Line data Source code
1 : // © 2016 and later: Unicode, Inc. and others.
2 : // License & terms of use: http://www.unicode.org/copyright.html
3 : /*
4 : *******************************************************************************
5 : * Copyright (C) 2012-2015, International Business Machines
6 : * Corporation and others. All Rights Reserved.
7 : *******************************************************************************
8 : * collationkeys.cpp
9 : *
10 : * created on: 2012sep02
11 : * created by: Markus W. Scherer
12 : */
13 :
14 : #include "unicode/utypes.h"
15 :
16 : #if !UCONFIG_NO_COLLATION
17 :
18 : #include "unicode/bytestream.h"
19 : #include "collation.h"
20 : #include "collationiterator.h"
21 : #include "collationkeys.h"
22 : #include "collationsettings.h"
23 : #include "uassert.h"
24 :
25 : U_NAMESPACE_BEGIN
26 :
27 0 : SortKeyByteSink::~SortKeyByteSink() {}
28 :
29 : void
30 0 : SortKeyByteSink::Append(const char *bytes, int32_t n) {
31 0 : if (n <= 0 || bytes == NULL) {
32 0 : return;
33 : }
34 0 : if (ignore_ > 0) {
35 0 : int32_t ignoreRest = ignore_ - n;
36 0 : if (ignoreRest >= 0) {
37 0 : ignore_ = ignoreRest;
38 0 : return;
39 : } else {
40 0 : bytes += ignore_;
41 0 : n = -ignoreRest;
42 0 : ignore_ = 0;
43 : }
44 : }
45 0 : int32_t length = appended_;
46 0 : appended_ += n;
47 0 : if ((buffer_ + length) == bytes) {
48 0 : return; // the caller used GetAppendBuffer() and wrote the bytes already
49 : }
50 0 : int32_t available = capacity_ - length;
51 0 : if (n <= available) {
52 0 : uprv_memcpy(buffer_ + length, bytes, n);
53 : } else {
54 0 : AppendBeyondCapacity(bytes, n, length);
55 : }
56 : }
57 :
58 : char *
59 0 : SortKeyByteSink::GetAppendBuffer(int32_t min_capacity,
60 : int32_t desired_capacity_hint,
61 : char *scratch,
62 : int32_t scratch_capacity,
63 : int32_t *result_capacity) {
64 0 : if (min_capacity < 1 || scratch_capacity < min_capacity) {
65 0 : *result_capacity = 0;
66 0 : return NULL;
67 : }
68 0 : if (ignore_ > 0) {
69 : // Do not write ignored bytes right at the end of the buffer.
70 0 : *result_capacity = scratch_capacity;
71 0 : return scratch;
72 : }
73 0 : int32_t available = capacity_ - appended_;
74 0 : if (available >= min_capacity) {
75 0 : *result_capacity = available;
76 0 : return buffer_ + appended_;
77 0 : } else if (Resize(desired_capacity_hint, appended_)) {
78 0 : *result_capacity = capacity_ - appended_;
79 0 : return buffer_ + appended_;
80 : } else {
81 0 : *result_capacity = scratch_capacity;
82 0 : return scratch;
83 : }
84 : }
85 :
86 : namespace {
87 :
88 : /**
89 : * uint8_t byte buffer, similar to CharString but simpler.
