Line data Source code
1 : // © 2016 and later: Unicode, Inc. and others.
2 : // License & terms of use: http://www.unicode.org/copyright.html
3 : /*
4 : *******************************************************************************
5 : * Copyright (C) 2013-2014, International Business Machines
6 : * Corporation and others. All Rights Reserved.
7 : *******************************************************************************
8 : * collationbuilder.cpp
9 : *
10 : * (replaced the former ucol_bld.cpp)
11 : *
12 : * created on: 2013may06
13 : * created by: Markus W. Scherer
14 : */
15 :
16 : #ifdef DEBUG_COLLATION_BUILDER
17 : #include <stdio.h>
18 : #endif
19 :
20 : #include "unicode/utypes.h"
21 :
22 : #if !UCONFIG_NO_COLLATION
23 :
24 : #include "unicode/caniter.h"
25 : #include "unicode/normalizer2.h"
26 : #include "unicode/tblcoll.h"
27 : #include "unicode/parseerr.h"
28 : #include "unicode/uchar.h"
29 : #include "unicode/ucol.h"
30 : #include "unicode/unistr.h"
31 : #include "unicode/usetiter.h"
32 : #include "unicode/utf16.h"
33 : #include "unicode/uversion.h"
34 : #include "cmemory.h"
35 : #include "collation.h"
36 : #include "collationbuilder.h"
37 : #include "collationdata.h"
38 : #include "collationdatabuilder.h"
39 : #include "collationfastlatin.h"
40 : #include "collationroot.h"
41 : #include "collationrootelements.h"
42 : #include "collationruleparser.h"
43 : #include "collationsettings.h"
44 : #include "collationtailoring.h"
45 : #include "collationweights.h"
46 : #include "normalizer2impl.h"
47 : #include "uassert.h"
48 : #include "ucol_imp.h"
49 : #include "utf16collationiterator.h"
50 :
51 : U_NAMESPACE_BEGIN
52 :
53 : namespace {
54 :
55 : class BundleImporter : public CollationRuleParser::Importer {
56 : public:
57 0 : BundleImporter() {}
58 : virtual ~BundleImporter();
59 : virtual void getRules(
60 : const char *localeID, const char *collationType,
61 : UnicodeString &rules,
62 : const char *&errorReason, UErrorCode &errorCode);
63 : };
64 :
65 0 : BundleImporter::~BundleImporter() {}
66 :
67 : void
68 0 : BundleImporter::getRules(
69 : const char *localeID, const char *collationType,
70 : UnicodeString &rules,
71 : const char *& /*errorReason*/, UErrorCode &errorCode) {
72 0 : CollationLoader::loadRules(localeID, collationType, rules, errorCode);
73 0 : }
74 :
75 : } // namespace
76 :
77 : // RuleBasedCollator implementation ---------------------------------------- ***
78 :
79 : // These methods are here, rather than in rulebasedcollator.cpp,
80 : // for modularization:
81 : // Most code using Collator does not need to build a Collator from rules.
82 : // By moving these constructors and helper methods to a separate file,
83 : // most code will not have a static dependency on the builder code.
84 :
85 0 : RuleBasedCollator::RuleBasedCollator()
86 : : data(NULL),
87 : settings(NULL),
88 : tailoring(NULL),
89 : cacheEntry(NULL),
90 : validLocale(""),
91 : explicitlySetAttributes(0),
92 0 : actualLocaleIsSameAsValid(FALSE) {
93 0 : }
94 :
95 0 : RuleBasedCollator::RuleBasedCollator(const UnicodeString &rules, UErrorCode &errorCode)
96 : : data(NULL),
97 : settings(NULL),
98 : tailoring(NULL),
99 : cacheEntry(NULL),
100 : validLocale(""),
101 : explicitlySetAttributes(0),
102 0 : actualLocaleIsSameAsValid(FALSE) {
103 0 : internalBuildTailoring(rules, UCOL_DEFAULT, UCOL_DEFAULT, NULL, NULL, errorCode);
104 0 : }
105 :
106 0 : RuleBasedCollator::RuleBasedCollator(const UnicodeString &rules, ECollationStrength strength,
107 0 : UErrorCode &errorCode)
108 : : data(NULL),
109 : settings(NULL),
110 : tailoring(NULL),
111 : cacheEntry(NULL),
112 : validLocale(""),
113 : explicitlySetAttributes(0),
114 0 : actualLocaleIsSameAsValid(FALSE) {
115 0 : internalBuildTailoring(rules, strength, UCOL_DEFAULT, NULL, NULL, errorCode);
116 0 : }
117 :
118 0 : RuleBasedCollator::RuleBasedCollator(const UnicodeString &rules,
119 : UColAttributeValue decompositionMode,
120 0 : UErrorCode &errorCode)
121 : : data(NULL),
122 : settings(NULL),
123 : tailoring(NULL),
124 : cacheEntry(NULL),
125 : validLocale(""),
126 : explicitlySetAttributes(0),
127 0 : actualLocaleIsSameAsValid(FALSE) {
128 0 : internalBuildTailoring(rules, UCOL_DEFAULT, decompositionMode, NULL, NULL, errorCode);
129 0 : }
130 :
131 0 : RuleBasedCollator::RuleBasedCollator(const UnicodeString &rules,
132 : ECollationStrength strength,
133 : UColAttributeValue decompositionMode,
134 0 : UErrorCode &errorCode)
135 : : data(NULL),
136 : settings(NULL),
137 : tailoring(NULL),
138 : cacheEntry(NULL),
139 : validLocale(""),
140 : explicitlySetAttributes(0),
141 0 : actualLocaleIsSameAsValid(FALSE) {
142 0 : internalBuildTailoring(rules, strength, decompositionMode, NULL, NULL, errorCode);
143 0 : }
144 :
145 0 : RuleBasedCollator::RuleBasedCollator(const UnicodeString &rules,
146 : UParseError &parseError, UnicodeString &reason,
147 0 : UErrorCode &errorCode)
148 : : data(NULL),
149 : settings(NULL),
150 : tailoring(NULL),
151 : cacheEntry(NULL),
152 : validLocale(""),
153 : explicitlySetAttributes(0),
154 0 : actualLocaleIsSameAsValid(FALSE) {
155 0 : internalBuildTailoring(rules, UCOL_DEFAULT, UCOL_DEFAULT, &parseError, &reason, errorCode);
156 0 : }
157 :
158 : void
159 0 : RuleBasedCollator::internalBuildTailoring(const UnicodeString &rules,
160 : int32_t strength,
161 : UColAttributeValue decompositionMode,
162 : UParseError *outParseError, UnicodeString *outReason,
163 : UErrorCode &errorCode) {
164 0 : const CollationTailoring *base = CollationRoot::getRoot(errorCode);
165 0 : if(U_FAILURE(errorCode)) { return; }
166 0 : if(outReason != NULL) { outReason->remove(); }
167 0 : CollationBuilder builder(base, errorCode);
168 0 : UVersionInfo noVersion = { 0, 0, 0, 0 };
169 0 : BundleImporter importer;
170 : LocalPointer<CollationTailoring> t(builder.parseAndBuild(rules, noVersion,
171 : &importer,
172 0 : outParseError, errorCode));
173 0 : if(U_FAILURE(errorCode)) {
174 0 : const char *reason = builder.getErrorReason();
175 0 : if(reason != NULL && outReason != NULL) {
176 0 : *outReason = UnicodeString(reason, -1, US_INV);
177 : }
178 0 : return;
179 : }
180 0 : t->actualLocale.setToBogus();
181 0 : adoptTailoring(t.orphan(), errorCode);
182 : // Set attributes after building the collator,
183 : // to keep the default settings consistent with the rule string.
184 0 : if(strength != UCOL_DEFAULT) {
185 0 : setAttribute(UCOL_STRENGTH, (UColAttributeValue)strength, errorCode);
186 : }
187 0 : if(decompositionMode != UCOL_DEFAULT) {
188 0 : setAttribute(UCOL_NORMALIZATION_MODE, decompositionMode, errorCode);
189 : }
190 : }
191 :
192 : // CollationBuilder implementation ----------------------------------------- ***
193 :
194 : // Some compilers don't care if constants are defined in the .cpp file.
195 : // MS Visual C++ does not like it, but gcc requires it. clang does not care.
196 : #ifndef _MSC_VER
197 : const int32_t CollationBuilder::HAS_BEFORE2;
198 : const int32_t CollationBuilder::HAS_BEFORE3;
199 : #endif
200 :
201 0 : CollationBuilder::CollationBuilder(const CollationTailoring *b, UErrorCode &errorCode)
202 0 : : nfd(*Normalizer2::getNFDInstance(errorCode)),
203 0 : fcd(*Normalizer2Factory::getFCDInstance(errorCode)),
204 0 : nfcImpl(*Normalizer2Factory::getNFCImpl(errorCode)),
205 : base(b),
206 0 : baseData(b->data),
207 0 : rootElements(b->data->rootElements, b->data->rootElementsLength),
208 : variableTop(0),
209 0 : dataBuilder(new CollationDataBuilder(errorCode)), fastLatinEnabled(TRUE),
210 : errorReason(NULL),
211 : cesLength(0),
212 0 : rootPrimaryIndexes(errorCode), nodes(errorCode) {
213 0 : nfcImpl.ensureCanonIterData(errorCode);
214 0 : if(U_FAILURE(errorCode)) {
215 0 : errorReason = "CollationBuilder fields initialization failed";
216 0 : return;
217 : }
218 0 : if(dataBuilder == NULL) {
219 0 : errorCode = U_MEMORY_ALLOCATION_ERROR;
220 0 : return;
221 : }
222 0 : dataBuilder->initForTailoring(baseData, errorCode);
223 0 : if(U_FAILURE(errorCode)) {
224 0 : errorReason = "CollationBuilder initialization failed";
225 : }
226 : }
227 :
228 0 : CollationBuilder::~CollationBuilder() {
229 0 : delete dataBuilder;
230 0 : }
231 :
232 : CollationTailoring *
233 0 : CollationBuilder::parseAndBuild(const UnicodeString &ruleString,
234 : const UVersionInfo rulesVersion,
235 : CollationRuleParser::Importer *importer,
236 : UParseError *outParseError,
237 : UErrorCode &errorCode) {
238 0 : if(U_FAILURE(errorCode)) { return NULL; }
239 0 : if(baseData->rootElements == NULL) {
240 0 : errorCode = U_MISSING_RESOURCE_ERROR;
241 0 : errorReason = "missing root elements data, tailoring not supported";
242 0 : return NULL;
243 : }
244 0 : LocalPointer<CollationTailoring> tailoring(new CollationTailoring(base->settings));
245 0 : if(tailoring.isNull() || tailoring->isBogus()) {
246 0 : errorCode = U_MEMORY_ALLOCATION_ERROR;
247 0 : return NULL;
248 : }
249 0 : CollationRuleParser parser(baseData, errorCode);
250 0 : if(U_FAILURE(errorCode)) { return NULL; }
251 : // Note: This always bases &[last variable] and &[first regular]
252 : // on the root collator's maxVariable/variableTop.
