LCOV - code coverage report
Current view: top level - gfx/skia/skia/src/utils - SkPatchUtils.cpp (source / functions) Hit Total Coverage
Test: output.info Lines: 0 176 0.0 %
Date: 2017-07-14 16:53:18 Functions: 0 12 0.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*
       2             :  * Copyright 2014 Google Inc.
       3             :  *
       4             :  * Use of this source code is governed by a BSD-style license that can be
       5             :  * found in the LICENSE file.
       6             :  */
       7             : 
       8             : #include "SkPatchUtils.h"
       9             : 
      10             : #include "SkColorPriv.h"
      11             : #include "SkGeometry.h"
      12             : 
      13             : namespace {
      14             :     enum CubicCtrlPts {
      15             :         kTopP0_CubicCtrlPts = 0,
      16             :         kTopP1_CubicCtrlPts = 1,
      17             :         kTopP2_CubicCtrlPts = 2,
      18             :         kTopP3_CubicCtrlPts = 3,
      19             : 
      20             :         kRightP0_CubicCtrlPts = 3,
      21             :         kRightP1_CubicCtrlPts = 4,
      22             :         kRightP2_CubicCtrlPts = 5,
      23             :         kRightP3_CubicCtrlPts = 6,
      24             : 
      25             :         kBottomP0_CubicCtrlPts = 9,
      26             :         kBottomP1_CubicCtrlPts = 8,
      27             :         kBottomP2_CubicCtrlPts = 7,
      28             :         kBottomP3_CubicCtrlPts = 6,
      29             : 
      30             :         kLeftP0_CubicCtrlPts = 0,
      31             :         kLeftP1_CubicCtrlPts = 11,
      32             :         kLeftP2_CubicCtrlPts = 10,
      33             :         kLeftP3_CubicCtrlPts = 9,
      34             :     };
      35             : 
      36             :     // Enum for corner also clockwise.
      37             :     enum Corner {
      38             :         kTopLeft_Corner = 0,
      39             :         kTopRight_Corner,
      40             :         kBottomRight_Corner,
      41             :         kBottomLeft_Corner
      42             :     };
      43             : }
      44             : 
      45             : /**
      46             :  * Evaluator to sample the values of a cubic bezier using forward differences.
      47             :  * Forward differences is a method for evaluating a nth degree polynomial at a uniform step by only
      48             :  * adding precalculated values.
      49             :  * For a linear example we have the function f(t) = m*t+b, then the value of that function at t+h
      50             :  * would be f(t+h) = m*(t+h)+b. If we want to know the uniform step that we must add to the first
      51             :  * evaluation f(t) then we need to substract f(t+h) - f(t) = m*t + m*h + b - m*t + b = mh. After
      52             :  * obtaining this value (mh) we could just add this constant step to our first sampled point
      53             :  * to compute the next one.
      54             :  *
      55             :  * For the cubic case the first difference gives as a result a quadratic polynomial to which we can
      56             :  * apply again forward differences and get linear function to which we can apply again forward
      57             :  * differences to get a constant difference. This is why we keep an array of size 4, the 0th
      58             :  * position keeps the sampled value while the next ones keep the quadratic, linear and constant
      59             :  * difference values.
      60             :  */
      61             : 
      62             : class FwDCubicEvaluator {
      63             : 
      64             : public:
      65             : 
      66             :     /**
      67             :      * Receives the 4 control points of the cubic bezier.
      68             :      */
      69             : 
      70           0 :     explicit FwDCubicEvaluator(const SkPoint points[4])
      71           0 :             : fCoefs(points) {
      72           0 :         memcpy(fPoints, points, 4 * sizeof(SkPoint));
      73             : 
      74           0 :         this->restart(1);
      75           0 :     }
      76             : 
      77             :     /**
      78             :      * Restarts the forward differences evaluator to the first value of t = 0.
