Line data Source code
1 : // © 2016 and later: Unicode, Inc. and others.
2 : // License & terms of use: http://www.unicode.org/copyright.html
3 : /*
4 : *******************************************************************************
5 : *
6 : * Copyright (C) 2001-2014, International Business Machines
7 : * Corporation and others. All Rights Reserved.
8 : *
9 : *******************************************************************************
10 : * file name: unormcmp.cpp
11 : * encoding: UTF-8
12 : * tab size: 8 (not used)
13 : * indentation:4
14 : *
15 : * created on: 2004sep13
16 : * created by: Markus W. Scherer
17 : *
18 : * unorm_compare() function moved here from unorm.cpp for better modularization.
19 : * Depends on both normalization and case folding.
20 : * Allows unorm.cpp to not depend on any character properties code.
21 : */
22 :
23 : #include "unicode/utypes.h"
24 :
25 : #if !UCONFIG_NO_NORMALIZATION
26 :
27 : #include "unicode/unorm.h"
28 : #include "unicode/ustring.h"
29 : #include "cmemory.h"
30 : #include "normalizer2impl.h"
31 : #include "ucase.h"
32 : #include "uprops.h"
33 : #include "ustr_imp.h"
34 :
35 : U_NAMESPACE_USE
36 :
37 : /* compare canonically equivalent ------------------------------------------- */
38 :
39 : /*
40 : * Compare two strings for canonical equivalence.
41 : * Further options include case-insensitive comparison and
42 : * code point order (as opposed to code unit order).
43 : *
44 : * In this function, canonical equivalence is optional as well.
45 : * If canonical equivalence is tested, then both strings must fulfill
46 : * the FCD check.
47 : *
48 : * Semantically, this is equivalent to
49 : * strcmp[CodePointOrder](NFD(foldCase(s1)), NFD(foldCase(s2)))
50 : * where code point order, NFD and foldCase are all optional.
51 : *
52 : * String comparisons almost always yield results before processing both strings
53 : * completely.
54 : * They are generally more efficient working incrementally instead of
55 : * performing the sub-processing (strlen, normalization, case-folding)
56 : * on the entire strings first.
57 : *
58 : * It is also unnecessary to not normalize identical characters.
59 : *
60 : * This function works in principle as follows:
61 : *
62 : * loop {
63 : * get one code unit c1 from s1 (-1 if end of source)
64 : * get one code unit c2 from s2 (-1 if end of source)
65 : *
66 : * if(either string finished) {
67 : * return result;
68 : * }
69 : * if(c1==c2) {
70 : * continue;
71 : * }
72 : *
73 : * // c1!=c2
74 : * try to decompose/case-fold c1/c2, and continue if one does;
75 : *
76 : * // still c1!=c2 and neither decomposes/case-folds, return result
77 : * return c1-c2;
78 : * }
79 : *
80 : * When a character decomposes, then the pointer for that source changes to
81 : * the decomposition, pushing the previous pointer onto a stack.
82 : * When the end of the decomposition is reached, then the code unit reader
83 : * pops the previous source from the stack.
84 : * (Same for case-folding.)
85 : *
86 : * This is complicated further by operating on variable-width UTF-16.
87 : * The top part of the loop works on code units, while lookups for decomposition
88 : * and case-folding need code points.
89 : * Code points are assembled after the equality/end-of-source part.
90 : * The source pointer is only advanced beyond all code units when the code point
91 : * actually decomposes/case-folds.
92 : *
93 : * If we were on a trail surrogate unit when assembling a code point,
94 : * and the code point decomposes/case-folds, then the decomposition/folding
95 : * result must be compared with the part of the other string that corresponds to
96 : * this string's lead surrogate.
97 : * Since we only assemble a code point when hitting a trail unit when the
98 : * preceding lead units were identical, we back up the other string by one unit
99 : * in such a case.
100 : *
101 : * The optional code point order comparison at the end works with
102 : * the same fix-up as the other code point order comparison functions.
103 : * See ustring.c and the comment near the end of this function.
104 : *
105 : * Assumption: A decomposition or case-folding result string never contains
106 : * a single surrogate. This is a safe assumption in the Unicode Standard.
107 : * Therefore, we do not need to check for surrogate pairs across
108 : * decomposition/case-folding boundaries.
109 : *
110 : * Further assumptions (see verifications tstnorm.cpp):
111 : * The API function checks for FCD first, while the core function
112 : * first case-folds and then decomposes. This requires that case-folding does not
113 : * un-FCD any strings.