253 : // If we wanted this to change after [maxVariable x], then we would keep
254 : // the tailoring.settings pointer here and read its variableTop when we need it.
255 : // See http://unicode.org/cldr/trac/ticket/6070
256 0 : variableTop = base->settings->variableTop;
257 0 : parser.setSink(this);
258 0 : parser.setImporter(importer);
259 0 : CollationSettings &ownedSettings = *SharedObject::copyOnWrite(tailoring->settings);
260 0 : parser.parse(ruleString, ownedSettings, outParseError, errorCode);
261 0 : errorReason = parser.getErrorReason();
262 0 : if(U_FAILURE(errorCode)) { return NULL; }
263 0 : if(dataBuilder->hasMappings()) {
264 0 : makeTailoredCEs(errorCode);
265 0 : closeOverComposites(errorCode);
266 0 : finalizeCEs(errorCode);
267 : // Copy all of ASCII, and Latin-1 letters, into each tailoring.
268 0 : optimizeSet.add(0, 0x7f);
269 0 : optimizeSet.add(0xc0, 0xff);
270 : // Hangul is decomposed on the fly during collation,
271 : // and the tailoring data is always built with HANGUL_TAG specials.
272 0 : optimizeSet.remove(Hangul::HANGUL_BASE, Hangul::HANGUL_END);
273 0 : dataBuilder->optimize(optimizeSet, errorCode);
274 0 : tailoring->ensureOwnedData(errorCode);
275 0 : if(U_FAILURE(errorCode)) { return NULL; }
276 0 : if(fastLatinEnabled) { dataBuilder->enableFastLatin(); }
277 0 : dataBuilder->build(*tailoring->ownedData, errorCode);
278 0 : tailoring->builder = dataBuilder;
279 0 : dataBuilder = NULL;
280 : } else {
281 0 : tailoring->data = baseData;
282 : }
283 0 : if(U_FAILURE(errorCode)) { return NULL; }
284 0 : ownedSettings.fastLatinOptions = CollationFastLatin::getOptions(
285 0 : tailoring->data, ownedSettings,
286 : ownedSettings.fastLatinPrimaries, UPRV_LENGTHOF(ownedSettings.fastLatinPrimaries));
287 0 : tailoring->rules = ruleString;
288 0 : tailoring->rules.getTerminatedBuffer(); // ensure NUL-termination
289 0 : tailoring->setVersion(base->version, rulesVersion);
290 0 : return tailoring.orphan();
291 : }
292 :
293 : void
294 0 : CollationBuilder::addReset(int32_t strength, const UnicodeString &str,
295 : const char *&parserErrorReason, UErrorCode &errorCode) {
296 0 : if(U_FAILURE(errorCode)) { return; }
297 0 : U_ASSERT(!str.isEmpty());
298 0 : if(str.charAt(0) == CollationRuleParser::POS_LEAD) {
299 0 : ces[0] = getSpecialResetPosition(str, parserErrorReason, errorCode);
300 0 : cesLength = 1;
301 0 : if(U_FAILURE(errorCode)) { return; }
302 0 : U_ASSERT((ces[0] & Collation::CASE_AND_QUATERNARY_MASK) == 0);
303 : } else {
304 : // normal reset to a character or string
305 0 : UnicodeString nfdString = nfd.normalize(str, errorCode);
306 0 : if(U_FAILURE(errorCode)) {
307 0 : parserErrorReason = "normalizing the reset position";
308 0 : return;
309 : }
310 0 : cesLength = dataBuilder->getCEs(nfdString, ces, 0);
311 0 : if(cesLength > Collation::MAX_EXPANSION_LENGTH) {
312 0 : errorCode = U_ILLEGAL_ARGUMENT_ERROR;
313 0 : parserErrorReason = "reset position maps to too many collation elements (more than 31)";
314 0 : return;
315 : }
316 : }
317 0 : if(strength == UCOL_IDENTICAL) { return; } // simple reset-at-position
318 :
319 : // &[before strength]position
320 0 : U_ASSERT(UCOL_PRIMARY <= strength && strength <= UCOL_TERTIARY);
321 0 : int32_t index = findOrInsertNodeForCEs(strength, parserErrorReason, errorCode);
322 0 : if(U_FAILURE(errorCode)) { return; }
323 :
324 0 : int64_t node = nodes.elementAti(index);
325 : // If the index is for a "weaker" node,
326 : // then skip backwards over this and further "weaker" nodes.
327 0 : while(strengthFromNode(node) > strength) {
328 0 : index = previousIndexFromNode(node);
329 0 : node = nodes.elementAti(index);
330 : }
331 :
332 : // Find or insert a node whose index we will put into a temporary CE.
333 0 : if(strengthFromNode(node) == strength && isTailoredNode(node)) {
334 : // Reset to just before this same-strength tailored node.
335 0 : index = previousIndexFromNode(node);
336 0 : } else if(strength == UCOL_PRIMARY) {
337 : // root primary node (has no previous index)
338 0 : uint32_t p = weight32FromNode(node);
339 0 : if(p == 0) {
340 0 : errorCode = U_UNSUPPORTED_ERROR;
341 0 : parserErrorReason = "reset primary-before ignorable not possible";
342 0 : return;
343 : }
344 0 : if(p <= rootElements.getFirstPrimary()) {
345 : // There is no primary gap between ignorables and the space-first-primary.
346 0 : errorCode = U_UNSUPPORTED_ERROR;
347 0 : parserErrorReason = "reset primary-before first non-ignorable not supported";
348 0 : return;
349 : }
350 0 : if(p == Collation::FIRST_TRAILING_PRIMARY) {
351 : // We do not support tailoring to an unassigned-implicit CE.
352 0 : errorCode = U_UNSUPPORTED_ERROR;
353 0 : parserErrorReason = "reset primary-before [first trailing] not supported";
354 0 : return;
355 : }
356 0 : p = rootElements.getPrimaryBefore(p, baseData->isCompressiblePrimary(p));
357 0 : index = findOrInsertNodeForPrimary(p, errorCode);
358 : // Go to the last node in this list:
359 : // Tailor after the last node between adjacent root nodes.
360 : for(;;) {
361 0 : node = nodes.elementAti(index);
362 0 : int32_t nextIndex = nextIndexFromNode(node);
363 0 : if(nextIndex == 0) { break; }
364 0 : index = nextIndex;
365 0 : }
366 : } else {
367 : // &[before 2] or &[before 3]
368 0 : index = findCommonNode(index, UCOL_SECONDARY);
369 0 : if(strength >= UCOL_TERTIARY) {
370 0 : index = findCommonNode(index, UCOL_TERTIARY);
371 : }
372 : // findCommonNode() stayed on the stronger node or moved to
373 : // an explicit common-weight node of the reset-before strength.
374 0 : node = nodes.elementAti(index);
375 0 : if(strengthFromNode(node) == strength) {
376 : // Found a same-strength node with an explicit weight.
377 0 : uint32_t weight16 = weight16FromNode(node);
378 0 : if(weight16 == 0) {
379 0 : errorCode = U_UNSUPPORTED_ERROR;
380 0 : if(strength == UCOL_SECONDARY) {
381 0 : parserErrorReason = "reset secondary-before secondary ignorable not possible";
382 : } else {
383 0 : parserErrorReason = "reset tertiary-before completely ignorable not possible";
384 : }
385 0 : return;
386 : }
387 0 : U_ASSERT(weight16 > Collation::BEFORE_WEIGHT16);
388 : // Reset to just before this node.
389 : // Insert the preceding same-level explicit weight if it is not there already.
390 : // Which explicit weight immediately precedes this one?
391 0 : weight16 = getWeight16Before(index, node, strength);
392 : // Does this preceding weight have a node?
393 : uint32_t previousWeight16;
394 0 : int32_t previousIndex = previousIndexFromNode(node);
395 0 : for(int32_t i = previousIndex;; i = previousIndexFromNode(node)) {
396 0 : node = nodes.elementAti(i);
397 0 : int32_t previousStrength = strengthFromNode(node);
398 0 : if(previousStrength < strength) {
399 0 : U_ASSERT(weight16 >= Collation::COMMON_WEIGHT16 || i == previousIndex);
400 : // Either the reset element has an above-common weight and
401 : // the parent node provides the implied common weight,
402 : // or the reset element has a weight<=common in the node
403 : // right after the parent, and we need to insert the preceding weight.
404 0 : previousWeight16 = Collation::COMMON_WEIGHT16;
405 0 : break;
406 0 : } else if(previousStrength == strength && !isTailoredNode(node)) {
407 0 : previousWeight16 = weight16FromNode(node);
408 0 : break;
409 : }
410 : // Skip weaker nodes and same-level tailored nodes.
411 0 : }
412 0 : if(previousWeight16 == weight16) {
413 : // The preceding weight has a node,
414 : // maybe with following weaker or tailored nodes.
415 : // Reset to the last of them.
416 0 : index = previousIndex;
417 : } else {
418 : // Insert a node with the preceding weight, reset to that.
419 0 : node = nodeFromWeight16(weight16) | nodeFromStrength(strength);
420 0 : index = insertNodeBetween(previousIndex, index, node, errorCode);
421 : }
422 : } else {
423 : // Found a stronger node with implied strength-common weight.
424 0 : uint32_t weight16 = getWeight16Before(index, node, strength);
425 0 : index = findOrInsertWeakNode(index, weight16, strength, errorCode);
426 : }
427 : // Strength of the temporary CE = strength of its reset position.
428 : // Code above raises an error if the before-strength is stronger.
429 0 : strength = ceStrength(ces[cesLength - 1]);
430 : }
431 0 : if(U_FAILURE(errorCode)) {
432 0 : parserErrorReason = "inserting reset position for &[before n]";
433 0 : return;
434 : }
435 0 : ces[cesLength - 1] = tempCEFromIndexAndStrength(index, strength);
436 : }
437 :
438 : uint32_t
439 0 : CollationBuilder::getWeight16Before(int32_t index, int64_t node, int32_t level) {
440 0 : U_ASSERT(strengthFromNode(node) < level || !isTailoredNode(node));
441 : // Collect the root CE weights if this node is for a root CE.
442 : // If it is not, then return the low non-primary boundary for a tailored CE.
443 : uint32_t t;
444 0 : if(strengthFromNode(node) == UCOL_TERTIARY) {
445 0 : t = weight16FromNode(node);
446 : } else {
447 0 : t = Collation::COMMON_WEIGHT16; // Stronger node with implied common weight.
448 : }
449 0 : while(strengthFromNode(node) > UCOL_SECONDARY) {
450 0 : index = previousIndexFromNode(node);
451 0 : node = nodes.elementAti(index);
452 : }
453 0 : if(isTailoredNode(node)) {
454 0 : return Collation::BEFORE_WEIGHT16;
455 : }
456 : uint32_t s;
457 0 : if(strengthFromNode(node) == UCOL_SECONDARY) {
458 0 : s = weight16FromNode(node);
459 : } else {
460 0 : s = Collation::COMMON_WEIGHT16; // Stronger node with implied common weight.