      79             :      */
      80           0 :     void restart(int divisions)  {
      81           0 :         fDivisions = divisions;
      82           0 :         fCurrent    = 0;
      83           0 :         fMax        = fDivisions + 1;
      84           0 :         Sk2s h  = Sk2s(1.f / fDivisions);
      85           0 :         Sk2s h2 = h * h;
      86           0 :         Sk2s h3 = h2 * h;
      87           0 :         Sk2s fwDiff3 = Sk2s(6) * fCoefs.fA * h3;
      88           0 :         fFwDiff[3] = to_point(fwDiff3);
      89           0 :         fFwDiff[2] = to_point(fwDiff3 + times_2(fCoefs.fB) * h2);
      90           0 :         fFwDiff[1] = to_point(fCoefs.fA * h3 + fCoefs.fB * h2 + fCoefs.fC * h);
      91           0 :         fFwDiff[0] = to_point(fCoefs.fD);
      92           0 :     }
      93             : 
      94             :     /**
      95             :      * Check if the evaluator is still within the range of 0<=t<=1
      96             :      */
      97             :     bool done() const {
      98             :         return fCurrent > fMax;
      99             :     }
     100             : 
     101             :     /**
     102             :      * Call next to obtain the SkPoint sampled and move to the next one.
     103             :      */
     104           0 :     SkPoint next() {
     105           0 :         SkPoint point = fFwDiff[0];
     106           0 :         fFwDiff[0]    += fFwDiff[1];
     107           0 :         fFwDiff[1]    += fFwDiff[2];
     108           0 :         fFwDiff[2]    += fFwDiff[3];
     109           0 :         fCurrent++;
     110           0 :         return point;
     111             :     }
     112             : 
     113           0 :     const SkPoint* getCtrlPoints() const {
     114           0 :         return fPoints;
     115             :     }
     116             : 
     117             : private:
     118             :     SkCubicCoeff fCoefs;
     119             :     int fMax, fCurrent, fDivisions;
     120             :     SkPoint fFwDiff[4], fPoints[4];
     121             : };
     122             : 
     123             : ////////////////////////////////////////////////////////////////////////////////
     124             : 
     125             : // size in pixels of each partition per axis, adjust this knob
     126             : static const int kPartitionSize = 10;
     127             : 
     128             : /**
     129             :  * Calculate the approximate arc length given a bezier curve's control points.
     130             :  */
     131           0 : static SkScalar approx_arc_length(SkPoint* points, int count) {
     132           0 :     if (count < 2) {
     133           0 :         return 0;
     134             :     }
     135           0 :     SkScalar arcLength = 0;
     136           0 :     for (int i = 0; i < count - 1; i++) {
     137           0 :         arcLength += SkPoint::Distance(points[i], points[i + 1]);
     138             :     }
     139           0 :     return arcLength;
     140             : }
     141             : 
     142           0 : static SkScalar bilerp(SkScalar tx, SkScalar ty, SkScalar c00, SkScalar c10, SkScalar c01,
     143             :                       SkScalar c11) {
     144           0 :     SkScalar a = c00 * (1.f - tx) + c10 * tx;
     145           0 :     SkScalar b = c01 * (1.f - tx) + c11 * tx;
     146           0 :     return a * (1.f - ty) + b * ty;
     147             : }
     148             : 
     149           0 : SkISize SkPatchUtils::GetLevelOfDetail(const SkPoint cubics[12], const SkMatrix* matrix) {
     150             : 
     151             :     // Approximate length of each cubic.
