1 = rh->segment()->dPtAtT(rh->midT()) - rh->fPart.fCurve[0];
     393           0 :     double m0xm1 = m0.crossCheck(m1);
     394           0 :     if (s0xt0 > 0 && m0xm1 > 0) {
     395           0 :         return 0;
     396             :     }
     397           0 :     if (s0xt0 < 0 && m0xm1 < 0) {
     398           0 :         return 1;
     399             :     }
     400           0 :     if (tangentsDiverge(rh, s0xt0)) {
     401           0 :         return s0xt0 < 0;
     402             :     }
     403           0 :     return m0xm1 < 0;
     404             : }
     405             : 
     406             : // OPTIMIZATION: longest can all be either lazily computed here or precomputed in setup
     407           0 : double SkOpAngle::distEndRatio(double dist) const {
     408           0 :     double longest = 0;
     409           0 :     const SkOpSegment& segment = *this->segment();
     410           0 :     int ptCount = SkPathOpsVerbToPoints(segment.verb());
     411           0 :     const SkPoint* pts = segment.pts();
     412           0 :     for (int idx1 = 0; idx1 <= ptCount - 1; ++idx1) {
     413           0 :         for (int idx2 = idx1 + 1; idx2 <= ptCount; ++idx2) {
     414           0 :             if (idx1 == idx2) {
     415           0 :                 continue;
     416             :             }
     417             :             SkDVector v;
     418           0 :             v.set(pts[idx2] - pts[idx1]);
     419           0 :             double lenSq = v.lengthSquared();
     420           0 :             longest = SkTMax(longest, lenSq);
     421             :         }
     422             :     }
     423           0 :     return sqrt(longest) / dist;
     424             : }
     425             : 
     426           0 : bool SkOpAngle::endsIntersect(SkOpAngle* rh) {
     427           0 :     SkPath::Verb lVerb = this->segment()->verb();
     428           0 :     SkPath::Verb rVerb = rh->segment()->verb();
     429           0 :     int lPts = SkPathOpsVerbToPoints(lVerb);
     430           0 :     int rPts = SkPathOpsVerbToPoints(rVerb);
     431           0 :     SkDLine rays[] = {{{this->fPart.fCurve[0], rh->fPart.fCurve[rPts]}},
     432           0 :             {{this->fPart.fCurve[0], this->fPart.fCurve[lPts]}}};
     433           0 :     if (this->fEnd->contains(rh->fEnd)) {
     434           0 :         return checkParallel(rh);
     435             :     }
     436           0 :     double smallTs[2] = {-1, -1};
     437           0 :     bool limited[2] = {false, false};
     438           0 :     for (int index = 0; index < 2; ++index) {
     439           0 :         SkPath::Verb cVerb = index ? rVerb : lVerb;
     440             :         // if the curve is a line, then the line and the ray intersect only at their crossing
     441           0 :         if (cVerb == SkPath::kLine_Verb) {
     442           0 :             continue;
     443             :         }
     444           0 :         const SkOpSegment& segment = index ? *rh->segment() : *this->segment();
     445           0 :         SkIntersections i;
     446           0 :         (*CurveIntersectRay[cVerb])(segment.pts(), segment.weight(), rays[index], &i);
     447           0 :         double tStart = index ? rh->fStart->t() : this->fStart->t();
     448           0 :         double tEnd = index ? rh->fComputedEnd->t() : this->fComputedEnd->t();
     449           0 :         bool testAscends = tStart < (index ? rh->fComputedEnd->t() : this->fComputedEnd->t());
     450           0 :         double t = testAscends ? 0 : 1;
     451           0 :         for (int idx2 = 0; idx2 < i.used(); ++idx2) {
     452           0 :             double testT = i[0][idx2];
     453           0 :             if (!approximately_between_orderable(tStart, testT, tEnd)) {
     454           0 :                 continue;
     455             :             }
     456           0 :             if (approximately_equal_orderable(tStart, testT)) {
     457           0 :                 continue;
     458             :             }
     459           0 :             smallTs[index] = t = testAscends ? SkTMax(t, testT) : SkTMin(t, testT);
     460           0 :             limited[index] = approximately_equal_orderable(t, tEnd);
     461             :         }
     462             :     }
     463           0 :     bool sRayLonger = false;
     464           0 :     SkDVector sCept = {0, 0};
     465           0 :     double sCeptT = -1;
     466           0 :     int sIndex = -1;
     467           0 :     bool useIntersect = false;
     468           0 :     for (int index = 0; index < 2; ++index) {
     469           0 :         if (smallTs[index] < 0) {
     470           0 :             continue;
     471             :         }
     472           0 :         const SkOpSegment& segment = index ? *rh->segment() : *this->segment();
     473           0 :         const SkDPoint& dPt = segment.dPtAtT(smallTs[index]);
     474           0 :         SkDVector cept = dPt - rays[index][0];
     475             :         // If this point is on the curve, it should have been detected earlier by ordinary
     476             :         // curve intersection. This may be hard to determine in general, but for lines,
     477             :         // the point could be close to or equal to its end, but shouldn't be near the start.