461 : }
462 0 : while(strengthFromNode(node) > UCOL_PRIMARY) {
463 0 : index = previousIndexFromNode(node);
464 0 : node = nodes.elementAti(index);
465 : }
466 0 : if(isTailoredNode(node)) {
467 0 : return Collation::BEFORE_WEIGHT16;
468 : }
469 : // [p, s, t] is a root CE. Return the preceding weight for the requested level.
470 0 : uint32_t p = weight32FromNode(node);
471 : uint32_t weight16;
472 0 : if(level == UCOL_SECONDARY) {
473 0 : weight16 = rootElements.getSecondaryBefore(p, s);
474 : } else {
475 0 : weight16 = rootElements.getTertiaryBefore(p, s, t);
476 0 : U_ASSERT((weight16 & ~Collation::ONLY_TERTIARY_MASK) == 0);
477 : }
478 0 : return weight16;
479 : }
480 :
481 : int64_t
482 0 : CollationBuilder::getSpecialResetPosition(const UnicodeString &str,
483 : const char *&parserErrorReason, UErrorCode &errorCode) {
484 0 : U_ASSERT(str.length() == 2);
485 : int64_t ce;
486 0 : int32_t strength = UCOL_PRIMARY;
487 0 : UBool isBoundary = FALSE;
488 0 : UChar32 pos = str.charAt(1) - CollationRuleParser::POS_BASE;
489 0 : U_ASSERT(0 <= pos && pos <= CollationRuleParser::LAST_TRAILING);
490 0 : switch(pos) {
491 : case CollationRuleParser::FIRST_TERTIARY_IGNORABLE:
492 : // Quaternary CEs are not supported.
493 : // Non-zero quaternary weights are possible only on tertiary or stronger CEs.
494 0 : return 0;
495 : case CollationRuleParser::LAST_TERTIARY_IGNORABLE:
496 0 : return 0;
497 : case CollationRuleParser::FIRST_SECONDARY_IGNORABLE: {
498 : // Look for a tailored tertiary node after [0, 0, 0].
499 0 : int32_t index = findOrInsertNodeForRootCE(0, UCOL_TERTIARY, errorCode);
500 0 : if(U_FAILURE(errorCode)) { return 0; }
501 0 : int64_t node = nodes.elementAti(index);
502 0 : if((index = nextIndexFromNode(node)) != 0) {
503 0 : node = nodes.elementAti(index);
504 0 : U_ASSERT(strengthFromNode(node) <= UCOL_TERTIARY);
505 0 : if(isTailoredNode(node) && strengthFromNode(node) == UCOL_TERTIARY) {
506 0 : return tempCEFromIndexAndStrength(index, UCOL_TERTIARY);
507 : }
508 : }
509 0 : return rootElements.getFirstTertiaryCE();
510 : // No need to look for nodeHasAnyBefore() on a tertiary node.
511 : }
512 : case CollationRuleParser::LAST_SECONDARY_IGNORABLE:
513 0 : ce = rootElements.getLastTertiaryCE();
514 0 : strength = UCOL_TERTIARY;
515 0 : break;
516 : case CollationRuleParser::FIRST_PRIMARY_IGNORABLE: {
517 : // Look for a tailored secondary node after [0, 0, *].
518 0 : int32_t index = findOrInsertNodeForRootCE(0, UCOL_SECONDARY, errorCode);
519 0 : if(U_FAILURE(errorCode)) { return 0; }
520 0 : int64_t node = nodes.elementAti(index);
521 0 : while((index = nextIndexFromNode(node)) != 0) {
522 0 : node = nodes.elementAti(index);
523 0 : strength = strengthFromNode(node);
524 0 : if(strength < UCOL_SECONDARY) { break; }
525 0 : if(strength == UCOL_SECONDARY) {
526 0 : if(isTailoredNode(node)) {
527 0 : if(nodeHasBefore3(node)) {
528 0 : index = nextIndexFromNode(nodes.elementAti(nextIndexFromNode(node)));
529 0 : U_ASSERT(isTailoredNode(nodes.elementAti(index)));
530 : }
531 0 : return tempCEFromIndexAndStrength(index, UCOL_SECONDARY);
532 : } else {
533 0 : break;
534 : }
535 : }
536 : }
537 0 : ce = rootElements.getFirstSecondaryCE();
538 0 : strength = UCOL_SECONDARY;
539 0 : break;
540 : }
541 : case CollationRuleParser::LAST_PRIMARY_IGNORABLE:
542 0 : ce = rootElements.getLastSecondaryCE();
543 0 : strength = UCOL_SECONDARY;
544 0 : break;
545 : case CollationRuleParser::FIRST_VARIABLE:
546 0 : ce = rootElements.getFirstPrimaryCE();
547 0 : isBoundary = TRUE; // FractionalUCA.txt: FDD1 00A0, SPACE first primary
548 0 : break;
549 : case CollationRuleParser::LAST_VARIABLE:
550 0 : ce = rootElements.lastCEWithPrimaryBefore(variableTop + 1);
551 0 : break;
552 : case CollationRuleParser::FIRST_REGULAR:
553 0 : ce = rootElements.firstCEWithPrimaryAtLeast(variableTop + 1);
554 0 : isBoundary = TRUE; // FractionalUCA.txt: FDD1 263A, SYMBOL first primary
555 0 : break;
556 : case CollationRuleParser::LAST_REGULAR:
557 : // Use the Hani-first-primary rather than the actual last "regular" CE before it,
558 : // for backward compatibility with behavior before the introduction of
559 : // script-first-primary CEs in the root collator.
560 0 : ce = rootElements.firstCEWithPrimaryAtLeast(
561 0 : baseData->getFirstPrimaryForGroup(USCRIPT_HAN));
562 0 : break;
563 : case CollationRuleParser::FIRST_IMPLICIT:
564 0 : ce = baseData->getSingleCE(0x4e00, errorCode);
565 0 : break;
566 : case CollationRuleParser::LAST_IMPLICIT:
567 : // We do not support tailoring to an unassigned-implicit CE.
568 0 : errorCode = U_UNSUPPORTED_ERROR;
569 0 : parserErrorReason = "reset to [last implicit] not supported";
570 0 : return 0;
571 : case CollationRuleParser::FIRST_TRAILING:
572 0 : ce = Collation::makeCE(Collation::FIRST_TRAILING_PRIMARY);
573 0 : isBoundary = TRUE; // trailing first primary (there is no mapping for it)
574 0 : break;
575 : case CollationRuleParser::LAST_TRAILING:
576 0 : errorCode = U_ILLEGAL_ARGUMENT_ERROR;
577 0 : parserErrorReason = "LDML forbids tailoring to U+FFFF";
578 0 : return 0;
579 : default:
580 0 : U_ASSERT(FALSE);
581 : return 0;
582 : }
583 :
584 0 : int32_t index = findOrInsertNodeForRootCE(ce, strength, errorCode);
585 0 : if(U_FAILURE(errorCode)) { return 0; }
586 0 : int64_t node = nodes.elementAti(index);
587 0 : if((pos & 1) == 0) {
588 : // even pos = [first xyz]
589 0 : if(!nodeHasAnyBefore(node) && isBoundary) {
590 : // A <group> first primary boundary is artificially added to FractionalUCA.txt.
591 : // It is reachable via its special contraction, but is not normally used.
592 : // Find the first character tailored after the boundary CE,
593 : // or the first real root CE after it.
594 0 : if((index = nextIndexFromNode(node)) != 0) {
595 : // If there is a following node, then it must be tailored
596 : // because there are no root CEs with a boundary primary
597 : // and non-common secondary/tertiary weights.
598 0 : node = nodes.elementAti(index);
599 0 : U_ASSERT(isTailoredNode(node));
600 0 : ce = tempCEFromIndexAndStrength(index, strength);
601 : } else {
602 0 : U_ASSERT(strength == UCOL_PRIMARY);
603 0 : uint32_t p = (uint32_t)(ce >> 32);
604 0 : int32_t pIndex = rootElements.findPrimary(p);
605 0 : UBool isCompressible = baseData->isCompressiblePrimary(p);
606 0 : p = rootElements.getPrimaryAfter(p, pIndex, isCompressible);
607 0 : ce = Collation::makeCE(p);
608 0 : index = findOrInsertNodeForRootCE(ce, UCOL_PRIMARY, errorCode);
609 0 : if(U_FAILURE(errorCode)) { return 0; }
610 0 : node = nodes.elementAti(index);
611 : }
612 : }
613 0 : if(nodeHasAnyBefore(node)) {
614 : // Get the first node that was tailored before this one at a weaker strength.
615 0 : if(nodeHasBefore2(node)) {
616 0 : index = nextIndexFromNode(nodes.elementAti(nextIndexFromNode(node)));
617 0 : node = nodes.elementAti(index);
618 : }
619 0 : if(nodeHasBefore3(node)) {
620 0 : index = nextIndexFromNode(nodes.elementAti(nextIndexFromNode(node)));
621 : }
622 0 : U_ASSERT(isTailoredNode(nodes.elementAti(index)));
623 0 : ce = tempCEFromIndexAndStrength(index, strength);
624 : }
625 : } else {
626 : // odd pos = [last xyz]
627 : // Find the last node that was tailored after the [last xyz]
628 : // at a strength no greater than the position's strength.
629 : for(;;) {
630 0 : int32_t nextIndex = nextIndexFromNode(node);
631 0 : if(nextIndex == 0) { break; }
632 0 : int64_t nextNode = nodes.elementAti(nextIndex);
633 0 : if(strengthFromNode(nextNode) < strength) { break; }
634 0 : index = nextIndex;
635 0 : node = nextNode;
636 0 : }
637 : // Do not make a temporary CE for a root node.
638 : // This last node might be the node for the root CE itself,
639 : // or a node with a common secondary or tertiary weight.
640 0 : if(isTailoredNode(node)) {
641 0 : ce = tempCEFromIndexAndStrength(index, strength);
642 : }
643 : }
644 0 : return ce;
645 : }
646 :
647 : void
648 0 : CollationBuilder::addRelation(int32_t strength, const UnicodeString &prefix,
649 : const UnicodeString &str, const UnicodeString &extension,
650 : const char *&parserErrorReason, UErrorCode &errorCode) {
651 0 : if(U_FAILURE(errorCode)) { return; }
652 0 : UnicodeString nfdPrefix;
653 0 : if(!prefix.isEmpty()) {
654 0 : nfd.normalize(prefix, nfdPrefix, errorCode);
655 0 : if(U_FAILURE(errorCode)) {
656 0 : parserErrorReason = "normalizing the relation prefix";
657 0 : return;
658 : }
659 : }
660 0 : UnicodeString nfdString = nfd.normalize(str, errorCode);
661 0 : if(U_FAILURE(errorCode)) {
662 0 : parserErrorReason = "normalizing the relation string";
663 0 : return;
664 : }
665 :
666 : // The runtime code decomposes Hangul syllables on the fly,
667 : // with recursive processing but without making the Jamo pieces visible for matching.
