LCOV - code coverage report
Current view: top level - gfx/skia/skia/src/pathops - SkOpCubicHull.cpp (source / functions) Hit Total Coverage
Test: output.info Lines: 0 91 0.0 %
Date: 2017-07-14 16:53:18 Functions: 0 3 0.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*
       2             :  * Copyright 2012 Google Inc.
       3             :  *
       4             :  * Use of this source code is governed by a BSD-style license that can be
       5             :  * found in the LICENSE file.
       6             :  */
       7             : #include "SkPathOpsCubic.h"
       8             : 
       9           0 : static bool rotate(const SkDCubic& cubic, int zero, int index, SkDCubic& rotPath) {
      10           0 :     double dy = cubic[index].fY - cubic[zero].fY;
      11           0 :     double dx = cubic[index].fX - cubic[zero].fX;
      12           0 :     if (approximately_zero(dy)) {
      13           0 :         if (approximately_zero(dx)) {
      14           0 :             return false;
      15             :         }
      16           0 :         rotPath = cubic;
      17           0 :         if (dy) {
      18           0 :             rotPath[index].fY = cubic[zero].fY;
      19           0 :             int mask = other_two(index, zero);
      20           0 :             int side1 = index ^ mask;
      21           0 :             int side2 = zero ^ mask;
      22           0 :             if (approximately_equal(cubic[side1].fY, cubic[zero].fY)) {
      23           0 :                 rotPath[side1].fY = cubic[zero].fY;
      24             :             }
      25           0 :             if (approximately_equal(cubic[side2].fY, cubic[zero].fY)) {
      26           0 :                 rotPath[side2].fY = cubic[zero].fY;
      27             :             }
      28             :         }
      29           0 :         return true;
      30             :     }
      31           0 :     for (int index = 0; index < 4; ++index) {
      32           0 :         rotPath[index].fX = cubic[index].fX * dx + cubic[index].fY * dy;
      33           0 :         rotPath[index].fY = cubic[index].fY * dx - cubic[index].fX * dy;
      34             :     }
      35           0 :     return true;
      36             : }
      37             : 
      38             : 
      39             : // Returns 0 if negative, 1 if zero, 2 if positive
      40           0 : static int side(double x) {
      41           0 :     return (x > 0) + (x >= 0);
      42             : }
      43             : 
      44             : /* Given a cubic, find the convex hull described by the end and control points.
      45             :    The hull may have 3 or 4 points. Cubics that degenerate into a point or line
      46             :    are not considered.
      47             : 
      48             :    The hull is computed by assuming that three points, if unique and non-linear,
      49             :    form a triangle. The fourth point may replace one of the first three, may be
      50             :    discarded if in the triangle or on an edge, or may be inserted between any of
      51             :    the three to form a convex quadralateral.
      52             : 
      53             :    The indices returned in order describe the convex hull.