     478           0 :         if ((index ? lPts : rPts) == 1) {
     479           0 :             SkDVector total = rays[index][1] - rays[index][0];
     480           0 :             if (cept.lengthSquared() * 2 < total.lengthSquared()) {
     481           0 :                 continue;
     482             :             }
     483             :         }
     484           0 :         SkDVector end = rays[index][1] - rays[index][0];
     485           0 :         if (cept.fX * end.fX < 0 || cept.fY * end.fY < 0) {
     486           0 :             continue;
     487             :         }
     488           0 :         double rayDist = cept.length();
     489           0 :         double endDist = end.length();
     490           0 :         bool rayLonger = rayDist > endDist;
     491           0 :         if (limited[0] && limited[1] && rayLonger) {
     492           0 :             useIntersect = true;
     493           0 :             sRayLonger = rayLonger;
     494           0 :             sCept = cept;
     495           0 :             sCeptT = smallTs[index];
     496           0 :             sIndex = index;
     497           0 :             break;
     498             :         }
     499           0 :         double delta = fabs(rayDist - endDist);
     500             :         double minX, minY, maxX, maxY;
     501           0 :         minX = minY = SK_ScalarInfinity;
     502           0 :         maxX = maxY = -SK_ScalarInfinity;
     503           0 :         const SkDCurve& curve = index ? rh->fPart.fCurve : this->fPart.fCurve;
     504           0 :         int ptCount = index ? rPts : lPts;
     505           0 :         for (int idx2 = 0; idx2 <= ptCount; ++idx2) {
     506           0 :             minX = SkTMin(minX, curve[idx2].fX);
     507           0 :             minY = SkTMin(minY, curve[idx2].fY);
     508           0 :             maxX = SkTMax(maxX, curve[idx2].fX);
     509           0 :             maxY = SkTMax(maxY, curve[idx2].fY);
     510             :         }
     511           0 :         double maxWidth = SkTMax(maxX - minX, maxY - minY);
     512           0 :         delta /= maxWidth;
     513           0 :         if (delta > 1e-3 && (useIntersect ^= true)) {  // FIXME: move this magic number
     514           0 :             sRayLonger = rayLonger;
     515           0 :             sCept = cept;
     516           0 :             sCeptT = smallTs[index];
     517           0 :             sIndex = index;
     518             :         }
     519             :     }
     520           0 :     if (useIntersect) {
     521           0 :         const SkDCurve& curve = sIndex ? rh->fPart.fCurve : this->fPart.fCurve;
     522           0 :         const SkOpSegment& segment = sIndex ? *rh->segment() : *this->segment();
     523           0 :         double tStart = sIndex ? rh->fStart->t() : fStart->t();
     524           0 :         SkDVector mid = segment.dPtAtT(tStart + (sCeptT - tStart) / 2) - curve[0];
     525           0 :         double septDir = mid.crossCheck(sCept);
     526           0 :         if (!septDir) {
     527           0 :             return checkParallel(rh);
     528             :         }
     529           0 :         return sRayLonger ^ (sIndex == 0) ^ (septDir < 0);
     530             :     } else {
     531           0 :         return checkParallel(rh);
     532             :     }
     533             : }
     534             : 
     535           0 : bool SkOpAngle::endToSide(const SkOpAngle* rh, bool* inside) const {
     536           0 :     const SkOpSegment* segment = this->segment();
     537           0 :     SkPath::Verb verb = segment->verb();
     538             :     SkDLine rayEnd;
     539           0 :     rayEnd[0].set(this->fEnd->pt());
     540           0 :     rayEnd[1] = rayEnd[0];
     541           0 :     SkDVector slopeAtEnd = (*CurveDSlopeAtT[verb])(segment->pts(), segment->weight(),
     542           0 :             this->fEnd->t());
     543           0 :     rayEnd[1].fX += slopeAtEnd.fY;
     544           0 :     rayEnd[1].fY -= slopeAtEnd.fX;