90 : */
91 : class SortKeyLevel : public UMemory {
92 : public:
93 0 : SortKeyLevel() : len(0), ok(TRUE) {}
94 0 : ~SortKeyLevel() {}
95 :
96 : /** @return FALSE if memory allocation failed */
97 0 : UBool isOk() const { return ok; }
98 0 : UBool isEmpty() const { return len == 0; }
99 0 : int32_t length() const { return len; }
100 : const uint8_t *data() const { return buffer.getAlias(); }
101 0 : uint8_t operator[](int32_t index) const { return buffer[index]; }
102 :
103 0 : uint8_t *data() { return buffer.getAlias(); }
104 :
105 : void appendByte(uint32_t b);
106 : void appendWeight16(uint32_t w);
107 : void appendWeight32(uint32_t w);
108 : void appendReverseWeight16(uint32_t w);
109 :
110 : /** Appends all but the last byte to the sink. The last byte should be the 01 terminator. */
111 0 : void appendTo(ByteSink &sink) const {
112 0 : U_ASSERT(len > 0 && buffer[len - 1] == 1);
113 0 : sink.Append(reinterpret_cast<const char *>(buffer.getAlias()), len - 1);
114 0 : }
115 :
116 : private:
117 : MaybeStackArray<uint8_t, 40> buffer;
118 : int32_t len;
119 : UBool ok;
120 :
121 : UBool ensureCapacity(int32_t appendCapacity);
122 :
123 : SortKeyLevel(const SortKeyLevel &other); // forbid copying of this class
124 : SortKeyLevel &operator=(const SortKeyLevel &other); // forbid copying of this class
125 : };
126 :
127 0 : void SortKeyLevel::appendByte(uint32_t b) {
128 0 : if(len < buffer.getCapacity() || ensureCapacity(1)) {
129 0 : buffer[len++] = (uint8_t)b;
130 : }
131 0 : }
132 :
133 : void
134 0 : SortKeyLevel::appendWeight16(uint32_t w) {
135 0 : U_ASSERT((w & 0xffff) != 0);
136 0 : uint8_t b0 = (uint8_t)(w >> 8);
137 0 : uint8_t b1 = (uint8_t)w;
138 0 : int32_t appendLength = (b1 == 0) ? 1 : 2;
139 0 : if((len + appendLength) <= buffer.getCapacity() || ensureCapacity(appendLength)) {
140 0 : buffer[len++] = b0;
141 0 : if(b1 != 0) {
142 0 : buffer[len++] = b1;
143 : }
144 : }
145 0 : }
146 :
147 : void
148 0 : SortKeyLevel::appendWeight32(uint32_t w) {
149 0 : U_ASSERT(w != 0);
150 0 : uint8_t bytes[4] = { (uint8_t)(w >> 24), (uint8_t)(w >> 16), (uint8_t)(w >> 8), (uint8_t)w };
151 0 : int32_t appendLength = (bytes[1] == 0) ? 1 : (bytes[2] == 0) ? 2 : (bytes[3] == 0) ? 3 : 4;
152 0 : if((len + appendLength) <= buffer.getCapacity() || ensureCapacity(appendLength)) {
153 0 : buffer[len++] = bytes[0];
154 0 : if(bytes[1] != 0) {
155 0 : buffer[len++] = bytes[1];
156 0 : if(bytes[2] != 0) {
157 0 : buffer[len++] = bytes[2];
158 0 : if(bytes[3] != 0) {
159 0 : buffer[len++] = bytes[3];
160 : }
161 : }
162 : }
163 : }
164 0 : }
165 :
166 : void
167 0 : SortKeyLevel::appendReverseWeight16(uint32_t w) {
168 0 : U_ASSERT((w & 0xffff) != 0);
169 0 : uint8_t b0 = (uint8_t)(w >> 8);
170 0 : uint8_t b1 = (uint8_t)w;
171 0 : int32_t appendLength = (b1 == 0) ? 1 : 2;
172 0 : if((len + appendLength) <= buffer.getCapacity() || ensureCapacity(appendLength)) {
173 0 : if(b1 == 0) {
174 0 : buffer[len++] = b0;
175 : } else {
176 0 : buffer[len] = b1;
177 0 : buffer[len + 1] = b0;
178 0 : len += 2;
179 : }
180 : }
181 0 : }
182 :
183 0 : UBool SortKeyLevel::ensureCapacity(int32_t appendCapacity) {
184 0 : if(!ok) {
185 0 : return FALSE;
186 : }
187 0 : int32_t newCapacity = 2 * buffer.getCapacity();
188 0 : int32_t altCapacity = len + 2 * appendCapacity;
189 0 : if (newCapacity < altCapacity) {
190 0 : newCapacity = altCapacity;
191 : }
192 0 : if (newCapacity < 200) {
193 0 : newCapacity = 200;
194 : }
195 0 : if(buffer.resize(newCapacity, len)==NULL) {
196 0 : return ok = FALSE;
197 : }
198 0 : return TRUE;
199 : }
200 :
201 : } // namespace
202 :
203 0 : CollationKeys::LevelCallback::~LevelCallback() {}
204 :
205 : UBool
206 0 : CollationKeys::LevelCallback::needToWrite(Collation::Level /*level*/) { return TRUE; }
207 :
208 : /**
209 : * Map from collation strength (UColAttributeValue)
210 : * to a mask of Collation::Level bits up to that strength,
211 : * excluding the CASE_LEVEL which is independent of the strength,
212 : * and excluding IDENTICAL_LEVEL which this function does not write.