     152             :     SkPoint pts[kNumPtsCubic];
     153           0 :     SkPatchUtils::GetTopCubic(cubics, pts);
     154           0 :     matrix->mapPoints(pts, kNumPtsCubic);
     155           0 :     SkScalar topLength = approx_arc_length(pts, kNumPtsCubic);
     156             : 
     157           0 :     SkPatchUtils::GetBottomCubic(cubics, pts);
     158           0 :     matrix->mapPoints(pts, kNumPtsCubic);
     159           0 :     SkScalar bottomLength = approx_arc_length(pts, kNumPtsCubic);
     160             : 
     161           0 :     SkPatchUtils::GetLeftCubic(cubics, pts);
     162           0 :     matrix->mapPoints(pts, kNumPtsCubic);
     163           0 :     SkScalar leftLength = approx_arc_length(pts, kNumPtsCubic);
     164             : 
     165           0 :     SkPatchUtils::GetRightCubic(cubics, pts);
     166           0 :     matrix->mapPoints(pts, kNumPtsCubic);
     167           0 :     SkScalar rightLength = approx_arc_length(pts, kNumPtsCubic);
     168             : 
     169             :     // Level of detail per axis, based on the larger side between top and bottom or left and right
     170           0 :     int lodX = static_cast<int>(SkMaxScalar(topLength, bottomLength) / kPartitionSize);
     171           0 :     int lodY = static_cast<int>(SkMaxScalar(leftLength, rightLength) / kPartitionSize);
     172             : 
     173           0 :     return SkISize::Make(SkMax32(8, lodX), SkMax32(8, lodY));
     174             : }
     175             : 
     176           0 : void SkPatchUtils::GetTopCubic(const SkPoint cubics[12], SkPoint points[4]) {
     177           0 :     points[0] = cubics[kTopP0_CubicCtrlPts];
     178           0 :     points[1] = cubics[kTopP1_CubicCtrlPts];
     179           0 :     points[2] = cubics[kTopP2_CubicCtrlPts];
     180           0 :     points[3] = cubics[kTopP3_CubicCtrlPts];
     181           0 : }
     182             : 
     183           0 : void SkPatchUtils::GetBottomCubic(const SkPoint cubics[12], SkPoint points[4]) {
     184           0 :     points[0] = cubics[kBottomP0_CubicCtrlPts];
     185           0 :     points[1] = cubics[kBottomP1_CubicCtrlPts];
     186           0 :     points[2] = cubics[kBottomP2_CubicCtrlPts];
     187           0 :     points[3] = cubics[kBottomP3_CubicCtrlPts];
     188           0 : }
     189             : 
     190           0 : void SkPatchUtils::GetLeftCubic(const SkPoint cubics[12], SkPoint points[4]) {
     191           0 :     points[0] = cubics[kLeftP0_CubicCtrlPts];
     192           0 :     points[1] = cubics[kLeftP1_CubicCtrlPts];
     193           0 :     points[2] = cubics[kLeftP2_CubicCtrlPts];
     194           0 :     points[3] = cubics[kLeftP3_CubicCtrlPts];
     195           0 : }
     196             : 
     197           0 : void SkPatchUtils::GetRightCubic(const SkPoint cubics[12], SkPoint points[4]) {
     198           0 :     points[0] = cubics[kRightP0_CubicCtrlPts];
     199           0 :     points[1] = cubics[kRightP1_CubicCtrlPts];
     200           0 :     points[2] = cubics[kRightP2_CubicCtrlPts];
     201           0 :     points[3] = cubics[kRightP3_CubicCtrlPts];
     202           0 : }
     203             : 
     204           0 : sk_sp<SkVertices> SkPatchUtils::MakeVertices(const SkPoint cubics[12], const SkColor srcColors[4],
     205             :                                             const SkPoint srcTexCoords[4], int lodX, int lodY) {
     206           0 :     if (lodX < 1 || lodY < 1 || nullptr == cubics) {
     207           0 :         return nullptr;
     208             :     }
     209             : 
     210             :     // check for overflow in multiplication
     211           0 :     const int64_t lodX64 = (lodX + 1),
     212           0 :     lodY64 = (lodY + 1),
     213           0 :     mult64 = lodX64 * lodY64;
     214           0 :     if (mult64 > SK_MaxS32) {
     215           0 :         return nullptr;
     216             :     }
     217             : 
     218           0 :     int vertexCount = SkToS32(mult64);
     219             :     // it is recommended to generate draw calls of no more than 65536 indices, so we never generate
     220             :     // more than 60000 indices. To accomplish that we resize the LOD and vertex count
     221           0 :     if (vertexCount > 10000 || lodX > 200 || lodY > 200) {
     222           0 :         float weightX = static_cast<float>(lodX) / (lodX + lodY);
     223           0 :         float weightY = static_cast<float>(lodY) / (lodX + lodY);