     545           0 :     SkIntersections iEnd;
     546           0 :     const SkOpSegment* oppSegment = rh->segment();
     547           0 :     SkPath::Verb oppVerb = oppSegment->verb();
     548           0 :     (*CurveIntersectRay[oppVerb])(oppSegment->pts(), oppSegment->weight(), rayEnd, &iEnd);
     549             :     double endDist;
     550           0 :     int closestEnd = iEnd.closestTo(rh->fStart->t(), rh->fEnd->t(), rayEnd[0], &endDist);
     551           0 :     if (closestEnd < 0) {
     552           0 :         return false;
     553             :     }
     554           0 :     if (!endDist) {
     555           0 :         return false;
     556             :     }
     557             :     SkDPoint start;
     558           0 :     start.set(this->fStart->pt());
     559             :     // OPTIMIZATION: multiple times in the code we find the max scalar
     560             :     double minX, minY, maxX, maxY;
     561           0 :     minX = minY = SK_ScalarInfinity;
     562           0 :     maxX = maxY = -SK_ScalarInfinity;
     563           0 :     const SkDCurve& curve = rh->fPart.fCurve;
     564           0 :     int oppPts = SkPathOpsVerbToPoints(oppVerb);
     565           0 :     for (int idx2 = 0; idx2 <= oppPts; ++idx2) {
     566           0 :         minX = SkTMin(minX, curve[idx2].fX);
     567           0 :         minY = SkTMin(minY, curve[idx2].fY);
     568           0 :         maxX = SkTMax(maxX, curve[idx2].fX);
     569           0 :         maxY = SkTMax(maxY, curve[idx2].fY);
     570             :     }
     571           0 :     double maxWidth = SkTMax(maxX - minX, maxY - minY);
     572           0 :     endDist /= maxWidth;
     573           0 :     if (endDist < 5e-12) {  // empirically found
     574           0 :         return false;
     575             :     }
     576           0 :     const SkDPoint* endPt = &rayEnd[0];
     577           0 :     SkDPoint oppPt = iEnd.pt(closestEnd);
     578           0 :     SkDVector vLeft = *endPt - start;
     579           0 :     SkDVector vRight = oppPt - start;
     580           0 :     double dir = vLeft.crossNoNormalCheck(vRight);
     581           0 :     if (!dir) {
     582           0 :         return false;
     583             :     }
     584           0 :     *inside = dir < 0;
     585           0 :     return true;
     586             : }
     587             : 
     588             : /*      y<0 y==0 y>0  x<0 x==0 x>0 xy<0 xy==0 xy>0
     589             :     0    x                      x               x
     590             :     1    x                      x          x
     591             :     2    x                      x    x
     592             :     3    x                  x        x
     593             :     4    x             x             x
     594             :     5    x             x                   x
     595             :     6    x             x                        x
     596             :     7         x        x                        x
     597             :     8             x    x                        x
     598             :     9             x    x                   x
     599             :     10            x    x             x
     600             :     11            x         x        x
     601             :     12            x             x    x
     602             :     13            x             x          x
     603             :     14            x             x               x
     604             :     15        x                 x               x
     605             : */
     606           0 : int SkOpAngle::findSector(SkPath::Verb verb, double x, double y) const {
     607           0 :     double absX = fabs(x);
     608           0 :     double absY = fabs(y);
     609           0 :     double xy = SkPath::kLine_Verb == verb || !AlmostEqualUlps(absX, absY) ? absX - absY : 0;
     610             :     // If there are four quadrants and eight octants, and since the Latin for sixteen is sedecim,
     611             :     // one could coin the term sedecimant for a space divided into 16 sections.