213 : */
214 : static const uint32_t levelMasks[UCOL_STRENGTH_LIMIT] = {
215 : 2, // UCOL_PRIMARY -> PRIMARY_LEVEL
216 : 6, // UCOL_SECONDARY -> up to SECONDARY_LEVEL
217 : 0x16, // UCOL_TERTIARY -> up to TERTIARY_LEVEL
218 : 0x36, // UCOL_QUATERNARY -> up to QUATERNARY_LEVEL
219 : 0, 0, 0, 0,
220 : 0, 0, 0, 0,
221 : 0, 0, 0,
222 : 0x36 // UCOL_IDENTICAL -> up to QUATERNARY_LEVEL
223 : };
224 :
225 : void
226 0 : CollationKeys::writeSortKeyUpToQuaternary(CollationIterator &iter,
227 : const UBool *compressibleBytes,
228 : const CollationSettings &settings,
229 : SortKeyByteSink &sink,
230 : Collation::Level minLevel, LevelCallback &callback,
231 : UBool preflight, UErrorCode &errorCode) {
232 0 : if(U_FAILURE(errorCode)) { return; }
233 :
234 0 : int32_t options = settings.options;
235 : // Set of levels to process and write.
236 0 : uint32_t levels = levelMasks[CollationSettings::getStrength(options)];
237 0 : if((options & CollationSettings::CASE_LEVEL) != 0) {
238 0 : levels |= Collation::CASE_LEVEL_FLAG;
239 : }
240 : // Minus the levels below minLevel.
241 0 : levels &= ~(((uint32_t)1 << minLevel) - 1);
242 0 : if(levels == 0) { return; }
243 :
244 : uint32_t variableTop;
245 0 : if((options & CollationSettings::ALTERNATE_MASK) == 0) {
246 0 : variableTop = 0;
247 : } else {
248 : // +1 so that we can use "<" and primary ignorables test out early.
249 0 : variableTop = settings.variableTop + 1;
250 : }
251 :
252 0 : uint32_t tertiaryMask = CollationSettings::getTertiaryMask(options);
253 :
254 0 : SortKeyLevel cases;
255 0 : SortKeyLevel secondaries;
256 0 : SortKeyLevel tertiaries;
257 0 : SortKeyLevel quaternaries;
258 :
259 0 : uint32_t prevReorderedPrimary = 0; // 0==no compression
260 0 : int32_t commonCases = 0;
261 0 : int32_t commonSecondaries = 0;
262 0 : int32_t commonTertiaries = 0;
263 0 : int32_t commonQuaternaries = 0;
264 :
265 0 : uint32_t prevSecondary = 0;
266 0 : int32_t secSegmentStart = 0;
267 :
268 : for(;;) {
269 : // No need to keep all CEs in the buffer when we write a sort key.
270 0 : iter.clearCEsIfNoneRemaining();
271 0 : int64_t ce = iter.nextCE(errorCode);
272 0 : uint32_t p = (uint32_t)(ce >> 32);
273 0 : if(p < variableTop && p > Collation::MERGE_SEPARATOR_PRIMARY) {
274 : // Variable CE, shift it to quaternary level.