668 : // It does not work with certain types of contextual mappings.
669 0 : int32_t nfdLength = nfdString.length();
670 0 : if(nfdLength >= 2) {
671 0 : UChar c = nfdString.charAt(0);
672 0 : if(Hangul::isJamoL(c) || Hangul::isJamoV(c)) {
673 : // While handling a Hangul syllable, contractions starting with Jamo L or V
674 : // would not see the following Jamo of that syllable.
675 0 : errorCode = U_UNSUPPORTED_ERROR;
676 0 : parserErrorReason = "contractions starting with conjoining Jamo L or V not supported";
677 0 : return;
678 : }
679 0 : c = nfdString.charAt(nfdLength - 1);
680 0 : if(Hangul::isJamoL(c) ||
681 0 : (Hangul::isJamoV(c) && Hangul::isJamoL(nfdString.charAt(nfdLength - 2)))) {
682 : // A contraction ending with Jamo L or L+V would require
683 : // generating Hangul syllables in addTailComposites() (588 for a Jamo L),
684 : // or decomposing a following Hangul syllable on the fly, during contraction matching.
685 0 : errorCode = U_UNSUPPORTED_ERROR;
686 0 : parserErrorReason = "contractions ending with conjoining Jamo L or L+V not supported";
687 0 : return;
688 : }
689 : // A Hangul syllable completely inside a contraction is ok.
690 : }
691 : // Note: If there is a prefix, then the parser checked that
692 : // both the prefix and the string beging with NFC boundaries (not Jamo V or T).
693 : // Therefore: prefix.isEmpty() || !isJamoVOrT(nfdString.charAt(0))
694 : // (While handling a Hangul syllable, prefixes on Jamo V or T
695 : // would not see the previous Jamo of that syllable.)
696 :
697 0 : if(strength != UCOL_IDENTICAL) {
698 : // Find the node index after which we insert the new tailored node.
699 0 : int32_t index = findOrInsertNodeForCEs(strength, parserErrorReason, errorCode);
700 0 : U_ASSERT(cesLength > 0);
701 0 : int64_t ce = ces[cesLength - 1];
702 0 : if(strength == UCOL_PRIMARY && !isTempCE(ce) && (uint32_t)(ce >> 32) == 0) {
703 : // There is no primary gap between ignorables and the space-first-primary.
704 0 : errorCode = U_UNSUPPORTED_ERROR;
705 0 : parserErrorReason = "tailoring primary after ignorables not supported";
706 0 : return;
707 : }
708 0 : if(strength == UCOL_QUATERNARY && ce == 0) {
709 : // The CE data structure does not support non-zero quaternary weights
710 : // on tertiary ignorables.
711 0 : errorCode = U_UNSUPPORTED_ERROR;
712 0 : parserErrorReason = "tailoring quaternary after tertiary ignorables not supported";
713 0 : return;
714 : }
715 : // Insert the new tailored node.
716 0 : index = insertTailoredNodeAfter(index, strength, errorCode);
717 0 : if(U_FAILURE(errorCode)) {
718 0 : parserErrorReason = "modifying collation elements";
719 0 : return;
720 : }
721 : // Strength of the temporary CE:
722 : // The new relation may yield a stronger CE but not a weaker one.
723 0 : int32_t tempStrength = ceStrength(ce);
724 0 : if(strength < tempStrength) { tempStrength = strength; }
725 0 : ces[cesLength - 1] = tempCEFromIndexAndStrength(index, tempStrength);
726 : }
727 :
728 0 : setCaseBits(nfdString, parserErrorReason, errorCode);
729 0 : if(U_FAILURE(errorCode)) { return; }
730 :
731 0 : int32_t cesLengthBeforeExtension = cesLength;
732 0 : if(!extension.isEmpty()) {
733 0 : UnicodeString nfdExtension = nfd.normalize(extension, errorCode);
734 0 : if(U_FAILURE(errorCode)) {
735 0 : parserErrorReason = "normalizing the relation extension";
736 0 : return;
737 : }
738 0 : cesLength = dataBuilder->getCEs(nfdExtension, ces, cesLength);
739 0 : if(cesLength > Collation::MAX_EXPANSION_LENGTH) {
740 0 : errorCode = U_ILLEGAL_ARGUMENT_ERROR;
741 0 : parserErrorReason =
742 : "extension string adds too many collation elements (more than 31 total)";
743 0 : return;
744 : }
745 : }
746 0 : uint32_t ce32 = Collation::UNASSIGNED_CE32;
747 0 : if((prefix != nfdPrefix || str != nfdString) &&
748 0 : !ignorePrefix(prefix, errorCode) && !ignoreString(str, errorCode)) {
749 : // Map from the original input to the CEs.
750 : // We do this in case the canonical closure is incomplete,
751 : // so that it is possible to explicitly provide the missing mappings.
752 0 : ce32 = addIfDifferent(prefix, str, ces, cesLength, ce32, errorCode);
753 : }
754 0 : addWithClosure(nfdPrefix, nfdString, ces, cesLength, ce32, errorCode);
755 0 : if(U_FAILURE(errorCode)) {
756 0 : parserErrorReason = "writing collation elements";
757 0 : return;
758 : }
759 0 : cesLength = cesLengthBeforeExtension;
760 : }
761 :
762 : int32_t
763 0 : CollationBuilder::findOrInsertNodeForCEs(int32_t strength, const char *&parserErrorReason,
764 : UErrorCode &errorCode) {
765 0 : if(U_FAILURE(errorCode)) { return 0; }
766 0 : U_ASSERT(UCOL_PRIMARY <= strength && strength <= UCOL_QUATERNARY);
767 :
768 : // Find the last CE that is at least as "strong" as the requested difference.
769 : // Note: Stronger is smaller (UCOL_PRIMARY=0).
770 : int64_t ce;
771 0 : for(;; --cesLength) {
772 0 : if(cesLength == 0) {
773 0 : ce = ces[0] = 0;
774 0 : cesLength = 1;
775 0 : break;
776 : } else {
777 0 : ce = ces[cesLength - 1];
778 : }
779 0 : if(ceStrength(ce) <= strength) { break; }
780 : }
781 :
782 0 : if(isTempCE(ce)) {
783 : // No need to findCommonNode() here for lower levels
784 : // because insertTailoredNodeAfter() will do that anyway.
785 0 : return indexFromTempCE(ce);
786 : }
787 :
788 : // root CE
789 0 : if((uint8_t)(ce >> 56) == Collation::UNASSIGNED_IMPLICIT_BYTE) {
790 0 : errorCode = U_UNSUPPORTED_ERROR;
791 0 : parserErrorReason = "tailoring relative to an unassigned code point not supported";
792 0 : return 0;
793 : }
794 0 : return findOrInsertNodeForRootCE(ce, strength, errorCode);
795 : }
796 :
797 : int32_t
798 0 : CollationBuilder::findOrInsertNodeForRootCE(int64_t ce, int32_t strength, UErrorCode &errorCode) {
799 0 : if(U_FAILURE(errorCode)) { return 0; }
800 0 : U_ASSERT((uint8_t)(ce >> 56) != Collation::UNASSIGNED_IMPLICIT_BYTE);
801 :
802 : // Find or insert the node for each of the root CE's weights,
803 : // down to the requested level/strength.
804 : // Root CEs must have common=zero quaternary weights (for which we never insert any nodes).
805 0 : U_ASSERT((ce & 0xc0) == 0);
806 0 : int32_t index = findOrInsertNodeForPrimary((uint32_t)(ce >> 32), errorCode);
807 0 : if(strength >= UCOL_SECONDARY) {
808 0 : uint32_t lower32 = (uint32_t)ce;
809 0 : index = findOrInsertWeakNode(index, lower32 >> 16, UCOL_SECONDARY, errorCode);
810 0 : if(strength >= UCOL_TERTIARY) {
811 0 : index = findOrInsertWeakNode(index, lower32 & Collation::ONLY_TERTIARY_MASK,
812 0 : UCOL_TERTIARY, errorCode);
813 : }
814 : }
815 0 : return index;
816 : }
817 :
818 : namespace {
819 :
820 : /**
821 : * Like Java Collections.binarySearch(List, key, Comparator).
822 : *
823 : * @return the index>=0 where the item was found,
824 : * or the index<0 for inserting the string at ~index in sorted order
825 : * (index into rootPrimaryIndexes)
826 : */
827 : int32_t
828 0 : binarySearchForRootPrimaryNode(const int32_t *rootPrimaryIndexes, int32_t length,
829 : const int64_t *nodes, uint32_t p) {
830 0 : if(length == 0) { return ~0; }
831 0 : int32_t start = 0;
832 0 : int32_t limit = length;
833 : for (;;) {
834 0 : int32_t i = (start + limit) / 2;
835 0 : int64_t node = nodes[rootPrimaryIndexes[i]];
836 0 : uint32_t nodePrimary = (uint32_t)(node >> 32); // weight32FromNode(node)
837 0 : if (p == nodePrimary) {
838 0 : return i;
839 0 : } else if (p < nodePrimary) {
840 0 : if (i == start) {
841 0 : return ~start; // insert s before i
842 : }
843 0 : limit = i;
844 : } else {
845 0 : if (i == start) {
846 0 : return ~(start + 1); // insert s after i
847 : }
848 0 : start = i;
849 : }
850 0 : }
851 : }
852 :
853 : } // namespace
854 :
855 : int32_t
856 0 : CollationBuilder::findOrInsertNodeForPrimary(uint32_t p, UErrorCode &errorCode) {
857 0 : if(U_FAILURE(errorCode)) { return 0; }
858 :
859 0 : int32_t rootIndex = binarySearchForRootPrimaryNode(
860 0 : rootPrimaryIndexes.getBuffer(), rootPrimaryIndexes.size(), nodes.getBuffer(), p);
861 0 : if(rootIndex >= 0) {
862 0 : return rootPrimaryIndexes.elementAti(rootIndex);
863 : } else {
864 : // Start a new list of nodes with this primary.
865 0 : int32_t index = nodes.size();
866 0 : nodes.addElement(nodeFromWeight32(p), errorCode);
867 0 : rootPrimaryIndexes.insertElementAt(index, ~rootIndex, errorCode);
868 0 : return index;
869 : }
870 : }
871 :
872 : int32_t
873 0 : CollationBuilder::findOrInsertWeakNode(int32_t index, uint32_t weight16, int32_t level, UErrorCode &errorCode) {
874 0 : if(U_FAILURE(errorCode)) { return 0; }
875 0 : U_ASSERT(0 <= index && index < nodes.size());
876 0 : U_ASSERT(UCOL_SECONDARY <= level && level <= UCOL_TERTIARY);
877 :
878 0 : if(weight16 == Collation::COMMON_WEIGHT16) {
879 0 : return findCommonNode(index, level);
880 : }
881 :
882 : // If this will be the first below-common weight for the parent node,
883 : // then we will also need to insert a common weight after it.