     224             : 
     225             :         // 200 comes from the 100 * 2 which is the max value of vertices because of the limit of
     226             :         // 60000 indices ( sqrt(60000 / 6) that comes from data->fIndexCount = lodX * lodY * 6)
     227           0 :         lodX = static_cast<int>(weightX * 200);
     228           0 :         lodY = static_cast<int>(weightY * 200);
     229           0 :         vertexCount = (lodX + 1) * (lodY + 1);
     230             :     }
     231           0 :     const int indexCount = lodX * lodY * 6;
     232           0 :     uint32_t flags = 0;
     233           0 :     if (srcTexCoords) {
     234           0 :         flags |= SkVertices::kHasTexCoords_BuilderFlag;
     235             :     }
     236           0 :     if (srcColors) {
     237           0 :         flags |= SkVertices::kHasColors_BuilderFlag;
     238             :     }
     239             : 
     240           0 :     SkVertices::Builder builder(SkVertices::kTriangles_VertexMode, vertexCount, indexCount, flags);
     241           0 :     SkPoint* pos = builder.positions();
     242           0 :     SkPoint* texs = builder.texCoords();
     243           0 :     SkColor* colors = builder.colors();
     244           0 :     uint16_t* indices = builder.indices();
     245             : 
     246             :     // if colors is not null then create array for colors
     247             :     SkPMColor colorsPM[kNumCorners];
     248           0 :     if (srcColors) {
     249             :         // premultiply colors to avoid color bleeding.
     250           0 :         for (int i = 0; i < kNumCorners; i++) {
     251           0 :             colorsPM[i] = SkPreMultiplyColor(srcColors[i]);
     252             :         }
     253           0 :         srcColors = colorsPM;
     254             :     }
     255             : 
     256             :     SkPoint pts[kNumPtsCubic];
     257           0 :     SkPatchUtils::GetBottomCubic(cubics, pts);
     258           0 :     FwDCubicEvaluator fBottom(pts);
     259           0 :     SkPatchUtils::GetTopCubic(cubics, pts);
     260           0 :     FwDCubicEvaluator fTop(pts);
     261           0 :     SkPatchUtils::GetLeftCubic(cubics, pts);
     262           0 :     FwDCubicEvaluator fLeft(pts);
     263           0 :     SkPatchUtils::GetRightCubic(cubics, pts);
     264           0 :     FwDCubicEvaluator fRight(pts);
     265             : 
     266           0 :     fBottom.restart(lodX);
     267           0 :     fTop.restart(lodX);
     268             : 
     269           0 :     SkScalar u = 0.0f;
     270           0 :     int stride = lodY + 1;
     271           0 :     for (int x = 0; x <= lodX; x++) {
     272           0 :         SkPoint bottom = fBottom.next(), top = fTop.next();
     273           0 :         fLeft.restart(lodY);
     274           0 :         fRight.restart(lodY);
     275           0 :         SkScalar v = 0.f;
     276           0 :         for (int y = 0; y <= lodY; y++) {
     277           0 :             int dataIndex = x * (lodY + 1) + y;
     278             : 
     279           0 :             SkPoint left = fLeft.next(), right = fRight.next();
     280             : 
     281           0 :             SkPoint s0 = SkPoint::Make((1.0f - v) * top.x() + v * bottom.x(),
     282           0 :                                        (1.0f - v) * top.y() + v * bottom.y());
     283           0 :             SkPoint s1 = SkPoint::Make((1.0f - u) * left.x() + u * right.x(),
     284           0 :                                        (1.0f - u) * left.y() + u * right.y());
     285             :             SkPoint s2 = SkPoint::Make(
     286           0 :                                        (1.0f - v) * ((1.0f - u) * fTop.getCtrlPoints()[0].x()
     287           0 :                                                      + u * fTop.getCtrlPoints()[3].x())
     288           0 :                                        + v * ((1.0f - u) * fBottom.getCtrlPoints()[0].x()
     289           0 :                                               + u * fBottom.getCtrlPoints()[3].x()),
     290           0 :                                        (1.0f - v) * ((1.0f - u) * fTop.getCtrlPoints()[0].y()
     291           0 :                                                      + u * fTop.getCtrlPoints()[3].y())
     292           0 :                                        + v * ((1.0f - u) * fBottom.getCtrlPoints()[0].y()