275 : // Ignore all following primary ignorables, and shift further variable CEs.
276 0 : if(commonQuaternaries != 0) {
277 0 : --commonQuaternaries;
278 0 : while(commonQuaternaries >= QUAT_COMMON_MAX_COUNT) {
279 0 : quaternaries.appendByte(QUAT_COMMON_MIDDLE);
280 0 : commonQuaternaries -= QUAT_COMMON_MAX_COUNT;
281 : }
282 : // Shifted primary weights are lower than the common weight.
283 0 : quaternaries.appendByte(QUAT_COMMON_LOW + commonQuaternaries);
284 0 : commonQuaternaries = 0;
285 : }
286 0 : do {
287 0 : if((levels & Collation::QUATERNARY_LEVEL_FLAG) != 0) {
288 0 : if(settings.hasReordering()) {
289 0 : p = settings.reorder(p);
290 : }
291 0 : if((p >> 24) >= QUAT_SHIFTED_LIMIT_BYTE) {
292 : // Prevent shifted primary lead bytes from
293 : // overlapping with the common compression range.
294 0 : quaternaries.appendByte(QUAT_SHIFTED_LIMIT_BYTE);
295 : }
296 0 : quaternaries.appendWeight32(p);
297 : }
298 0 : do {
299 0 : ce = iter.nextCE(errorCode);
300 0 : p = (uint32_t)(ce >> 32);
301 0 : } while(p == 0);
302 0 : } while(p < variableTop && p > Collation::MERGE_SEPARATOR_PRIMARY);
303 : }
304 : // ce could be primary ignorable, or NO_CE, or the merge separator,
305 : // or a regular primary CE, but it is not variable.
306 : // If ce==NO_CE, then write nothing for the primary level but
307 : // terminate compression on all levels and then exit the loop.
308 0 : if(p > Collation::NO_CE_PRIMARY && (levels & Collation::PRIMARY_LEVEL_FLAG) != 0) {
309 : // Test the un-reordered primary for compressibility.
310 0 : UBool isCompressible = compressibleBytes[p >> 24];
311 0 : if(settings.hasReordering()) {
312 0 : p = settings.reorder(p);
313 : }
314 0 : uint32_t p1 = p >> 24;
315 0 : if(!isCompressible || p1 != (prevReorderedPrimary >> 24)) {
316 0 : if(prevReorderedPrimary != 0) {
317 0 : if(p < prevReorderedPrimary) {
318 : // No primary compression terminator
319 : // at the end of the level or merged segment.
320 0 : if(p1 > Collation::MERGE_SEPARATOR_BYTE) {
321 0 : sink.Append(Collation::PRIMARY_COMPRESSION_LOW_BYTE);
322 : }
323 : } else {
324 0 : sink.Append(Collation::PRIMARY_COMPRESSION_HIGH_BYTE);
325 : }
326 : }
327 0 : sink.Append(p1);
328 0 : if(isCompressible) {
329 0 : prevReorderedPrimary = p;
330 : } else {
331 0 : prevReorderedPrimary = 0;
332 : }
333 : }
334 0 : char p2 = (char)(p >> 16);
335 0 : if(p2 != 0) {
336 0 : char buffer[3] = { p2, (char)(p >> 8), (char)p };
337 0 : sink.Append(buffer, (buffer[1] == 0) ? 1 : (buffer[2] == 0) ? 2 : 3);
338 : }
339 : // Optimization for internalNextSortKeyPart():
340 : // When the primary level overflows we can stop because we need not
341 : // calculate (preflight) the whole sort key length.