     612             :    // http://english.stackexchange.com/questions/133688/word-for-something-partitioned-into-16-parts
     613             :     static const int sedecimant[3][3][3] = {
     614             :     //       y<0           y==0           y>0
     615             :     //   x<0 x==0 x>0  x<0 x==0 x>0  x<0 x==0 x>0
     616             :         {{ 4,  3,  2}, { 7, -1, 15}, {10, 11, 12}},  // abs(x) <  abs(y)
     617             :         {{ 5, -1,  1}, {-1, -1, -1}, { 9, -1, 13}},  // abs(x) == abs(y)
     618             :         {{ 6,  3,  0}, { 7, -1, 15}, { 8, 11, 14}},  // abs(x) >  abs(y)
     619             :     };
     620           0 :     int sector = sedecimant[(xy >= 0) + (xy > 0)][(y >= 0) + (y > 0)][(x >= 0) + (x > 0)] * 2 + 1;
     621             : //    SkASSERT(SkPath::kLine_Verb == verb || sector >= 0);
     622           0 :     return sector;
     623             : }
     624             : 
     625           0 : SkOpGlobalState* SkOpAngle::globalState() const {
     626           0 :     return this->segment()->globalState();
     627             : }
     628             : 
     629             : 
     630             : // OPTIMIZE: if this loops to only one other angle, after first compare fails, insert on other side
     631             : // OPTIMIZE: return where insertion succeeded. Then, start next insertion on opposite side
     632           0 : bool SkOpAngle::insert(SkOpAngle* angle) {
     633           0 :     if (angle->fNext) {
     634           0 :         if (loopCount() >= angle->loopCount()) {
     635           0 :             if (!merge(angle)) {
     636           0 :                 return true;
     637             :             }
     638           0 :         } else if (fNext) {
     639           0 :             if (!angle->merge(this)) {
     640           0 :                 return true;
     641             :             }
     642             :         } else {
     643           0 :             angle->insert(this);
     644             :         }
     645           0 :         return true;
     646             :     }
     647           0 :     bool singleton = nullptr == fNext;
     648           0 :     if (singleton) {
     649           0 :         fNext = this;
     650             :     }
     651           0 :     SkOpAngle* next = fNext;
     652           0 :     if (next->fNext == this) {
     653           0 :         if (singleton || angle->after(this)) {
     654           0 :             this->fNext = angle;
     655           0 :             angle->fNext = next;
     656             :         } else {
     657           0 :             next->fNext = angle;
     658           0 :             angle->fNext = this;
     659             :         }
     660           0 :         debugValidateNext();
     661           0 :         return true;
     662             :     }
     663           0 :     SkOpAngle* last = this;
     664           0 :     bool flipAmbiguity = false;
     665             :     do {
     666           0 :         SkASSERT(last->fNext == next);
     667           0 :         if (angle->after(last) ^ (angle->tangentsAmbiguous() & flipAmbiguity)) {
     668           0 :             last->fNext = angle;
     669           0 :             angle->fNext = next;
     670           0 :             debugValidateNext();
     671           0 :             return true;
     672             :         }
     673           0 :         last = next;
     674           0 :         if (last == this) {
     675           0 :             FAIL_IF(flipAmbiguity);
     676             :             // We're in a loop. If a sort was ambiguous, flip it to end the loop.
     677           0 :             flipAmbiguity = true;
     678             :         }
     679           0 :         next = next->fNext;
     680             :     } while (true);
     681             :     return true;
     682             : }
     683             : 
     684           0 : SkOpSpanBase* SkOpAngle::lastMarked() const {
     685           0 :     if (fLastMarked) {
     686           0 :         if (fLastMarked->chased()) {
     687           0 :             return nullptr;
     688             :         }
     689           0 :         fLastMarked->setChased(true);
     690             :     }
     691           0 :     return fLastMarked;
     692             : }
     693             : 
     694           0 : bool SkOpAngle::loopContains(const SkOpAngle* angle) const {
     695           0 :     if (!fNext) {
     696           0 :         return false;
     697             :     }
     698           0 :     const SkOpAngle* first = this;
     699           0 :     const SkOpAngle* loop = this;
     700           0 :     const SkOpSegment* tSegment = angle->fStart->segment();
     701           0 :     double tStart = angle->fStart->t();