114 : *
115 : * The API function may also NFD the input and turn off decomposition.
116 : * This requires that case-folding does not un-NFD strings either.
117 : *
118 : * TODO If any of the above two assumptions is violated,
119 : * then this entire code must be re-thought.
120 : * If this happens, then a simple solution is to case-fold both strings up front
121 : * and to turn off UNORM_INPUT_IS_FCD.
122 : * We already do this when not both strings are in FCD because makeFCD
123 : * would be a partial NFD before the case folding, which does not work.
124 : * Note that all of this is only a problem when case-folding _and_
125 : * canonical equivalence come together.
126 : * (Comments in unorm_compare() are more up to date than this TODO.)
127 : */
128 :
129 : /* stack element for previous-level source/decomposition pointers */
130 : struct CmpEquivLevel {
131 : const UChar *start, *s, *limit;
132 : };
133 : typedef struct CmpEquivLevel CmpEquivLevel;
134 :
135 : /**
136 : * Internal option for unorm_cmpEquivFold() for decomposing.
137 : * If not set, just do strcasecmp().
138 : */
139 : #define _COMPARE_EQUIV 0x80000
140 :
141 : /* internal function */
142 : static int32_t
143 0 : unorm_cmpEquivFold(const UChar *s1, int32_t length1,
144 : const UChar *s2, int32_t length2,
145 : uint32_t options,
146 : UErrorCode *pErrorCode) {
147 : const Normalizer2Impl *nfcImpl;
148 :
149 : /* current-level start/limit - s1/s2 as current */
150 : const UChar *start1, *start2, *limit1, *limit2;
151 :
152 : /* decomposition and case folding variables */
153 : const UChar *p;
154 : int32_t length;
155 :
156 : /* stacks of previous-level start/current/limit */
157 : CmpEquivLevel stack1[2], stack2[2];
158 :
159 : /* buffers for algorithmic decompositions */
160 : UChar decomp1[4], decomp2[4];
161 :
162 : /* case folding buffers, only use current-level start/limit */
163 : UChar fold1[UCASE_MAX_STRING_LENGTH+1], fold2[UCASE_MAX_STRING_LENGTH+1];
164 :
165 : /* track which is the current level per string */
166 : int32_t level1, level2;
167 :
168 : /* current code units, and code points for lookups */
169 : UChar32 c1, c2, cp1, cp2;
170 :
171 : /* no argument error checking because this itself is not an API */
172 :
173 : /*
174 : * assume that at least one of the options _COMPARE_EQUIV and U_COMPARE_IGNORE_CASE is set
175 : * otherwise this function must behave exactly as uprv_strCompare()
176 : * not checking for that here makes testing this function easier
177 : */
178 :
179 : /* normalization/properties data loaded? */
180 0 : if((options&_COMPARE_EQUIV)!=0) {
181 0 : nfcImpl=Normalizer2Factory::getNFCImpl(*pErrorCode);
182 : } else {
183 0 : nfcImpl=NULL;
184 : }
185 0 : if(U_FAILURE(*pErrorCode)) {
186 0 : return 0;
187 : }
188 :
189 : /* initialize */
190 0 : start1=s1;
191 0 : if(length1==-1) {
192 0 : limit1=NULL;
193 : } else {
194 0 : limit1=s1+length1;
195 : }
196 :
197 0 : start2=s2;
198 0 : if(length2==-1) {
199 0 : limit2=NULL;
200 : } else {
201 0 : limit2=s2+length2;
202 : }
203 :
204 0 : level1=level2=0;
205 0 : c1=c2=-1;
206 :
207 : /* comparison loop */
208 : for(;;) {
209 : /*
210 : * here a code unit value of -1 means "get another code unit"
211 : * below it will mean "this source is finished"
212 : */
213 :
214 0 : if(c1<0) {
215 : /* get next code unit from string 1, post-increment */
216 : for(;;) {
217 0 : if(s1==limit1 || ((c1=*s1)==0 && (limit1==NULL || (options&_STRNCMP_STYLE)))) {
218 0 : if(level1==0) {
219 0 : c1=-1;
220 0 : break;