884 0 : int64_t node = nodes.elementAti(index);
885 0 : U_ASSERT(strengthFromNode(node) < level); // parent node is stronger
886 0 : if(weight16 != 0 && weight16 < Collation::COMMON_WEIGHT16) {
887 0 : int32_t hasThisLevelBefore = level == UCOL_SECONDARY ? HAS_BEFORE2 : HAS_BEFORE3;
888 0 : if((node & hasThisLevelBefore) == 0) {
889 : // The parent node has an implied level-common weight.
890 : int64_t commonNode =
891 0 : nodeFromWeight16(Collation::COMMON_WEIGHT16) | nodeFromStrength(level);
892 0 : if(level == UCOL_SECONDARY) {
893 : // Move the HAS_BEFORE3 flag from the parent node
894 : // to the new secondary common node.
895 0 : commonNode |= node & HAS_BEFORE3;
896 0 : node &= ~(int64_t)HAS_BEFORE3;
897 : }
898 0 : nodes.setElementAt(node | hasThisLevelBefore, index);
899 : // Insert below-common-weight node.
900 0 : int32_t nextIndex = nextIndexFromNode(node);
901 0 : node = nodeFromWeight16(weight16) | nodeFromStrength(level);
902 0 : index = insertNodeBetween(index, nextIndex, node, errorCode);
903 : // Insert common-weight node.
904 0 : insertNodeBetween(index, nextIndex, commonNode, errorCode);
905 : // Return index of below-common-weight node.
906 0 : return index;
907 : }
908 : }
909 :
910 : // Find the root CE's weight for this level.
911 : // Postpone insertion if not found:
912 : // Insert the new root node before the next stronger node,
913 : // or before the next root node with the same strength and a larger weight.
914 : int32_t nextIndex;
915 0 : while((nextIndex = nextIndexFromNode(node)) != 0) {
916 0 : node = nodes.elementAti(nextIndex);
917 0 : int32_t nextStrength = strengthFromNode(node);
918 0 : if(nextStrength <= level) {
919 : // Insert before a stronger node.
920 0 : if(nextStrength < level) { break; }
921 : // nextStrength == level
922 0 : if(!isTailoredNode(node)) {
923 0 : uint32_t nextWeight16 = weight16FromNode(node);
924 0 : if(nextWeight16 == weight16) {
925 : // Found the node for the root CE up to this level.
926 0 : return nextIndex;
927 : }
928 : // Insert before a node with a larger same-strength weight.
929 0 : if(nextWeight16 > weight16) { break; }
930 : }
931 : }
932 : // Skip the next node.
933 0 : index = nextIndex;
934 : }
935 0 : node = nodeFromWeight16(weight16) | nodeFromStrength(level);
936 0 : return insertNodeBetween(index, nextIndex, node, errorCode);
937 : }
938 :
939 : int32_t
940 0 : CollationBuilder::insertTailoredNodeAfter(int32_t index, int32_t strength, UErrorCode &errorCode) {
941 0 : if(U_FAILURE(errorCode)) { return 0; }
942 0 : U_ASSERT(0 <= index && index < nodes.size());
943 0 : if(strength >= UCOL_SECONDARY) {
944 0 : index = findCommonNode(index, UCOL_SECONDARY);
945 0 : if(strength >= UCOL_TERTIARY) {
946 0 : index = findCommonNode(index, UCOL_TERTIARY);
947 : }
948 : }
949 : // Postpone insertion:
950 : // Insert the new node before the next one with a strength at least as strong.
951 0 : int64_t node = nodes.elementAti(index);
952 : int32_t nextIndex;
953 0 : while((nextIndex = nextIndexFromNode(node)) != 0) {
954 0 : node = nodes.elementAti(nextIndex);
955 0 : if(strengthFromNode(node) <= strength) { break; }
956 : // Skip the next node which has a weaker (larger) strength than the new one.
957 0 : index = nextIndex;
958 : }
959 0 : node = IS_TAILORED | nodeFromStrength(strength);
960 0 : return insertNodeBetween(index, nextIndex, node, errorCode);
961 : }
962 :
963 : int32_t
964 0 : CollationBuilder::insertNodeBetween(int32_t index, int32_t nextIndex, int64_t node,
965 : UErrorCode &errorCode) {
966 0 : if(U_FAILURE(errorCode)) { return 0; }
967 0 : U_ASSERT(previousIndexFromNode(node) == 0);
968 0 : U_ASSERT(nextIndexFromNode(node) == 0);
969 0 : U_ASSERT(nextIndexFromNode(nodes.elementAti(index)) == nextIndex);
970 : // Append the new node and link it to the existing nodes.
971 0 : int32_t newIndex = nodes.size();
972 0 : node |= nodeFromPreviousIndex(index) | nodeFromNextIndex(nextIndex);
973 0 : nodes.addElement(node, errorCode);
974 0 : if(U_FAILURE(errorCode)) { return 0; }
975 : // nodes[index].nextIndex = newIndex
976 0 : node = nodes.elementAti(index);
977 0 : nodes.setElementAt(changeNodeNextIndex(node, newIndex), index);
978 : // nodes[nextIndex].previousIndex = newIndex
979 0 : if(nextIndex != 0) {
980 0 : node = nodes.elementAti(nextIndex);
981 0 : nodes.setElementAt(changeNodePreviousIndex(node, newIndex), nextIndex);
982 : }
983 0 : return newIndex;
984 : }
985 :
986 : int32_t
987 0 : CollationBuilder::findCommonNode(int32_t index, int32_t strength) const {
988 0 : U_ASSERT(UCOL_SECONDARY <= strength && strength <= UCOL_TERTIARY);
989 0 : int64_t node = nodes.elementAti(index);
990 0 : if(strengthFromNode(node) >= strength) {
991 : // The current node is no stronger.
992 0 : return index;
993 : }
994 0 : if(strength == UCOL_SECONDARY ? !nodeHasBefore2(node) : !nodeHasBefore3(node)) {
995 : // The current node implies the strength-common weight.
996 0 : return index;
997 : }
998 0 : index = nextIndexFromNode(node);
999 0 : node = nodes.elementAti(index);
1000 0 : U_ASSERT(!isTailoredNode(node) && strengthFromNode(node) == strength &&
1001 : weight16FromNode(node) < Collation::COMMON_WEIGHT16);
1002 : // Skip to the explicit common node.
1003 0 : do {
1004 0 : index = nextIndexFromNode(node);
1005 0 : node = nodes.elementAti(index);
1006 0 : U_ASSERT(strengthFromNode(node) >= strength);
1007 0 : } while(isTailoredNode(node) || strengthFromNode(node) > strength ||
1008 0 : weight16FromNode(node) < Collation::COMMON_WEIGHT16);
1009 0 : U_ASSERT(weight16FromNode(node) == Collation::COMMON_WEIGHT16);
1010 0 : return index;
1011 : }
1012 :
1013 : void
1014 0 : CollationBuilder::setCaseBits(const UnicodeString &nfdString,
1015 : const char *&parserErrorReason, UErrorCode &errorCode) {
1016 0 : if(U_FAILURE(errorCode)) { return; }
1017 0 : int32_t numTailoredPrimaries = 0;
1018 0 : for(int32_t i = 0; i < cesLength; ++i) {
1019 0 : if(ceStrength(ces[i]) == UCOL_PRIMARY) { ++numTailoredPrimaries; }
1020 : }
1021 : // We should not be able to get too many case bits because
1022 : // cesLength<=31==MAX_EXPANSION_LENGTH.
1023 : // 31 pairs of case bits fit into an int64_t without setting its sign bit.
1024 0 : U_ASSERT(numTailoredPrimaries <= 31);
1025 :
1026 0 : int64_t cases = 0;
1027 0 : if(numTailoredPrimaries > 0) {
1028 0 : const UChar *s = nfdString.getBuffer();
1029 0 : UTF16CollationIterator baseCEs(baseData, FALSE, s, s, s + nfdString.length());
1030 0 : int32_t baseCEsLength = baseCEs.fetchCEs(errorCode) - 1;
1031 0 : if(U_FAILURE(errorCode)) {
1032 0 : parserErrorReason = "fetching root CEs for tailored string";
1033 0 : return;
1034 : }
1035 0 : U_ASSERT(baseCEsLength >= 0 && baseCEs.getCE(baseCEsLength) == Collation::NO_CE);
1036 :
1037 0 : uint32_t lastCase = 0;
1038 0 : int32_t numBasePrimaries = 0;
1039 0 : for(int32_t i = 0; i < baseCEsLength; ++i) {
1040 0 : int64_t ce = baseCEs.getCE(i);
1041 0 : if((ce >> 32) != 0) {
1042 0 : ++numBasePrimaries;
1043 0 : uint32_t c = ((uint32_t)ce >> 14) & 3;
1044 0 : U_ASSERT(c == 0 || c == 2); // lowercase or uppercase, no mixed case in any base CE
1045 0 : if(numBasePrimaries < numTailoredPrimaries) {
1046 0 : cases |= (int64_t)c << ((numBasePrimaries - 1) * 2);
1047 0 : } else if(numBasePrimaries == numTailoredPrimaries) {
1048 0 : lastCase = c;
1049 0 : } else if(c != lastCase) {
1050 : // There are more base primary CEs than tailored primaries.
1051 : // Set mixed case if the case bits of the remainder differ.
1052 0 : lastCase = 1;
1053 : // Nothing more can change.
1054 0 : break;
1055 : }
1056 : }
1057 : }
1058 0 : if(numBasePrimaries >= numTailoredPrimaries) {
1059 0 : cases |= (int64_t)lastCase << ((numTailoredPrimaries - 1) * 2);
1060 : }
1061 : }
1062 :
1063 0 : for(int32_t i = 0; i < cesLength; ++i) {
1064 0 : int64_t ce = ces[i] & INT64_C(0xffffffffffff3fff); // clear old case bits
1065 0 : int32_t strength = ceStrength(ce);
1066 0 : if(strength == UCOL_PRIMARY) {
1067 0 : ce |= (cases & 3) << 14;
1068 0 : cases >>= 2;
1069 0 : } else if(strength == UCOL_TERTIARY) {
1070 : // Tertiary CEs must have uppercase bits.
1071 : // See the LDML spec, and comments in class CollationCompare.
1072 0 : ce |= 0x8000;
1073 : }
1074 : // Tertiary ignorable CEs must have 0 case bits.
1075 : // We set 0 case bits for secondary CEs too
1076 : // since currently only U+0345 is cased and maps to a secondary CE,
1077 : // and it is lowercase. Other secondaries are uncased.
1078 : // See [[:Cased:]&[:uca1=:]] where uca1 queries the root primary weight.