342 0 : if(!preflight && sink.Overflowed()) {
343 0 : if(U_SUCCESS(errorCode) && !sink.IsOk()) {
344 0 : errorCode = U_MEMORY_ALLOCATION_ERROR;
345 : }
346 0 : return;
347 : }
348 : }
349 :
350 0 : uint32_t lower32 = (uint32_t)ce;
351 0 : if(lower32 == 0) { continue; } // completely ignorable, no secondary/case/tertiary/quaternary
352 :
353 0 : if((levels & Collation::SECONDARY_LEVEL_FLAG) != 0) {
354 0 : uint32_t s = lower32 >> 16;
355 0 : if(s == 0) {
356 : // secondary ignorable
357 0 : } else if(s == Collation::COMMON_WEIGHT16 &&
358 0 : ((options & CollationSettings::BACKWARD_SECONDARY) == 0 ||
359 : p != Collation::MERGE_SEPARATOR_PRIMARY)) {
360 : // s is a common secondary weight, and
361 : // backwards-secondary is off or the ce is not the merge separator.
362 0 : ++commonSecondaries;
363 0 : } else if((options & CollationSettings::BACKWARD_SECONDARY) == 0) {
364 0 : if(commonSecondaries != 0) {
365 0 : --commonSecondaries;
366 0 : while(commonSecondaries >= SEC_COMMON_MAX_COUNT) {
367 0 : secondaries.appendByte(SEC_COMMON_MIDDLE);
368 0 : commonSecondaries -= SEC_COMMON_MAX_COUNT;
369 : }
370 : uint32_t b;
371 0 : if(s < Collation::COMMON_WEIGHT16) {
372 0 : b = SEC_COMMON_LOW + commonSecondaries;
373 : } else {
374 0 : b = SEC_COMMON_HIGH - commonSecondaries;
375 : }
376 0 : secondaries.appendByte(b);
377 0 : commonSecondaries = 0;
378 : }
379 0 : secondaries.appendWeight16(s);
380 : } else {
381 0 : if(commonSecondaries != 0) {
382 0 : --commonSecondaries;
383 : // Append reverse weights. The level will be re-reversed later.
384 0 : int32_t remainder = commonSecondaries % SEC_COMMON_MAX_COUNT;
385 : uint32_t b;
386 0 : if(prevSecondary < Collation::COMMON_WEIGHT16) {
387 0 : b = SEC_COMMON_LOW + remainder;
388 : } else {
389 0 : b = SEC_COMMON_HIGH - remainder;
390 : }
391 0 : secondaries.appendByte(b);
392 0 : commonSecondaries -= remainder;
393 : // commonSecondaries is now a multiple of SEC_COMMON_MAX_COUNT.
394 0 : while(commonSecondaries > 0) { // same as >= SEC_COMMON_MAX_COUNT
395 0 : secondaries.appendByte(SEC_COMMON_MIDDLE);
396 0 : commonSecondaries -= SEC_COMMON_MAX_COUNT;
397 : }
398 : // commonSecondaries == 0
399 : }
400 0 : if(0 < p && p <= Collation::MERGE_SEPARATOR_PRIMARY) {
401 : // The backwards secondary level compares secondary weights backwards
402 : // within segments separated by the merge separator (U+FFFE).
403 0 : uint8_t *secs = secondaries.data();
404 0 : int32_t last = secondaries.length() - 1;
405 0 : if(secSegmentStart < last) {
406 0 : uint8_t *p = secs + secSegmentStart;
407 0 : uint8_t *q = secs + last;
408 0 : do {
409 0 : uint8_t b = *p;
410 0 : *p++ = *q;
411 0 : *q-- = b;
412 0 : } while(p < q);
413 : }
414 0 : secondaries.appendByte(p == Collation::NO_CE_PRIMARY ?
415 0 : Collation::LEVEL_SEPARATOR_BYTE : Collation::MERGE_SEPARATOR_BYTE);
416 0 : prevSecondary = 0;
417 0 : secSegmentStart = secondaries.length();
418 : } else {
419 0 : secondaries.appendReverseWeight16(s);
420 0 : prevSecondary = s;
421 : }
422 : }
423 : }
424 :
425 0 : if((levels & Collation::CASE_LEVEL_FLAG) != 0) {
426 0 : if((CollationSettings::getStrength(options) == UCOL_PRIMARY) ?
427 : p == 0 : lower32 <= 0xffff) {
428 : // Primary+caseLevel: Ignore case level weights of primary ignorables.