     702           0 :     double tEnd = angle->fEnd->t();
     703           0 :     do {
     704           0 :         const SkOpSegment* lSegment = loop->fStart->segment();
     705           0 :         if (lSegment != tSegment) {
     706           0 :             continue;
     707             :         }
     708           0 :         double lStart = loop->fStart->t();
     709           0 :         if (lStart != tEnd) {
     710           0 :             continue;
     711             :         }
     712           0 :         double lEnd = loop->fEnd->t();
     713           0 :         if (lEnd == tStart) {
     714           0 :             return true;
     715             :         }
     716           0 :     } while ((loop = loop->fNext) != first);
     717           0 :     return false;
     718             : }
     719             : 
     720           0 : int SkOpAngle::loopCount() const {
     721           0 :     int count = 0;
     722           0 :     const SkOpAngle* first = this;
     723           0 :     const SkOpAngle* next = this;
     724           0 :     do {
     725           0 :         next = next->fNext;
     726           0 :         ++count;
     727           0 :     } while (next && next != first);
     728           0 :     return count;
     729             : }
     730             : 
     731           0 : bool SkOpAngle::merge(SkOpAngle* angle) {
     732           0 :     SkASSERT(fNext);
     733           0 :     SkASSERT(angle->fNext);
     734           0 :     SkOpAngle* working = angle;
     735           0 :     do {
     736           0 :         if (this == working) {
     737           0 :             return false;
     738             :         }
     739           0 :         working = working->fNext;
     740           0 :     } while (working != angle);
     741           0 :     do {
     742           0 :         SkOpAngle* next = working->fNext;
     743           0 :         working->fNext = nullptr;
     744           0 :         insert(working);
     745           0 :         working = next;
     746           0 :     } while (working != angle);
     747             :     // it's likely that a pair of the angles are unorderable
     748           0 :     debugValidateNext();
     749           0 :     return true;
     750             : }
     751             : 
     752           0 : double SkOpAngle::midT() const {
     753           0 :     return (fStart->t() + fEnd->t()) / 2;
     754             : }
     755             : 
     756           0 : bool SkOpAngle::midToSide(const SkOpAngle* rh, bool* inside) const {
     757           0 :     const SkOpSegment* segment = this->segment();
     758           0 :     SkPath::Verb verb = segment->verb();
     759           0 :     const SkPoint& startPt = this->fStart->pt();
     760           0 :     const SkPoint& endPt = this->fEnd->pt();
     761             :     SkDPoint dStartPt;
     762           0 :     dStartPt.set(startPt);
     763             :     SkDLine rayMid;
     764           0 :     rayMid[0].fX = (startPt.fX + endPt.fX) / 2;
     765           0 :     rayMid[0].fY = (startPt.fY + endPt.fY) / 2;
     766           0 :     rayMid[1].fX = rayMid[0].fX + (endPt.fY - startPt.fY);
     767           0 :     rayMid[1].fY = rayMid[0].fY - (endPt.fX - startPt.fX);
     768           0 :     SkIntersections iMid;
     769           0 :     (*CurveIntersectRay[verb])(segment->pts(), segment->weight(), rayMid, &iMid);
     770           0 :     int iOutside = iMid.mostOutside(this->fStart->t(), this->fEnd->t(), dStartPt);
     771           0 :     if (iOutside < 0) {
     772           0 :         return false;
     773             :     }
     774           0 :     const SkOpSegment* oppSegment = rh->segment();
     775           0 :     SkPath::Verb oppVerb = oppSegment->verb();
     776           0 :     SkIntersections oppMid;
     777           0 :     (*CurveIntersectRay[oppVerb])(oppSegment->pts(), oppSegment->weight(), rayMid, &oppMid);
     778           0 :     int oppOutside = oppMid.mostOutside(rh->fStart->t(), rh->fEnd->t(), dStartPt);
     779           0 :     if (oppOutside < 0) {
     780           0 :         return false;
     781             :     }
     782           0 :     SkDVector iSide = iMid.pt(iOutside) - dStartPt;
     783           0 :     SkDVector oppSide = oppMid.pt(oppOutside) - dStartPt;
     784           0 :     double dir = iSide.crossCheck(oppSide);
     785           0 :     if (!dir) {
     786           0 :         return false;
     787             :     }
     788           0 :     *inside = dir < 0;
     789           0 :     return true;
     790             : }
     791             : 
     792           0 : bool SkOpAngle::oppositePlanes(const SkOpAngle* rh) const {
     793           0 :     int startSpan = SkTAbs(rh->fSectorStart - fSectorStart);