221 : }
222 : } else {
223 0 : ++s1;
224 0 : break;
225 : }
226 :
227 : /* reached end of level buffer, pop one level */
228 0 : do {
229 0 : --level1;
230 0 : start1=stack1[level1].start; /*Not uninitialized*/
231 0 : } while(start1==NULL);
232 0 : s1=stack1[level1].s; /*Not uninitialized*/
233 0 : limit1=stack1[level1].limit; /*Not uninitialized*/
234 : }
235 : }
236 :
237 0 : if(c2<0) {
238 : /* get next code unit from string 2, post-increment */
239 : for(;;) {
240 0 : if(s2==limit2 || ((c2=*s2)==0 && (limit2==NULL || (options&_STRNCMP_STYLE)))) {
241 0 : if(level2==0) {
242 0 : c2=-1;
243 0 : break;
244 : }
245 : } else {
246 0 : ++s2;
247 0 : break;
248 : }
249 :
250 : /* reached end of level buffer, pop one level */
251 0 : do {
252 0 : --level2;
253 0 : start2=stack2[level2].start; /*Not uninitialized*/
254 0 : } while(start2==NULL);
255 0 : s2=stack2[level2].s; /*Not uninitialized*/
256 0 : limit2=stack2[level2].limit; /*Not uninitialized*/
257 : }
258 : }
259 :
260 : /*
261 : * compare c1 and c2
262 : * either variable c1, c2 is -1 only if the corresponding string is finished
263 : */
264 0 : if(c1==c2) {
265 0 : if(c1<0) {
266 0 : return 0; /* c1==c2==-1 indicating end of strings */
267 : }
268 0 : c1=c2=-1; /* make us fetch new code units */
269 0 : continue;
270 0 : } else if(c1<0) {
271 0 : return -1; /* string 1 ends before string 2 */
272 0 : } else if(c2<0) {
273 0 : return 1; /* string 2 ends before string 1 */
274 : }
275 : /* c1!=c2 && c1>=0 && c2>=0 */
276 :
277 : /* get complete code points for c1, c2 for lookups if either is a surrogate */
278 0 : cp1=c1;
279 0 : if(U_IS_SURROGATE(c1)) {
280 : UChar c;
281 :
282 0 : if(U_IS_SURROGATE_LEAD(c1)) {
283 0 : if(s1!=limit1 && U16_IS_TRAIL(c=*s1)) {
284 : /* advance ++s1; only below if cp1 decomposes/case-folds */
285 0 : cp1=U16_GET_SUPPLEMENTARY(c1, c);
286 : }
287 : } else /* isTrail(c1) */ {
288 0 : if(start1<=(s1-2) && U16_IS_LEAD(c=*(s1-2))) {
289 0 : cp1=U16_GET_SUPPLEMENTARY(c, c1);
290 : }
291 : }
292 : }
293 :
294 0 : cp2=c2;
295 0 : if(U_IS_SURROGATE(c2)) {
296 : UChar c;
297 :
298 0 : if(U_IS_SURROGATE_LEAD(c2)) {
299 0 : if(s2!=limit2 && U16_IS_TRAIL(c=*s2)) {
300 : /* advance ++s2; only below if cp2 decomposes/case-folds */
301 0 : cp2=U16_GET_SUPPLEMENTARY(c2, c);
302 : }
303 : } else /* isTrail(c2) */ {
304 0 : if(start2<=(s2-2) && U16_IS_LEAD(c=*(s2-2))) {
305 0 : cp2=U16_GET_SUPPLEMENTARY(c, c2);
306 : }
307 : }
308 : }
309 :
310 : /*
311 : * go down one level for each string
312 : * continue with the main loop as soon as there is a real change
313 : */
314 :
315 0 : if( level1==0 && (options&U_COMPARE_IGNORE_CASE) &&
316 0 : (length=ucase_toFullFolding((UChar32)cp1, &p, options))>=0
317 : ) {
318 : /* cp1 case-folds to the code point "length" or to p[length] */
319 0 : if(U_IS_SURROGATE(c1)) {
320 0 : if(U_IS_SURROGATE_LEAD(c1)) {
321 : /* advance beyond source surrogate pair if it case-folds */
322 0 : ++s1;
323 : } else /* isTrail(c1) */ {
324 : /*
325 : * we got a supplementary code point when hitting its trail surrogate,
326 : * therefore the lead surrogate must have been the same as in the other string;
327 : * compare this decomposition with the lead surrogate in the other string
328 : * remember that this simulates bulk text replacement:
329 : * the decomposition would replace the entire code point
330 : */
331 0 : --s2;
332 0 : c2=*(s2-1);
333 : }
334 : }
335 :
336 : /* push current level pointers */
337 0 : stack1[0].start=start1;