429 : // Otherwise: Ignore case level weights of secondary ignorables.
430 : // For details see the comments in the CollationCompare class.
431 : } else {
432 0 : uint32_t c = (lower32 >> 8) & 0xff; // case bits & tertiary lead byte
433 0 : U_ASSERT((c & 0xc0) != 0xc0);
434 0 : if((c & 0xc0) == 0 && c > Collation::LEVEL_SEPARATOR_BYTE) {
435 0 : ++commonCases;
436 : } else {
437 0 : if((options & CollationSettings::UPPER_FIRST) == 0) {
438 : // lowerFirst: Compress common weights to nibbles 1..7..13, mixed=14, upper=15.
439 : // If there are only common (=lowest) weights in the whole level,
440 : // then we need not write anything.
441 : // Level length differences are handled already on the next-higher level.
442 0 : if(commonCases != 0 &&
443 0 : (c > Collation::LEVEL_SEPARATOR_BYTE || !cases.isEmpty())) {
444 0 : --commonCases;
445 0 : while(commonCases >= CASE_LOWER_FIRST_COMMON_MAX_COUNT) {
446 0 : cases.appendByte(CASE_LOWER_FIRST_COMMON_MIDDLE << 4);
447 0 : commonCases -= CASE_LOWER_FIRST_COMMON_MAX_COUNT;
448 : }
449 : uint32_t b;
450 0 : if(c <= Collation::LEVEL_SEPARATOR_BYTE) {
451 0 : b = CASE_LOWER_FIRST_COMMON_LOW + commonCases;
452 : } else {
453 0 : b = CASE_LOWER_FIRST_COMMON_HIGH - commonCases;
454 : }
455 0 : cases.appendByte(b << 4);
456 0 : commonCases = 0;
457 : }
458 0 : if(c > Collation::LEVEL_SEPARATOR_BYTE) {
459 0 : c = (CASE_LOWER_FIRST_COMMON_HIGH + (c >> 6)) << 4; // 14 or 15
460 : }
461 : } else {
462 : // upperFirst: Compress common weights to nibbles 3..15, mixed=2, upper=1.
463 : // The compressed common case weights only go up from the "low" value
464 : // because with upperFirst the common weight is the highest one.
465 0 : if(commonCases != 0) {
466 0 : --commonCases;
467 0 : while(commonCases >= CASE_UPPER_FIRST_COMMON_MAX_COUNT) {
468 0 : cases.appendByte(CASE_UPPER_FIRST_COMMON_LOW << 4);
469 0 : commonCases -= CASE_UPPER_FIRST_COMMON_MAX_COUNT;
470 : }
471 0 : cases.appendByte((CASE_UPPER_FIRST_COMMON_LOW + commonCases) << 4);
472 0 : commonCases = 0;
473 : }
474 0 : if(c > Collation::LEVEL_SEPARATOR_BYTE) {
475 0 : c = (CASE_UPPER_FIRST_COMMON_LOW - (c >> 6)) << 4; // 2 or 1
476 : }
477 : }
478 : // c is a separator byte 01,
479 : // or a left-shifted nibble 0x10, 0x20, ... 0xf0.
480 0 : cases.appendByte(c);
481 : }
482 : }
483 : }
484 :
485 0 : if((levels & Collation::TERTIARY_LEVEL_FLAG) != 0) {
486 0 : uint32_t t = lower32 & tertiaryMask;
487 0 : U_ASSERT((lower32 & 0xc000) != 0xc000);
488 0 : if(t == Collation::COMMON_WEIGHT16) {
489 0 : ++commonTertiaries;
490 0 : } else if((tertiaryMask & 0x8000) == 0) {
491 : // Tertiary weights without case bits.
492 : // Move lead bytes 06..3F to C6..FF for a large common-weight range.