     794           0 :     return startSpan >= 8;
     795             : }
     796             : 
     797           0 : bool SkOpAngle::orderable(SkOpAngle* rh) {
     798             :     int result;
     799           0 :     if (!fPart.isCurve()) {
     800           0 :         if (!rh->fPart.isCurve()) {
     801           0 :             double leftX = fTangentHalf.dx();
     802           0 :             double leftY = fTangentHalf.dy();
     803           0 :             double rightX = rh->fTangentHalf.dx();
     804           0 :             double rightY = rh->fTangentHalf.dy();
     805           0 :             double x_ry = leftX * rightY;
     806           0 :             double rx_y = rightX * leftY;
     807           0 :             if (x_ry == rx_y) {
     808           0 :                 if (leftX * rightX < 0 || leftY * rightY < 0) {
     809           0 :                     return true;  // exactly 180 degrees apart
     810             :                 }
     811           0 :                 goto unorderable;
     812             :             }
     813           0 :             SkASSERT(x_ry != rx_y); // indicates an undetected coincidence -- worth finding earlier
     814           0 :             return x_ry < rx_y;
     815             :         }
     816           0 :         if ((result = this->allOnOneSide(rh)) >= 0) {
     817           0 :             return result;
     818             :         }
     819           0 :         if (fUnorderable || approximately_zero(rh->fSide)) {
     820           0 :             goto unorderable;
     821             :         }
     822           0 :     } else if (!rh->fPart.isCurve()) {
     823           0 :         if ((result = rh->allOnOneSide(this)) >= 0) {
     824           0 :             return !result;
     825             :         }
     826           0 :         if (rh->fUnorderable || approximately_zero(fSide)) {
     827           0 :             goto unorderable;
     828             :         }
     829           0 :     } else if ((result = this->convexHullOverlaps(rh)) >= 0) {
     830           0 :         return result;
     831             :     }
     832           0 :     return this->endsIntersect(rh);
     833             : unorderable:
     834           0 :     fUnorderable = true;
     835           0 :     rh->fUnorderable = true;
     836           0 :     return true;
     837             : }
     838             : 
     839             : // OPTIMIZE: if this shows up in a profile, add a previous pointer
     840             : // as is, this should be rarely called
     841           0 : SkOpAngle* SkOpAngle::previous() const {
     842           0 :     SkOpAngle* last = fNext;
     843             :     do {
     844           0 :         SkOpAngle* next = last->fNext;
     845           0 :         if (next == this) {
     846           0 :             return last;
     847             :         }
     848           0 :         last = next;
     849             :     } while (true);
     850             : }
     851             : 
     852           0 : SkOpSegment* SkOpAngle::segment() const {
     853           0 :     return fStart->segment();
     854             : }
     855             : 
     856           0 : void SkOpAngle::set(SkOpSpanBase* start, SkOpSpanBase* end) {
     857           0 :     fStart = start;
     858           0 :     fComputedEnd = fEnd = end;
     859           0 :     SkASSERT(start != end);
     860           0 :     fNext = nullptr;
     861           0 :     fComputeSector = fComputedSector = fCheckCoincidence = fTangentsAmbiguous = false;
     862           0 :     setSpans();
     863           0 :     setSector();
     864           0 :     SkDEBUGCODE(fID = start ? start->globalState()->nextAngleID() : -1);
     865           0 : }
     866             : 
     867           0 : void SkOpAngle::setSpans() {
     868           0 :     fUnorderable = false;
     869           0 :     fLastMarked = nullptr;
     870           0 :     if (!fStart) {
     871           0 :         fUnorderable = true;
     872           0 :         return;
     873             :     }
     874           0 :     const SkOpSegment* segment = fStart->segment();
     875           0 :     const SkPoint* pts = segment->pts();
     876           0 :     SkDEBUGCODE(fPart.fCurve.fVerb = SkPath::kCubic_Verb);  // required for SkDCurve debug check
     877           0 :     SkDEBUGCODE(fPart.fCurve[2].fX = fPart.fCurve[2].fY = fPart.fCurve[3].fX = fPart.fCurve[3].fY
     878             :             = SK_ScalarNaN);   //  make the non-line part uninitialized
     879           0 :     SkDEBUGCODE(fPart.fCurve.fVerb = segment->verb());  //  set the curve type for real
     880           0 :     segment->subDivide(fStart, fEnd, &fPart.fCurve);  //  set at least the line part if not more