1079 0 : ces[i] = ce;
1080 : }
1081 : }
1082 :
1083 : void
1084 0 : CollationBuilder::suppressContractions(const UnicodeSet &set, const char *&parserErrorReason,
1085 : UErrorCode &errorCode) {
1086 0 : if(U_FAILURE(errorCode)) { return; }
1087 0 : dataBuilder->suppressContractions(set, errorCode);
1088 0 : if(U_FAILURE(errorCode)) {
1089 0 : parserErrorReason = "application of [suppressContractions [set]] failed";
1090 : }
1091 : }
1092 :
1093 : void
1094 0 : CollationBuilder::optimize(const UnicodeSet &set, const char *& /* parserErrorReason */,
1095 : UErrorCode &errorCode) {
1096 0 : if(U_FAILURE(errorCode)) { return; }
1097 0 : optimizeSet.addAll(set);
1098 : }
1099 :
1100 : uint32_t
1101 0 : CollationBuilder::addWithClosure(const UnicodeString &nfdPrefix, const UnicodeString &nfdString,
1102 : const int64_t newCEs[], int32_t newCEsLength, uint32_t ce32,
1103 : UErrorCode &errorCode) {
1104 : // Map from the NFD input to the CEs.
1105 0 : ce32 = addIfDifferent(nfdPrefix, nfdString, newCEs, newCEsLength, ce32, errorCode);
1106 0 : ce32 = addOnlyClosure(nfdPrefix, nfdString, newCEs, newCEsLength, ce32, errorCode);
1107 0 : addTailComposites(nfdPrefix, nfdString, errorCode);
1108 0 : return ce32;
1109 : }
1110 :
1111 : uint32_t
1112 0 : CollationBuilder::addOnlyClosure(const UnicodeString &nfdPrefix, const UnicodeString &nfdString,
1113 : const int64_t newCEs[], int32_t newCEsLength, uint32_t ce32,
1114 : UErrorCode &errorCode) {
1115 0 : if(U_FAILURE(errorCode)) { return ce32; }
1116 :
1117 : // Map from canonically equivalent input to the CEs. (But not from the all-NFD input.)
1118 0 : if(nfdPrefix.isEmpty()) {
1119 0 : CanonicalIterator stringIter(nfdString, errorCode);
1120 0 : if(U_FAILURE(errorCode)) { return ce32; }
1121 0 : UnicodeString prefix;
1122 : for(;;) {
1123 0 : UnicodeString str = stringIter.next();
1124 0 : if(str.isBogus()) { break; }
1125 0 : if(ignoreString(str, errorCode) || str == nfdString) { continue; }
1126 0 : ce32 = addIfDifferent(prefix, str, newCEs, newCEsLength, ce32, errorCode);
1127 0 : if(U_FAILURE(errorCode)) { return ce32; }
1128 0 : }
1129 : } else {
1130 0 : CanonicalIterator prefixIter(nfdPrefix, errorCode);
1131 0 : CanonicalIterator stringIter(nfdString, errorCode);
1132 0 : if(U_FAILURE(errorCode)) { return ce32; }
1133 : for(;;) {
1134 0 : UnicodeString prefix = prefixIter.next();
1135 0 : if(prefix.isBogus()) { break; }
1136 0 : if(ignorePrefix(prefix, errorCode)) { continue; }
1137 0 : UBool samePrefix = prefix == nfdPrefix;
1138 : for(;;) {
1139 0 : UnicodeString str = stringIter.next();
1140 0 : if(str.isBogus()) { break; }
1141 0 : if(ignoreString(str, errorCode) || (samePrefix && str == nfdString)) { continue; }
1142 0 : ce32 = addIfDifferent(prefix, str, newCEs, newCEsLength, ce32, errorCode);
1143 0 : if(U_FAILURE(errorCode)) { return ce32; }
1144 0 : }
1145 0 : stringIter.reset();
1146 0 : }
1147 : }
1148 0 : return ce32;
1149 : }
1150 :
1151 : void
1152 0 : CollationBuilder::addTailComposites(const UnicodeString &nfdPrefix, const UnicodeString &nfdString,
1153 : UErrorCode &errorCode) {
1154 0 : if(U_FAILURE(errorCode)) { return; }
1155 :
1156 : // Look for the last starter in the NFD string.
1157 : UChar32 lastStarter;
1158 0 : int32_t indexAfterLastStarter = nfdString.length();
1159 : for(;;) {
1160 0 : if(indexAfterLastStarter == 0) { return; } // no starter at all
1161 0 : lastStarter = nfdString.char32At(indexAfterLastStarter - 1);
1162 0 : if(nfd.getCombiningClass(lastStarter) == 0) { break; }
1163 0 : indexAfterLastStarter -= U16_LENGTH(lastStarter);
1164 : }
1165 : // No closure to Hangul syllables since we decompose them on the fly.
1166 0 : if(Hangul::isJamoL(lastStarter)) { return; }
1167 :
1168 : // Are there any composites whose decomposition starts with the lastStarter?
1169 : // Note: Normalizer2Impl does not currently return start sets for NFC_QC=Maybe characters.
1170 : // We might find some more equivalent mappings here if it did.
1171 0 : UnicodeSet composites;
1172 0 : if(!nfcImpl.getCanonStartSet(lastStarter, composites)) { return; }
1173 :
1174 0 : UnicodeString decomp;
1175 0 : UnicodeString newNFDString, newString;
1176 : int64_t newCEs[Collation::MAX_EXPANSION_LENGTH];
1177 0 : UnicodeSetIterator iter(composites);
1178 0 : while(iter.next()) {
1179 0 : U_ASSERT(!iter.isString());
1180 0 : UChar32 composite = iter.getCodepoint();
1181 0 : nfd.getDecomposition(composite, decomp);
1182 0 : if(!mergeCompositeIntoString(nfdString, indexAfterLastStarter, composite, decomp,
1183 : newNFDString, newString, errorCode)) {
1184 0 : continue;
1185 : }
1186 0 : int32_t newCEsLength = dataBuilder->getCEs(nfdPrefix, newNFDString, newCEs, 0);
1187 0 : if(newCEsLength > Collation::MAX_EXPANSION_LENGTH) {
1188 : // Ignore mappings that we cannot store.
1189 0 : continue;
1190 : }
1191 : // Note: It is possible that the newCEs do not make use of the mapping
1192 : // for which we are adding the tail composites, in which case we might be adding
1193 : // unnecessary mappings.
1194 : // For example, when we add tail composites for ae^ (^=combining circumflex),
1195 : // UCA discontiguous-contraction matching does not find any matches
1196 : // for ae_^ (_=any combining diacritic below) *unless* there is also
1197 : // a contraction mapping for ae.
1198 : // Thus, if there is no ae contraction, then the ae^ mapping is ignored
1199 : // while fetching the newCEs for ae_^.
1200 : // TODO: Try to detect this effectively.
1201 : // (Alternatively, print a warning when prefix contractions are missing.)
1202 :
1203 : // We do not need an explicit mapping for the NFD strings.
1204 : // It is fine if the NFD input collates like this via a sequence of mappings.
1205 : // It also saves a little bit of space, and may reduce the set of characters with contractions.
1206 : uint32_t ce32 = addIfDifferent(nfdPrefix, newString,
1207 0 : newCEs, newCEsLength, Collation::UNASSIGNED_CE32, errorCode);
1208 0 : if(ce32 != Collation::UNASSIGNED_CE32) {
1209 : // was different, was added
1210 0 : addOnlyClosure(nfdPrefix, newNFDString, newCEs, newCEsLength, ce32, errorCode);
1211 : }
1212 : }
1213 : }
1214 :
1215 : UBool
1216 0 : CollationBuilder::mergeCompositeIntoString(const UnicodeString &nfdString,
1217 : int32_t indexAfterLastStarter,
1218 : UChar32 composite, const UnicodeString &decomp,
1219 : UnicodeString &newNFDString, UnicodeString &newString,
1220 : UErrorCode &errorCode) const {
1221 0 : if(U_FAILURE(errorCode)) { return FALSE; }
1222 0 : U_ASSERT(nfdString.char32At(indexAfterLastStarter - 1) == decomp.char32At(0));
1223 0 : int32_t lastStarterLength = decomp.moveIndex32(0, 1);
1224 0 : if(lastStarterLength == decomp.length()) {
1225 : // Singleton decompositions should be found by addWithClosure()
1226 : // and the CanonicalIterator, so we can ignore them here.
1227 0 : return FALSE;
1228 : }
1229 0 : if(nfdString.compare(indexAfterLastStarter, 0x7fffffff,
1230 : decomp, lastStarterLength, 0x7fffffff) == 0) {
1231 : // same strings, nothing new to be found here
1232 0 : return FALSE;
1233 : }
1234 :
1235 : // Make new FCD strings that combine a composite, or its decomposition,
1236 : // into the nfdString's last starter and the combining marks following it.
1237 : // Make an NFD version, and a version with the composite.
1238 0 : newNFDString.setTo(nfdString, 0, indexAfterLastStarter);
1239 0 : newString.setTo(nfdString, 0, indexAfterLastStarter - lastStarterLength).append(composite);
1240 :
1241 : // The following is related to discontiguous contraction matching,
1242 : // but builds only FCD strings (or else returns FALSE).
1243 0 : int32_t sourceIndex = indexAfterLastStarter;
1244 0 : int32_t decompIndex = lastStarterLength;
1245 : // Small optimization: We keep the source character across loop iterations
1246 : // because we do not always consume it,
1247 : // and then need not fetch it again nor look up its combining class again.
1248 0 : UChar32 sourceChar = U_SENTINEL;
1249 : // The cc variables need to be declared before the loop so that at the end
1250 : // they are set to the last combining classes seen.
1251 0 : uint8_t sourceCC = 0;
1252 0 : uint8_t decompCC = 0;
1253 : for(;;) {
1254 0 : if(sourceChar < 0) {
1255 0 : if(sourceIndex >= nfdString.length()) { break; }
1256 0 : sourceChar = nfdString.char32At(sourceIndex);
1257 0 : sourceCC = nfd.getCombiningClass(sourceChar);
1258 0 : U_ASSERT(sourceCC != 0);
1259 : }
1260 : // We consume a decomposition character in each iteration.
1261 0 : if(decompIndex >= decomp.length()) { break; }
1262 0 : UChar32 decompChar = decomp.char32At(decompIndex);
1263 0 : decompCC = nfd.getCombiningClass(decompChar);
1264 : // Compare the two characters and their combining classes.
1265 0 : if(decompCC == 0) {
1266 : // Unable to merge because the source contains a non-zero combining mark
1267 : // but the composite's decomposition contains another starter.
1268 : // The strings would not be equivalent.
1269 0 : return FALSE;
1270 0 : } else if(sourceCC < decompCC) {
1271 : // Composite + sourceChar would not be FCD.
1272 0 : return FALSE;
1273 0 : } else if(decompCC < sourceCC) {
1274 0 : newNFDString.append(decompChar);
1275 0 : decompIndex += U16_LENGTH(decompChar);
1276 0 : } else if(decompChar != sourceChar) {
1277 : // Blocked because same combining class.
1278 0 : return FALSE;
1279 : } else { // match: decompChar == sourceChar
1280 0 : newNFDString.append(decompChar);
1281 0 : decompIndex += U16_LENGTH(decompChar);
1282 0 : sourceIndex += U16_LENGTH(decompChar);
1283 0 : sourceChar = U_SENTINEL;
1284 : }
1285 0 : }
1286 : // We are at the end of at least one of the two inputs.