493 0 : if(commonTertiaries != 0) {
494 0 : --commonTertiaries;
495 0 : while(commonTertiaries >= TER_ONLY_COMMON_MAX_COUNT) {
496 0 : tertiaries.appendByte(TER_ONLY_COMMON_MIDDLE);
497 0 : commonTertiaries -= TER_ONLY_COMMON_MAX_COUNT;
498 : }
499 : uint32_t b;
500 0 : if(t < Collation::COMMON_WEIGHT16) {
501 0 : b = TER_ONLY_COMMON_LOW + commonTertiaries;
502 : } else {
503 0 : b = TER_ONLY_COMMON_HIGH - commonTertiaries;
504 : }
505 0 : tertiaries.appendByte(b);
506 0 : commonTertiaries = 0;
507 : }
508 0 : if(t > Collation::COMMON_WEIGHT16) { t += 0xc000; }
509 0 : tertiaries.appendWeight16(t);
510 0 : } else if((options & CollationSettings::UPPER_FIRST) == 0) {
511 : // Tertiary weights with caseFirst=lowerFirst.
512 : // Move lead bytes 06..BF to 46..FF for the common-weight range.
513 0 : if(commonTertiaries != 0) {
514 0 : --commonTertiaries;
515 0 : while(commonTertiaries >= TER_LOWER_FIRST_COMMON_MAX_COUNT) {
516 0 : tertiaries.appendByte(TER_LOWER_FIRST_COMMON_MIDDLE);
517 0 : commonTertiaries -= TER_LOWER_FIRST_COMMON_MAX_COUNT;
518 : }
519 : uint32_t b;
520 0 : if(t < Collation::COMMON_WEIGHT16) {
521 0 : b = TER_LOWER_FIRST_COMMON_LOW + commonTertiaries;
522 : } else {
523 0 : b = TER_LOWER_FIRST_COMMON_HIGH - commonTertiaries;
524 : }
525 0 : tertiaries.appendByte(b);
526 0 : commonTertiaries = 0;
527 : }
528 0 : if(t > Collation::COMMON_WEIGHT16) { t += 0x4000; }
529 0 : tertiaries.appendWeight16(t);
530 : } else {
531 : // Tertiary weights with caseFirst=upperFirst.
532 : // Do not change the artificial uppercase weight of a tertiary CE (0.0.ut),
533 : // to keep tertiary CEs well-formed.
534 : // Their case+tertiary weights must be greater than those of
535 : // primary and secondary CEs.
536 : //
537 : // Separator 01 -> 01 (unchanged)
538 : // Lowercase 02..04 -> 82..84 (includes uncased)
539 : // Common weight 05 -> 85..C5 (common-weight compression range)
540 : // Lowercase 06..3F -> C6..FF
541 : // Mixed case 42..7F -> 42..7F
542 : // Uppercase 82..BF -> 02..3F
543 : // Tertiary CE 86..BF -> C6..FF
544 0 : if(t <= Collation::NO_CE_WEIGHT16) {
545 : // Keep separators unchanged.
546 0 : } else if(lower32 > 0xffff) {
547 : // Invert case bits of primary & secondary CEs.
548 0 : t ^= 0xc000;
549 0 : if(t < (TER_UPPER_FIRST_COMMON_HIGH << 8)) {
550 0 : t -= 0x4000;
551 : }
552 : } else {
553 : // Keep uppercase bits of tertiary CEs.