     881           0 :     fOriginalCurvePart = fPart.fCurve;
     882           0 :     const SkPath::Verb verb = segment->verb();
     883           0 :     fPart.setCurveHullSweep(verb);
     884           0 :     if (SkPath::kLine_Verb != verb && !fPart.isCurve()) {
     885             :         SkDLine lineHalf;
     886           0 :         fPart.fCurve[1] = fPart.fCurve[SkPathOpsVerbToPoints(verb)];
     887           0 :         fOriginalCurvePart[1] = fPart.fCurve[1];
     888           0 :         lineHalf[0].set(fPart.fCurve[0].asSkPoint());
     889           0 :         lineHalf[1].set(fPart.fCurve[1].asSkPoint());
     890           0 :         fTangentHalf.lineEndPoints(lineHalf);
     891           0 :         fSide = 0;
     892             :     }
     893           0 :     switch (verb) {
     894             :     case SkPath::kLine_Verb: {
     895           0 :         SkASSERT(fStart != fEnd);
     896           0 :         const SkPoint& cP1 = pts[fStart->t() < fEnd->t()];
     897             :         SkDLine lineHalf;
     898           0 :         lineHalf[0].set(fStart->pt());
     899           0 :         lineHalf[1].set(cP1);
     900           0 :         fTangentHalf.lineEndPoints(lineHalf);
     901           0 :         fSide = 0;
     902           0 :         } return;
     903             :     case SkPath::kQuad_Verb:
     904             :     case SkPath::kConic_Verb: {
     905             :         SkLineParameters tangentPart;
     906           0 :         (void) tangentPart.quadEndPoints(fPart.fCurve.fQuad);
     907           0 :         fSide = -tangentPart.pointDistance(fPart.fCurve[2]);  // not normalized -- compare sign only
     908           0 :         } break;
     909             :     case SkPath::kCubic_Verb: {
     910             :         SkLineParameters tangentPart;
     911           0 :         (void) tangentPart.cubicPart(fPart.fCurve.fCubic);
     912           0 :         fSide = -tangentPart.pointDistance(fPart.fCurve[3]);
     913             :         double testTs[4];
     914             :         // OPTIMIZATION: keep inflections precomputed with cubic segment?
     915           0 :         int testCount = SkDCubic::FindInflections(pts, testTs);
     916           0 :         double startT = fStart->t();
     917           0 :         double endT = fEnd->t();
     918           0 :         double limitT = endT;
     919             :         int index;
     920           0 :         for (index = 0; index < testCount; ++index) {
     921           0 :             if (!::between(startT, testTs[index], limitT)) {
     922           0 :                 testTs[index] = -1;
     923             :             }
     924             :         }
     925           0 :         testTs[testCount++] = startT;
     926           0 :         testTs[testCount++] = endT;
     927           0 :         SkTQSort<double>(testTs, &testTs[testCount - 1]);
     928           0 :         double bestSide = 0;
     929           0 :         int testCases = (testCount << 1) - 1;
     930           0 :         index = 0;
     931           0 :         while (testTs[index] < 0) {
     932           0 :             ++index;
     933             :         }
     934           0 :         index <<= 1;
     935           0 :         for (; index < testCases; ++index) {
     936           0 :             int testIndex = index >> 1;
     937           0 :             double testT = testTs[testIndex];
     938           0 :             if (index & 1) {
     939           0 :                 testT = (testT + testTs[testIndex + 1]) / 2;
     940             :             }
     941             :             // OPTIMIZE: could avoid call for t == startT, endT
     942           0 :             SkDPoint pt = dcubic_xy_at_t(pts, segment->weight(), testT);
     943             :             SkLineParameters tangentPart;
     944           0 :             tangentPart.cubicEndPoints(fPart.fCurve.fCubic);
     945           0 :             double testSide = tangentPart.pointDistance(pt);
     946           0 :             if (fabs(bestSide) < fabs(testSide)) {
     947           0 :                 bestSide = testSide;
     948             :             }
     949             :         }
     950           0 :         fSide = -bestSide;  // compare sign only
     951           0 :         } break;
     952             :     default:
     953           0 :         SkASSERT(0);
     954             :     }
     955             : }
     956             : 
     957           0 : void SkOpAngle::setSector() {
     958           0 :     if (!fStart) {
     959           0 :         fUnorderable = true;
     960           0 :         return;
     961             :     }
     962           0 :     const SkOpSegment* segment = fStart->segment();