1287 0 : if(sourceChar >= 0) { // more characters from nfdString but not from decomp
1288 0 : if(sourceCC < decompCC) {
1289 : // Appending the next source character to the composite would not be FCD.
1290 0 : return FALSE;
1291 : }
1292 0 : newNFDString.append(nfdString, sourceIndex, 0x7fffffff);
1293 0 : newString.append(nfdString, sourceIndex, 0x7fffffff);
1294 0 : } else if(decompIndex < decomp.length()) { // more characters from decomp, not from nfdString
1295 0 : newNFDString.append(decomp, decompIndex, 0x7fffffff);
1296 : }
1297 0 : U_ASSERT(nfd.isNormalized(newNFDString, errorCode));
1298 0 : U_ASSERT(fcd.isNormalized(newString, errorCode));
1299 0 : U_ASSERT(nfd.normalize(newString, errorCode) == newNFDString); // canonically equivalent
1300 0 : return TRUE;
1301 : }
1302 :
1303 : UBool
1304 0 : CollationBuilder::ignorePrefix(const UnicodeString &s, UErrorCode &errorCode) const {
1305 : // Do not map non-FCD prefixes.
1306 0 : return !isFCD(s, errorCode);
1307 : }
1308 :
1309 : UBool
1310 0 : CollationBuilder::ignoreString(const UnicodeString &s, UErrorCode &errorCode) const {
1311 : // Do not map non-FCD strings.
1312 : // Do not map strings that start with Hangul syllables: We decompose those on the fly.
1313 0 : return !isFCD(s, errorCode) || Hangul::isHangul(s.charAt(0));
1314 : }
1315 :
1316 : UBool
1317 0 : CollationBuilder::isFCD(const UnicodeString &s, UErrorCode &errorCode) const {
1318 0 : return U_SUCCESS(errorCode) && fcd.isNormalized(s, errorCode);
1319 : }
1320 :
1321 : void
1322 0 : CollationBuilder::closeOverComposites(UErrorCode &errorCode) {
1323 0 : UnicodeSet composites(UNICODE_STRING_SIMPLE("[:NFD_QC=N:]"), errorCode); // Java: static final
1324 0 : if(U_FAILURE(errorCode)) { return; }
1325 : // Hangul is decomposed on the fly during collation.
1326 0 : composites.remove(Hangul::HANGUL_BASE, Hangul::HANGUL_END);
1327 0 : UnicodeString prefix; // empty
1328 0 : UnicodeString nfdString;
1329 0 : UnicodeSetIterator iter(composites);
1330 0 : while(iter.next()) {
1331 0 : U_ASSERT(!iter.isString());
1332 0 : nfd.getDecomposition(iter.getCodepoint(), nfdString);
1333 0 : cesLength = dataBuilder->getCEs(nfdString, ces, 0);
1334 0 : if(cesLength > Collation::MAX_EXPANSION_LENGTH) {
1335 : // Too many CEs from the decomposition (unusual), ignore this composite.
1336 : // We could add a capacity parameter to getCEs() and reallocate if necessary.
1337 : // However, this can only really happen in contrived cases.
1338 0 : continue;
1339 : }
1340 0 : const UnicodeString &composite(iter.getString());
1341 0 : addIfDifferent(prefix, composite, ces, cesLength, Collation::UNASSIGNED_CE32, errorCode);
1342 : }
1343 : }
1344 :
1345 : uint32_t
1346 0 : CollationBuilder::addIfDifferent(const UnicodeString &prefix, const UnicodeString &str,
1347 : const int64_t newCEs[], int32_t newCEsLength, uint32_t ce32,
1348 : UErrorCode &errorCode) {
1349 0 : if(U_FAILURE(errorCode)) { return ce32; }
1350 : int64_t oldCEs[Collation::MAX_EXPANSION_LENGTH];
1351 0 : int32_t oldCEsLength = dataBuilder->getCEs(prefix, str, oldCEs, 0);
1352 0 : if(!sameCEs(newCEs, newCEsLength, oldCEs, oldCEsLength)) {
1353 0 : if(ce32 == Collation::UNASSIGNED_CE32) {
1354 0 : ce32 = dataBuilder->encodeCEs(newCEs, newCEsLength, errorCode);
1355 : }
1356 0 : dataBuilder->addCE32(prefix, str, ce32, errorCode);
1357 : }
1358 0 : return ce32;
1359 : }
1360 :
1361 : UBool
1362 0 : CollationBuilder::sameCEs(const int64_t ces1[], int32_t ces1Length,
1363 : const int64_t ces2[], int32_t ces2Length) {
1364 0 : if(ces1Length != ces2Length) {
1365 0 : return FALSE;
1366 : }
1367 0 : U_ASSERT(ces1Length <= Collation::MAX_EXPANSION_LENGTH);
1368 0 : for(int32_t i = 0; i < ces1Length; ++i) {
1369 0 : if(ces1[i] != ces2[i]) { return FALSE; }
1370 : }
1371 0 : return TRUE;
1372 : }
1373 :
1374 : #ifdef DEBUG_COLLATION_BUILDER
1375 :
1376 : uint32_t
1377 : alignWeightRight(uint32_t w) {
1378 : if(w != 0) {
1379 : while((w & 0xff) == 0) { w >>= 8; }
1380 : }
1381 : return w;
1382 : }
1383 :
1384 : #endif
1385 :
1386 : void
1387 0 : CollationBuilder::makeTailoredCEs(UErrorCode &errorCode) {
1388 0 : if(U_FAILURE(errorCode)) { return; }
1389 :
1390 0 : CollationWeights primaries, secondaries, tertiaries;
1391 0 : int64_t *nodesArray = nodes.getBuffer();
1392 : #ifdef DEBUG_COLLATION_BUILDER
1393 : puts("\nCollationBuilder::makeTailoredCEs()");
1394 : #endif
1395 :
1396 0 : for(int32_t rpi = 0; rpi < rootPrimaryIndexes.size(); ++rpi) {
1397 0 : int32_t i = rootPrimaryIndexes.elementAti(rpi);
1398 0 : int64_t node = nodesArray[i];
1399 0 : uint32_t p = weight32FromNode(node);
1400 0 : uint32_t s = p == 0 ? 0 : Collation::COMMON_WEIGHT16;
1401 0 : uint32_t t = s;
1402 0 : uint32_t q = 0;
1403 0 : UBool pIsTailored = FALSE;
1404 0 : UBool sIsTailored = FALSE;
1405 0 : UBool tIsTailored = FALSE;
1406 : #ifdef DEBUG_COLLATION_BUILDER
1407 : printf("\nprimary %lx\n", (long)alignWeightRight(p));
1408 : #endif
1409 0 : int32_t pIndex = p == 0 ? 0 : rootElements.findPrimary(p);
1410 0 : int32_t nextIndex = nextIndexFromNode(node);
1411 0 : while(nextIndex != 0) {
1412 0 : i = nextIndex;
1413 0 : node = nodesArray[i];
1414 0 : nextIndex = nextIndexFromNode(node);
1415 0 : int32_t strength = strengthFromNode(node);
1416 0 : if(strength == UCOL_QUATERNARY) {
1417 0 : U_ASSERT(isTailoredNode(node));
1418 : #ifdef DEBUG_COLLATION_BUILDER
1419 : printf(" quat+ ");
1420 : #endif
1421 0 : if(q == 3) {
1422 0 : errorCode = U_BUFFER_OVERFLOW_ERROR;
1423 0 : errorReason = "quaternary tailoring gap too small";
1424 0 : return;
1425 : }
1426 0 : ++q;
1427 : } else {
1428 0 : if(strength == UCOL_TERTIARY) {
1429 0 : if(isTailoredNode(node)) {
1430 : #ifdef DEBUG_COLLATION_BUILDER
1431 : printf(" ter+ ");
1432 : #endif
1433 0 : if(!tIsTailored) {
1434 : // First tailored tertiary node for [p, s].
1435 0 : int32_t tCount = countTailoredNodes(nodesArray, nextIndex,
1436 0 : UCOL_TERTIARY) + 1;
1437 : uint32_t tLimit;
1438 0 : if(t == 0) {
1439 : // Gap at the beginning of the tertiary CE range.
1440 0 : t = rootElements.getTertiaryBoundary() - 0x100;
1441 0 : tLimit = rootElements.getFirstTertiaryCE() & Collation::ONLY_TERTIARY_MASK;
1442 0 : } else if(!pIsTailored && !sIsTailored) {
1443 : // p and s are root weights.
1444 0 : tLimit = rootElements.getTertiaryAfter(pIndex, s, t);
1445 0 : } else if(t == Collation::BEFORE_WEIGHT16) {
1446 0 : tLimit = Collation::COMMON_WEIGHT16;
1447 : } else {
1448 : // [p, s] is tailored.
1449 0 : U_ASSERT(t == Collation::COMMON_WEIGHT16);
1450 0 : tLimit = rootElements.getTertiaryBoundary();
1451 : }
1452 0 : U_ASSERT(tLimit == 0x4000 || (tLimit & ~Collation::ONLY_TERTIARY_MASK) == 0);
1453 0 : tertiaries.initForTertiary();
1454 0 : if(!tertiaries.allocWeights(t, tLimit, tCount)) {
1455 0 : errorCode = U_BUFFER_OVERFLOW_ERROR;
1456 0 : errorReason = "tertiary tailoring gap too small";
1457 0 : return;
1458 : }
1459 0 : tIsTailored = TRUE;
1460 : }
1461 0 : t = tertiaries.nextWeight();
1462 0 : U_ASSERT(t != 0xffffffff);
1463 : } else {
1464 0 : t = weight16FromNode(node);
1465 0 : tIsTailored = FALSE;
1466 : #ifdef DEBUG_COLLATION_BUILDER
1467 : printf(" ter %lx\n", (long)alignWeightRight(t));
1468 : #endif
1469 : }
1470 : } else {
1471 0 : if(strength == UCOL_SECONDARY) {
1472 0 : if(isTailoredNode(node)) {
1473 : #ifdef DEBUG_COLLATION_BUILDER
1474 : printf(" sec+ ");
1475 : #endif
1476 0 : if(!sIsTailored) {
1477 : // First tailored secondary node for p.
1478 0 : int32_t sCount = countTailoredNodes(nodesArray, nextIndex,
1479 0 : UCOL_SECONDARY) + 1;
1480 : uint32_t sLimit;
1481 0 : if(s == 0) {
1482 : // Gap at the beginning of the secondary CE range.
1483 0 : s = rootElements.getSecondaryBoundary() - 0x100;
1484 0 : sLimit = rootElements.getFirstSecondaryCE() >> 16;
1485 0 : } else if(!pIsTailored) {
1486 : // p is a root primary.
1487 0 : sLimit = rootElements.getSecondaryAfter(pIndex, s);
1488 0 : } else if(s == Collation::BEFORE_WEIGHT16) {
1489 0 : sLimit = Collation::COMMON_WEIGHT16;
1490 : } else {
1491 : // p is a tailored primary.