      54             : */
      55           0 : int SkDCubic::convexHull(char order[4]) const {
      56             :     size_t index;
      57             :     // find top point
      58           0 :     size_t yMin = 0;
      59           0 :     for (index = 1; index < 4; ++index) {
      60           0 :         if (fPts[yMin].fY > fPts[index].fY || (fPts[yMin].fY == fPts[index].fY
      61           0 :                 && fPts[yMin].fX > fPts[index].fX)) {
      62           0 :             yMin = index;
      63             :         }
      64             :     }
      65           0 :     order[0] = yMin;
      66           0 :     int midX = -1;
      67           0 :     int backupYMin = -1;
      68           0 :     for (int pass = 0; pass < 2; ++pass) {
      69           0 :         for (index = 0; index < 4; ++index) {
      70           0 :             if (index == yMin) {
      71           0 :                 continue;
      72             :             }
      73             :             // rotate line from (yMin, index) to axis
      74             :             // see if remaining two points are both above or below
      75             :             // use this to find mid
      76           0 :             int mask = other_two(yMin, index);
      77           0 :             int side1 = yMin ^ mask;
      78           0 :             int side2 = index ^ mask;
      79             :             SkDCubic rotPath;
      80           0 :             if (!rotate(*this, yMin, index, rotPath)) { // ! if cbc[yMin]==cbc[idx]
      81           0 :                 order[1] = side1;
      82           0 :                 order[2] = side2;
      83           0 :                 return 3;
      84             :             }
      85           0 :             int sides = side(rotPath[side1].fY - rotPath[yMin].fY);
      86           0 :             sides ^= side(rotPath[side2].fY - rotPath[yMin].fY);
      87           0 :             if (sides == 2) { // '2' means one remaining point <0, one >0
      88           0 :                 if (midX >= 0) {
      89             :                     // one of the control points is equal to an end point
      90           0 :                     order[0] = 0;
      91           0 :                     order[1] = 3;
      92           0 :                     if (fPts[1] == fPts[0] || fPts[1] == fPts[3]) {
      93           0 :                         order[2] = 2;
      94           0 :                         return 3;
      95             :                     }
      96           0 :                     if (fPts[2] == fPts[0] || fPts[2] == fPts[3]) {
      97           0 :                         order[2] = 1;
      98           0 :                         return 3;
      99             :                     }
     100             :                     // one of the control points may be very nearly but not exactly equal -- 
     101           0 :                     double dist1_0 = fPts[1].distanceSquared(fPts[0]);
     102           0 :                     double dist1_3 = fPts[1].distanceSquared(fPts[3]);
     103           0 :                     double dist2_0 = fPts[2].distanceSquared(fPts[0]);
     104           0 :                     double dist2_3 = fPts[2].distanceSquared(fPts[3]);
     105           0 :                     double smallest1distSq = SkTMin(dist1_0, dist1_3);
     106           0 :                     double smallest2distSq = SkTMin(dist2_0, dist2_3);
     107           0 :                     if (approximately_zero(SkTMin(smallest1distSq, smallest2distSq))) {
     108           0 :                         order[2] = smallest1distSq < smallest2distSq ? 2 : 1;
     109           0 :                         return 3;
     110             :                     }
     111             :                 }
     112           0 :                 midX = index;
     113           0 :             } else if (sides == 0) { // '0' means both to one side or the other
     114           0 :                 backupYMin = index;
     115             :             }
     116             :         }
     117           0 :         if (midX >= 0) {
     118           0 :             break;
     119             :         }
     120           0 :         if (backupYMin < 0) {
     121           0 :             break;
     122             :         }
     123           0 :         yMin = backupYMin;
     124           0 :         backupYMin = -1;
     125             :     }
     126           0 :     if (midX < 0) {
     127           0 :         midX = yMin ^ 3; // choose any other point
     128             :     }
     129           0 :     int mask = other_two(yMin, midX);
     130           0 :     int least = yMin ^ mask;
     131           0 :     int most = midX ^ mask;
     132           0 :     order[0] = yMin;
     133           0 :     order[1] = least;
     134             : 
     135             :     // see if mid value is on same side of line (least, most) as yMin
     136             :     SkDCubic midPath;
     137           0 :     if (!rotate(*this, least, most, midPath)) { // ! if cbc[least]==cbc[most]
     138           0 :         order[2] = midX;
     139           0 :         return 3;
     140             :     }
     141           0 :     int midSides = side(midPath[yMin].fY - midPath[least].fY);
     142           0 :     midSides ^= side(midPath[midX].fY - midPath[least].fY);
     143           0 :     if (midSides != 2) {  // if mid point is not between
     144           0 :         order[2] = most;
     145           0 :         return 3; // result is a triangle
     146             :     }
     147           0 :     order[2] = midX;
     148           0 :     order[3] = most;
     149           0 :     return 4; // result is a quadralateral
     150             : }

Generated by: LCOV version 1.13