338 0 : stack1[0].s=s1;
339 0 : stack1[0].limit=limit1;
340 0 : ++level1;
341 :
342 : /* copy the folding result to fold1[] */
343 0 : if(length<=UCASE_MAX_STRING_LENGTH) {
344 0 : u_memcpy(fold1, p, length);
345 : } else {
346 0 : int32_t i=0;
347 0 : U16_APPEND_UNSAFE(fold1, i, length);
348 0 : length=i;
349 : }
350 :
351 : /* set next level pointers to case folding */
352 0 : start1=s1=fold1;
353 0 : limit1=fold1+length;
354 :
355 : /* get ready to read from decomposition, continue with loop */
356 0 : c1=-1;
357 0 : continue;
358 : }
359 :
360 0 : if( level2==0 && (options&U_COMPARE_IGNORE_CASE) &&
361 0 : (length=ucase_toFullFolding((UChar32)cp2, &p, options))>=0
362 : ) {
363 : /* cp2 case-folds to the code point "length" or to p[length] */
364 0 : if(U_IS_SURROGATE(c2)) {
365 0 : if(U_IS_SURROGATE_LEAD(c2)) {
366 : /* advance beyond source surrogate pair if it case-folds */
367 0 : ++s2;
368 : } else /* isTrail(c2) */ {
369 : /*
370 : * we got a supplementary code point when hitting its trail surrogate,
371 : * therefore the lead surrogate must have been the same as in the other string;
372 : * compare this decomposition with the lead surrogate in the other string
373 : * remember that this simulates bulk text replacement:
374 : * the decomposition would replace the entire code point
375 : */
376 0 : --s1;
377 0 : c1=*(s1-1);
378 : }
379 : }
380 :
381 : /* push current level pointers */
382 0 : stack2[0].start=start2;
383 0 : stack2[0].s=s2;
384 0 : stack2[0].limit=limit2;
385 0 : ++level2;
386 :
387 : /* copy the folding result to fold2[] */
388 0 : if(length<=UCASE_MAX_STRING_LENGTH) {
389 0 : u_memcpy(fold2, p, length);
390 : } else {
391 0 : int32_t i=0;
392 0 : U16_APPEND_UNSAFE(fold2, i, length);
393 0 : length=i;
394 : }
395 :
396 : /* set next level pointers to case folding */
397 0 : start2=s2=fold2;
398 0 : limit2=fold2+length;
399 :
400 : /* get ready to read from decomposition, continue with loop */
401 0 : c2=-1;
402 0 : continue;
403 : }
404 :
405 0 : if( level1<2 && (options&_COMPARE_EQUIV) &&
406 0 : 0!=(p=nfcImpl->getDecomposition((UChar32)cp1, decomp1, length))
407 : ) {
408 : /* cp1 decomposes into p[length] */
409 0 : if(U_IS_SURROGATE(c1)) {
410 0 : if(U_IS_SURROGATE_LEAD(c1)) {
411 : /* advance beyond source surrogate pair if it decomposes */
412 0 : ++s1;
413 : } else /* isTrail(c1) */ {
414 : /*
415 : * we got a supplementary code point when hitting its trail surrogate,
416 : * therefore the lead surrogate must have been the same as in the other string;
417 : * compare this decomposition with the lead surrogate in the other string
418 : * remember that this simulates bulk text replacement:
419 : * the decomposition would replace the entire code point
420 : */
421 0 : --s2;
422 0 : c2=*(s2-1);
423 : }
424 : }
425 :
426 : /* push current level pointers */
427 0 : stack1[level1].start=start1;
428 0 : stack1[level1].s=s1;
429 0 : stack1[level1].limit=limit1;
430 0 : ++level1;
431 :
432 : /* set empty intermediate level if skipped */
433 0 : if(level1<2) {
434 0 : stack1[level1++].start=NULL;
435 : }
436 :
437 : /* set next level pointers to decomposition */
438 0 : start1=s1=p;
439 0 : limit1=p+length;
440 :
441 : /* get ready to read from decomposition, continue with loop */
442 0 : c1=-1;
443 0 : continue;
444 : }
445 :
446 0 : if( level2<2 && (options&_COMPARE_EQUIV) &&
447 0 : 0!=(p=nfcImpl->getDecomposition((UChar32)cp2, decomp2, length))
448 : ) {
449 : /* cp2 decomposes into p[length] */
450 0 : if(U_IS_SURROGATE(c2)) {