     293           0 :                                               + u * fBottom.getCtrlPoints()[3].y()));
     294           0 :             pos[dataIndex] = s0 + s1 - s2;
     295             : 
     296           0 :             if (colors) {
     297           0 :                 uint8_t a = uint8_t(bilerp(u, v,
     298           0 :                                            SkScalar(SkColorGetA(colorsPM[kTopLeft_Corner])),
     299           0 :                                            SkScalar(SkColorGetA(colorsPM[kTopRight_Corner])),
     300           0 :                                            SkScalar(SkColorGetA(colorsPM[kBottomLeft_Corner])),
     301           0 :                                            SkScalar(SkColorGetA(colorsPM[kBottomRight_Corner]))));
     302           0 :                 uint8_t r = uint8_t(bilerp(u, v,
     303           0 :                                            SkScalar(SkColorGetR(colorsPM[kTopLeft_Corner])),
     304           0 :                                            SkScalar(SkColorGetR(colorsPM[kTopRight_Corner])),
     305           0 :                                            SkScalar(SkColorGetR(colorsPM[kBottomLeft_Corner])),
     306           0 :                                            SkScalar(SkColorGetR(colorsPM[kBottomRight_Corner]))));
     307           0 :                 uint8_t g = uint8_t(bilerp(u, v,
     308           0 :                                            SkScalar(SkColorGetG(colorsPM[kTopLeft_Corner])),
     309           0 :                                            SkScalar(SkColorGetG(colorsPM[kTopRight_Corner])),
     310           0 :                                            SkScalar(SkColorGetG(colorsPM[kBottomLeft_Corner])),
     311           0 :                                            SkScalar(SkColorGetG(colorsPM[kBottomRight_Corner]))));
     312           0 :                 uint8_t b = uint8_t(bilerp(u, v,
     313           0 :                                            SkScalar(SkColorGetB(colorsPM[kTopLeft_Corner])),
     314           0 :                                            SkScalar(SkColorGetB(colorsPM[kTopRight_Corner])),
     315           0 :                                            SkScalar(SkColorGetB(colorsPM[kBottomLeft_Corner])),
     316           0 :                                            SkScalar(SkColorGetB(colorsPM[kBottomRight_Corner]))));
     317           0 :                 colors[dataIndex] = SkPackARGB32(a,r,g,b);
     318             :             }
     319             : 
     320           0 :             if (texs) {
     321             :                 texs[dataIndex] = SkPoint::Make(bilerp(u, v, srcTexCoords[kTopLeft_Corner].x(),
     322             :                                                        srcTexCoords[kTopRight_Corner].x(),
     323             :                                                        srcTexCoords[kBottomLeft_Corner].x(),
     324             :                                                        srcTexCoords[kBottomRight_Corner].x()),
     325             :                                                 bilerp(u, v, srcTexCoords[kTopLeft_Corner].y(),
     326             :                                                        srcTexCoords[kTopRight_Corner].y(),
     327             :                                                        srcTexCoords[kBottomLeft_Corner].y(),
     328           0 :                                                        srcTexCoords[kBottomRight_Corner].y()));
     329             : 
     330             :             }
     331             : 
     332           0 :             if(x < lodX && y < lodY) {
     333           0 :                 int i = 6 * (x * lodY + y);
     334           0 :                 indices[i] = x * stride + y;
     335           0 :                 indices[i + 1] = x * stride + 1 + y;
     336           0 :                 indices[i + 2] = (x + 1) * stride + 1 + y;
     337           0 :                 indices[i + 3] = indices[i];
     338           0 :                 indices[i + 4] = indices[i + 2];
     339           0 :                 indices[i + 5] = (x + 1) * stride + y;
     340             :             }
     341           0 :             v = SkScalarClampMax(v + 1.f / lodY, 1);
     342             :         }
     343           0 :         u = SkScalarClampMax(u + 1.f / lodX, 1);
     344             :     }
     345           0 :     return builder.detach();
     346             : }

Generated by: LCOV version 1.13