     963           0 :     SkPath::Verb verb = segment->verb();
     964           0 :     fSectorStart = this->findSector(verb, fPart.fSweep[0].fX, fPart.fSweep[0].fY);
     965           0 :     if (fSectorStart < 0) {
     966           0 :         goto deferTilLater;
     967             :     }
     968           0 :     if (!fPart.isCurve()) {  // if it's a line or line-like, note that both sectors are the same
     969           0 :         SkASSERT(fSectorStart >= 0);
     970           0 :         fSectorEnd = fSectorStart;
     971           0 :         fSectorMask = 1 << fSectorStart;
     972           0 :         return;
     973             :     }
     974           0 :     SkASSERT(SkPath::kLine_Verb != verb);
     975           0 :     fSectorEnd = this->findSector(verb, fPart.fSweep[1].fX, fPart.fSweep[1].fY);
     976           0 :     if (fSectorEnd < 0) {
     977             : deferTilLater:
     978           0 :         fSectorStart = fSectorEnd = -1;
     979           0 :         fSectorMask = 0;
     980           0 :         fComputeSector = true;  // can't determine sector until segment length can be found
     981           0 :         return;
     982             :     }
     983           0 :     if (fSectorEnd == fSectorStart
     984           0 :             && (fSectorStart & 3) != 3) { // if the sector has no span, it can't be an exact angle
     985           0 :         fSectorMask = 1 << fSectorStart;
     986           0 :         return;
     987             :     }
     988           0 :     bool crossesZero = this->checkCrossesZero();
     989           0 :     int start = SkTMin(fSectorStart, fSectorEnd);
     990           0 :     bool curveBendsCCW = (fSectorStart == start) ^ crossesZero;
     991             :     // bump the start and end of the sector span if they are on exact compass points
     992           0 :     if ((fSectorStart & 3) == 3) {
     993           0 :         fSectorStart = (fSectorStart + (curveBendsCCW ? 1 : 31)) & 0x1f;
     994             :     }
     995           0 :     if ((fSectorEnd & 3) == 3) {
     996           0 :         fSectorEnd = (fSectorEnd + (curveBendsCCW ? 31 : 1)) & 0x1f;
     997             :     }
     998           0 :     crossesZero = this->checkCrossesZero();
     999           0 :     start = SkTMin(fSectorStart, fSectorEnd);
    1000           0 :     int end = SkTMax(fSectorStart, fSectorEnd);
    1001           0 :     if (!crossesZero) {
    1002           0 :         fSectorMask = (unsigned) -1 >> (31 - end + start) << start;
    1003             :     } else {
    1004           0 :         fSectorMask = (unsigned) -1 >> (31 - start) | ((unsigned) -1 << end);
    1005             :     }
    1006             : }
    1007             : 
    1008           0 : SkOpSpan* SkOpAngle::starter() {
    1009           0 :     return fStart->starter(fEnd);
    1010             : }
    1011             : 
    1012           0 : bool SkOpAngle::tangentsDiverge(const SkOpAngle* rh, double s0xt0) {
    1013           0 :     if (s0xt0 == 0) {
    1014           0 :         return false;
    1015             :     }
    1016             :     // if the ctrl tangents are not nearly parallel, use them
    1017             :     // solve for opposite direction displacement scale factor == m
    1018             :     // initial dir = v1.cross(v2) == v2.x * v1.y - v2.y * v1.x
    1019             :     // displacement of q1[1] : dq1 = { -m * v1.y, m * v1.x } + q1[1]
    1020             :     // straight angle when : v2.x * (dq1.y - q1[0].y) == v2.y * (dq1.x - q1[0].x)
    1021             :     //                       v2.x * (m * v1.x + v1.y) == v2.y * (-m * v1.y + v1.x)
    1022             :     // - m * (v2.x * v1.x + v2.y * v1.y) == v2.x * v1.y - v2.y * v1.x
    1023             :     // m = (v2.y * v1.x - v2.x * v1.y) / (v2.x * v1.x + v2.y * v1.y)
    1024             :     // m = v1.cross(v2) / v1.dot(v2)
    1025           0 :     const SkDVector* sweep = fPart.fSweep;
    1026           0 :     const SkDVector* tweep = rh->fPart.fSweep;
    1027           0 :     double s0dt0 = sweep[0].dot(tweep[0]);
    1028           0 :     if (!s0dt0) {
    1029           0 :         return true;
    1030             :     }
    1031           0 :     SkASSERT(s0dt0 != 0);
    1032           0 :     double m = s0xt0 / s0dt0;
    1033           0 :     double sDist = sweep[0].length() * m;
    1034           0 :     double tDist = tweep[0].length() * m;
    1035           0 :     bool useS = fabs(sDist) < fabs(tDist);
    1036           0 :     double mFactor = fabs(useS ? this->distEndRatio(sDist) : rh->distEndRatio(tDist));
    1037           0 :     fTangentsAmbiguous = mFactor >= 50 && mFactor < 200;
    1038           0 :     return mFactor < 50;   // empirically found limit
    1039             : }

Generated by: LCOV version 1.13