451 0 : if(U_IS_SURROGATE_LEAD(c2)) {
452 : /* advance beyond source surrogate pair if it decomposes */
453 0 : ++s2;
454 : } else /* isTrail(c2) */ {
455 : /*
456 : * we got a supplementary code point when hitting its trail surrogate,
457 : * therefore the lead surrogate must have been the same as in the other string;
458 : * compare this decomposition with the lead surrogate in the other string
459 : * remember that this simulates bulk text replacement:
460 : * the decomposition would replace the entire code point
461 : */
462 0 : --s1;
463 0 : c1=*(s1-1);
464 : }
465 : }
466 :
467 : /* push current level pointers */
468 0 : stack2[level2].start=start2;
469 0 : stack2[level2].s=s2;
470 0 : stack2[level2].limit=limit2;
471 0 : ++level2;
472 :
473 : /* set empty intermediate level if skipped */
474 0 : if(level2<2) {
475 0 : stack2[level2++].start=NULL;
476 : }
477 :
478 : /* set next level pointers to decomposition */
479 0 : start2=s2=p;
480 0 : limit2=p+length;
481 :
482 : /* get ready to read from decomposition, continue with loop */
483 0 : c2=-1;
484 0 : continue;
485 : }
486 :
487 : /*
488 : * no decomposition/case folding, max level for both sides:
489 : * return difference result
490 : *
491 : * code point order comparison must not just return cp1-cp2
492 : * because when single surrogates are present then the surrogate pairs
493 : * that formed cp1 and cp2 may be from different string indexes
494 : *
495 : * example: { d800 d800 dc01 } vs. { d800 dc00 }, compare at second code units
496 : * c1=d800 cp1=10001 c2=dc00 cp2=10000
497 : * cp1-cp2>0 but c1-c2<0 and in fact in UTF-32 it is { d800 10001 } < { 10000 }
498 : *
499 : * therefore, use same fix-up as in ustring.c/uprv_strCompare()
500 : * except: uprv_strCompare() fetches c=*s while this functions fetches c=*s++
501 : * so we have slightly different pointer/start/limit comparisons here
502 : */
503 :
504 0 : if(c1>=0xd800 && c2>=0xd800 && (options&U_COMPARE_CODE_POINT_ORDER)) {
505 : /* subtract 0x2800 from BMP code points to make them smaller than supplementary ones */
506 0 : if(
507 0 : (c1<=0xdbff && s1!=limit1 && U16_IS_TRAIL(*s1)) ||
508 0 : (U16_IS_TRAIL(c1) && start1!=(s1-1) && U16_IS_LEAD(*(s1-2)))
509 : ) {
510 : /* part of a surrogate pair, leave >=d800 */
511 : } else {
512 : /* BMP code point - may be surrogate code point - make <d800 */
513 0 : c1-=0x2800;
514 : }
515 :
516 0 : if(
517 0 : (c2<=0xdbff && s2!=limit2 && U16_IS_TRAIL(*s2)) ||
518 0 : (U16_IS_TRAIL(c2) && start2!=(s2-1) && U16_IS_LEAD(*(s2-2)))
519 : ) {
520 : /* part of a surrogate pair, leave >=d800 */
521 : } else {
522 : /* BMP code point - may be surrogate code point - make <d800 */
523 0 : c2-=0x2800;
524 : }
525 : }
526 :
527 0 : return c1-c2;
528 0 : }
529 : }
530 :
531 : static
532 0 : UBool _normalize(const Normalizer2 *n2, const UChar *s, int32_t length,
533 : UnicodeString &normalized, UErrorCode *pErrorCode) {
534 0 : UnicodeString str(length<0, s, length);
535 :
536 : // check if s fulfill the conditions
537 0 : int32_t spanQCYes=n2->spanQuickCheckYes(str, *pErrorCode);
538 0 : if (U_FAILURE(*pErrorCode)) {
539 0 : return FALSE;
540 : }
541 : /*
542 : * ICU 2.4 had a further optimization:
543 : * If both strings were not in FCD, then they were both NFD'ed,
544 : * and the _COMPARE_EQUIV option was turned off.
545 : * It is not entirely clear that this is valid with the current
546 : * definition of the canonical caseless match.
547 : * Therefore, ICU 2.6 removes that optimization.