1492 0 : U_ASSERT(s == Collation::COMMON_WEIGHT16);
1493 0 : sLimit = rootElements.getSecondaryBoundary();
1494 : }
1495 0 : if(s == Collation::COMMON_WEIGHT16) {
1496 : // Do not tailor into the getSortKey() range of
1497 : // compressed common secondaries.
1498 0 : s = rootElements.getLastCommonSecondary();
1499 : }
1500 0 : secondaries.initForSecondary();
1501 0 : if(!secondaries.allocWeights(s, sLimit, sCount)) {
1502 0 : errorCode = U_BUFFER_OVERFLOW_ERROR;
1503 0 : errorReason = "secondary tailoring gap too small";
1504 : #ifdef DEBUG_COLLATION_BUILDER
1505 : printf("!secondaries.allocWeights(%lx, %lx, sCount=%ld)\n",
1506 : (long)alignWeightRight(s), (long)alignWeightRight(sLimit),
1507 : (long)alignWeightRight(sCount));
1508 : #endif
1509 0 : return;
1510 : }
1511 0 : sIsTailored = TRUE;
1512 : }
1513 0 : s = secondaries.nextWeight();
1514 0 : U_ASSERT(s != 0xffffffff);
1515 : } else {
1516 0 : s = weight16FromNode(node);
1517 0 : sIsTailored = FALSE;
1518 : #ifdef DEBUG_COLLATION_BUILDER
1519 : printf(" sec %lx\n", (long)alignWeightRight(s));
1520 : #endif
1521 : }
1522 : } else /* UCOL_PRIMARY */ {
1523 0 : U_ASSERT(isTailoredNode(node));
1524 : #ifdef DEBUG_COLLATION_BUILDER
1525 : printf("pri+ ");
1526 : #endif
1527 0 : if(!pIsTailored) {
1528 : // First tailored primary node in this list.
1529 0 : int32_t pCount = countTailoredNodes(nodesArray, nextIndex,
1530 0 : UCOL_PRIMARY) + 1;
1531 0 : UBool isCompressible = baseData->isCompressiblePrimary(p);
1532 : uint32_t pLimit =
1533 0 : rootElements.getPrimaryAfter(p, pIndex, isCompressible);
1534 0 : primaries.initForPrimary(isCompressible);
1535 0 : if(!primaries.allocWeights(p, pLimit, pCount)) {
1536 0 : errorCode = U_BUFFER_OVERFLOW_ERROR; // TODO: introduce a more specific UErrorCode?
1537 0 : errorReason = "primary tailoring gap too small";
1538 0 : return;
1539 : }
1540 0 : pIsTailored = TRUE;
1541 : }
1542 0 : p = primaries.nextWeight();
1543 0 : U_ASSERT(p != 0xffffffff);
1544 0 : s = Collation::COMMON_WEIGHT16;
1545 0 : sIsTailored = FALSE;
1546 : }
1547 0 : t = s == 0 ? 0 : Collation::COMMON_WEIGHT16;
1548 0 : tIsTailored = FALSE;
1549 : }
1550 0 : q = 0;
1551 : }
1552 0 : if(isTailoredNode(node)) {
1553 0 : nodesArray[i] = Collation::makeCE(p, s, t, q);
1554 : #ifdef DEBUG_COLLATION_BUILDER
1555 : printf("%016llx\n", (long long)nodesArray[i]);
1556 : #endif
1557 : }
1558 : }
1559 : }
1560 : }
1561 :
1562 : int32_t
1563 0 : CollationBuilder::countTailoredNodes(const int64_t *nodesArray, int32_t i, int32_t strength) {
1564 0 : int32_t count = 0;
1565 : for(;;) {
1566 0 : if(i == 0) { break; }
1567 0 : int64_t node = nodesArray[i];
1568 0 : if(strengthFromNode(node) < strength) { break; }
1569 0 : if(strengthFromNode(node) == strength) {
1570 0 : if(isTailoredNode(node)) {
1571 0 : ++count;
1572 : } else {
1573 0 : break;
1574 : }
1575 : }
1576 0 : i = nextIndexFromNode(node);
1577 0 : }
1578 0 : return count;
1579 : }
1580 :
1581 : class CEFinalizer : public CollationDataBuilder::CEModifier {
1582 : public:
1583 0 : CEFinalizer(const int64_t *ces) : finalCEs(ces) {}
1584 : virtual ~CEFinalizer();
1585 0 : virtual int64_t modifyCE32(uint32_t ce32) const {
1586 0 : U_ASSERT(!Collation::isSpecialCE32(ce32));
1587 0 : if(CollationBuilder::isTempCE32(ce32)) {
1588 : // retain case bits
1589 0 : return finalCEs[CollationBuilder::indexFromTempCE32(ce32)] | ((ce32 & 0xc0) << 8);
1590 : } else {
1591 0 : return Collation::NO_CE;
1592 : }
1593 : }
1594 0 : virtual int64_t modifyCE(int64_t ce) const {
1595 0 : if(CollationBuilder::isTempCE(ce)) {
1596 : // retain case bits
1597 0 : return finalCEs[CollationBuilder::indexFromTempCE(ce)] | (ce & 0xc000);
1598 : } else {
1599 0 : return Collation::NO_CE;
1600 : }
1601 : }
1602 :
1603 : private:
1604 : const int64_t *finalCEs;
1605 : };
1606 :
1607 0 : CEFinalizer::~CEFinalizer() {}
1608 :
1609 : void
1610 0 : CollationBuilder::finalizeCEs(UErrorCode &errorCode) {
1611 0 : if(U_FAILURE(errorCode)) { return; }
1612 0 : LocalPointer<CollationDataBuilder> newBuilder(new CollationDataBuilder(errorCode), errorCode);
1613 0 : if(U_FAILURE(errorCode)) {
1614 0 : return;
1615 : }
1616 0 : newBuilder->initForTailoring(baseData, errorCode);
1617 0 : CEFinalizer finalizer(nodes.getBuffer());
1618 0 : newBuilder->copyFrom(*dataBuilder, finalizer, errorCode);
1619 0 : if(U_FAILURE(errorCode)) { return; }
1620 0 : delete dataBuilder;
1621 0 : dataBuilder = newBuilder.orphan();
1622 : }
1623 :
1624 : int32_t
1625 0 : CollationBuilder::ceStrength(int64_t ce) {
1626 : return
1627 0 : isTempCE(ce) ? strengthFromTempCE(ce) :
1628 0 : (ce & INT64_C(0xff00000000000000)) != 0 ? UCOL_PRIMARY :
1629 0 : ((uint32_t)ce & 0xff000000) != 0 ? UCOL_SECONDARY :
1630 : ce != 0 ? UCOL_TERTIARY :
1631 0 : UCOL_IDENTICAL;
1632 : }
1633 :
1634 : U_NAMESPACE_END
1635 :
1636 : U_NAMESPACE_USE
1637 :
1638 : U_CAPI UCollator * U_EXPORT2
1639 0 : ucol_openRules(const UChar *rules, int32_t rulesLength,
1640 : UColAttributeValue normalizationMode, UCollationStrength strength,
1641 : UParseError *parseError, UErrorCode *pErrorCode) {
1642 0 : if(U_FAILURE(*pErrorCode)) { return NULL; }
1643 0 : if(rules == NULL && rulesLength != 0) {
1644 0 : *pErrorCode = U_ILLEGAL_ARGUMENT_ERROR;
1645 0 : return NULL;
1646 : }
1647 0 : RuleBasedCollator *coll = new RuleBasedCollator();
1648 0 : if(coll == NULL) {
1649 0 : *pErrorCode = U_MEMORY_ALLOCATION_ERROR;
1650 0 : return NULL;
1651 : }
1652 0 : UnicodeString r((UBool)(rulesLength < 0), rules, rulesLength);
1653 0 : coll->internalBuildTailoring(r, strength, normalizationMode, parseError, NULL, *pErrorCode);
1654 0 : if(U_FAILURE(*pErrorCode)) {
1655 0 : delete coll;
1656 0 : return NULL;
1657 : }
1658 0 : return coll->toUCollator();
1659 : }
1660 :
1661 : static const int32_t internalBufferSize = 512;
1662 :
1663 : // The @internal ucol_getUnsafeSet() was moved here from ucol_sit.cpp
1664 : // because it calls UnicodeSet "builder" code that depends on all Unicode properties,
1665 : // and the rest of the collation "runtime" code only depends on normalization.
1666 : // This function is not related to the collation builder,
1667 : // but it did not seem worth moving it into its own .cpp file,
1668 : // nor rewriting it to use lower-level UnicodeSet and Normalizer2Impl methods.
1669 : U_CAPI int32_t U_EXPORT2
1670 0 : ucol_getUnsafeSet( const UCollator *coll,
1671 : USet *unsafe,
1672 : UErrorCode *status)
1673 : {
1674 : UChar buffer[internalBufferSize];
1675 0 : int32_t len = 0;
1676 :
1677 0 : uset_clear(unsafe);
1678 :
1679 : // cccpattern = "[[:^tccc=0:][:^lccc=0:]]", unfortunately variant
1680 : static const UChar cccpattern[25] = { 0x5b, 0x5b, 0x3a, 0x5e, 0x74, 0x63, 0x63, 0x63, 0x3d, 0x30, 0x3a, 0x5d,
1681 : 0x5b, 0x3a, 0x5e, 0x6c, 0x63, 0x63, 0x63, 0x3d, 0x30, 0x3a, 0x5d, 0x5d, 0x00 };
1682 :
1683 : // add chars that fail the fcd check
1684 0 : uset_applyPattern(unsafe, cccpattern, 24, USET_IGNORE_SPACE, status);
1685 :
1686 : // add lead/trail surrogates
1687 : // (trail surrogates should need to be unsafe only if the caller tests for UTF-16 code *units*,
1688 : // not when testing code *points*)
1689 0 : uset_addRange(unsafe, 0xd800, 0xdfff);
1690 :
1691 0 : USet *contractions = uset_open(0,0);
1692 :
1693 0 : int32_t i = 0, j = 0;
1694 0 : ucol_getContractionsAndExpansions(coll, contractions, NULL, FALSE, status);
1695 0 : int32_t contsSize = uset_size(contractions);
1696 0 : UChar32 c = 0;
1697 : // Contraction set consists only of strings
1698 : // to get unsafe code points, we need to
1699 : // break the strings apart and add them to the unsafe set
1700 0 : for(i = 0; i < contsSize; i++) {
1701 0 : len = uset_getItem(contractions, i, NULL, NULL, buffer, internalBufferSize, status);
1702 0 : if(len > 0) {
1703 0 : j = 0;
1704 0 : while(j < len) {
1705 0 : U16_NEXT(buffer, j, len, c);
1706 0 : if(j < len) {
1707 0 : uset_add(unsafe, c);
1708 : }
1709 : }
1710 : }
1711 : }
1712 :
1713 0 : uset_close(contractions);
1714 :
1715 0 : return uset_size(unsafe);
1716 : }
1717 :
1718 : #endif // !UCONFIG_NO_COLLATION
|