548 : */
549 0 : if(spanQCYes<str.length()) {
550 0 : UnicodeString unnormalized=str.tempSubString(spanQCYes);
551 0 : normalized.setTo(FALSE, str.getBuffer(), spanQCYes);
552 0 : n2->normalizeSecondAndAppend(normalized, unnormalized, *pErrorCode);
553 0 : if (U_SUCCESS(*pErrorCode)) {
554 0 : return TRUE;
555 : }
556 : }
557 0 : return FALSE;
558 : }
559 :
560 : U_CAPI int32_t U_EXPORT2
561 0 : unorm_compare(const UChar *s1, int32_t length1,
562 : const UChar *s2, int32_t length2,
563 : uint32_t options,
564 : UErrorCode *pErrorCode) {
565 : /* argument checking */
566 0 : if(U_FAILURE(*pErrorCode)) {
567 0 : return 0;
568 : }
569 0 : if(s1==0 || length1<-1 || s2==0 || length2<-1) {
570 0 : *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
571 0 : return 0;
572 : }
573 :
574 0 : UnicodeString fcd1, fcd2;
575 0 : int32_t normOptions=(int32_t)(options>>UNORM_COMPARE_NORM_OPTIONS_SHIFT);
576 0 : options|=_COMPARE_EQUIV;
577 :
578 : /*
579 : * UAX #21 Case Mappings, as fixed for Unicode version 4
580 : * (see Jitterbug 2021), defines a canonical caseless match as
581 : *
582 : * A string X is a canonical caseless match
583 : * for a string Y if and only if
584 : * NFD(toCasefold(NFD(X))) = NFD(toCasefold(NFD(Y)))
585 : *
586 : * For better performance, we check for FCD (or let the caller tell us that
587 : * both strings are in FCD) for the inner normalization.
588 : * BasicNormalizerTest::FindFoldFCDExceptions() makes sure that
589 : * case-folding preserves the FCD-ness of a string.
590 : * The outer normalization is then only performed by unorm_cmpEquivFold()
591 : * when there is a difference.
592 : *
593 : * Exception: When using the Turkic case-folding option, we do perform
594 : * full NFD first. This is because in the Turkic case precomposed characters
595 : * with 0049 capital I or 0069 small i fold differently whether they
596 : * are first decomposed or not, so an FCD check - a check only for
597 : * canonical order - is not sufficient.
598 : */
599 0 : if(!(options&UNORM_INPUT_IS_FCD) || (options&U_FOLD_CASE_EXCLUDE_SPECIAL_I)) {
600 : const Normalizer2 *n2;
601 0 : if(options&U_FOLD_CASE_EXCLUDE_SPECIAL_I) {
602 0 : n2=Normalizer2::getNFDInstance(*pErrorCode);
603 : } else {
604 0 : n2=Normalizer2Factory::getFCDInstance(*pErrorCode);
605 : }
606 0 : if (U_FAILURE(*pErrorCode)) {
607 0 : return 0;
608 : }
609 :
610 0 : if(normOptions&UNORM_UNICODE_3_2) {
611 0 : const UnicodeSet *uni32=uniset_getUnicode32Instance(*pErrorCode);
612 0 : FilteredNormalizer2 fn2(*n2, *uni32);
613 0 : if(_normalize(&fn2, s1, length1, fcd1, pErrorCode)) {
614 0 : s1=fcd1.getBuffer();
615 0 : length1=fcd1.length();
616 : }
617 0 : if(_normalize(&fn2, s2, length2, fcd2, pErrorCode)) {
618 0 : s2=fcd2.getBuffer();
619 0 : length2=fcd2.length();
620 : }
621 : } else {
622 0 : if(_normalize(n2, s1, length1, fcd1, pErrorCode)) {
623 0 : s1=fcd1.getBuffer();
624 0 : length1=fcd1.length();
625 : }
626 0 : if(_normalize(n2, s2, length2, fcd2, pErrorCode)) {
627 0 : s2=fcd2.getBuffer();
628 0 : length2=fcd2.length();
629 : }
630 : }
631 : }
632 :
633 0 : if(U_SUCCESS(*pErrorCode)) {
634 0 : return unorm_cmpEquivFold(s1, length1, s2, length2, options, pErrorCode);
635 : } else {
636 0 : return 0;
637 : }
638 : }
639 :
640 : #endif /* #if !UCONFIG_NO_NORMALIZATION */
|