554 0 : U_ASSERT(0x8600 <= t && t <= 0xbfff);
555 0 : t += 0x4000;
556 : }
557 0 : if(commonTertiaries != 0) {
558 0 : --commonTertiaries;
559 0 : while(commonTertiaries >= TER_UPPER_FIRST_COMMON_MAX_COUNT) {
560 0 : tertiaries.appendByte(TER_UPPER_FIRST_COMMON_MIDDLE);
561 0 : commonTertiaries -= TER_UPPER_FIRST_COMMON_MAX_COUNT;
562 : }
563 : uint32_t b;
564 0 : if(t < (TER_UPPER_FIRST_COMMON_LOW << 8)) {
565 0 : b = TER_UPPER_FIRST_COMMON_LOW + commonTertiaries;
566 : } else {
567 0 : b = TER_UPPER_FIRST_COMMON_HIGH - commonTertiaries;
568 : }
569 0 : tertiaries.appendByte(b);
570 0 : commonTertiaries = 0;
571 : }
572 0 : tertiaries.appendWeight16(t);
573 : }
574 : }
575 :
576 0 : if((levels & Collation::QUATERNARY_LEVEL_FLAG) != 0) {
577 0 : uint32_t q = lower32 & 0xffff;
578 0 : if((q & 0xc0) == 0 && q > Collation::NO_CE_WEIGHT16) {
579 0 : ++commonQuaternaries;
580 0 : } else if(q == Collation::NO_CE_WEIGHT16 &&
581 0 : (options & CollationSettings::ALTERNATE_MASK) == 0 &&
582 0 : quaternaries.isEmpty()) {
583 : // If alternate=non-ignorable and there are only common quaternary weights,
584 : // then we need not write anything.
585 : // The only weights greater than the merge separator and less than the common weight
586 : // are shifted primary weights, which are not generated for alternate=non-ignorable.
587 : // There are also exactly as many quaternary weights as tertiary weights,
588 : // so level length differences are handled already on tertiary level.
589 : // Any above-common quaternary weight will compare greater regardless.
590 0 : quaternaries.appendByte(Collation::LEVEL_SEPARATOR_BYTE);
591 : } else {
592 0 : if(q == Collation::NO_CE_WEIGHT16) {
593 0 : q = Collation::LEVEL_SEPARATOR_BYTE;
594 : } else {
595 0 : q = 0xfc + ((q >> 6) & 3);
596 : }
597 0 : if(commonQuaternaries != 0) {
598 0 : --commonQuaternaries;
599 0 : while(commonQuaternaries >= QUAT_COMMON_MAX_COUNT) {
600 0 : quaternaries.appendByte(QUAT_COMMON_MIDDLE);
601 0 : commonQuaternaries -= QUAT_COMMON_MAX_COUNT;
602 : }
603 : uint32_t b;
604 0 : if(q < QUAT_COMMON_LOW) {
605 0 : b = QUAT_COMMON_LOW + commonQuaternaries;
606 : } else {
607 0 : b = QUAT_COMMON_HIGH - commonQuaternaries;
608 : }
609 0 : quaternaries.appendByte(b);
610 0 : commonQuaternaries = 0;
611 : }
612 0 : quaternaries.appendByte(q);
613 : }
614 : }
615 :
616 0 : if((lower32 >> 24) == Collation::LEVEL_SEPARATOR_BYTE) { break; } // ce == NO_CE
617 0 : }
618 :
619 0 : if(U_FAILURE(errorCode)) { return; }
620 :
621 : // Append the beyond-primary levels.
622 0 : UBool ok = TRUE;
623 0 : if((levels & Collation::SECONDARY_LEVEL_FLAG) != 0) {
624 0 : if(!callback.needToWrite(Collation::SECONDARY_LEVEL)) { return; }
625 0 : ok &= secondaries.isOk();
626 0 : sink.Append(Collation::LEVEL_SEPARATOR_BYTE);
627 0 : secondaries.appendTo(sink);
628 : }
629 :
630 0 : if((levels & Collation::CASE_LEVEL_FLAG) != 0) {
631 0 : if(!callback.needToWrite(Collation::CASE_LEVEL)) { return; }
632 0 : ok &= cases.isOk();
633 0 : sink.Append(Collation::LEVEL_SEPARATOR_BYTE);
634 : // Write pairs of nibbles as bytes, except separator bytes as themselves.
635 0 : int32_t length = cases.length() - 1; // Ignore the trailing NO_CE.
636 0 : uint8_t b = 0;
637 0 : for(int32_t i = 0; i < length; ++i) {
638 0 : uint8_t c = (uint8_t)cases[i];
639 0 : U_ASSERT((c & 0xf) == 0 && c != 0);
640 0 : if(b == 0) {
641 0 : b = c;
642 : } else {
643 0 : sink.Append(b | (c >> 4));
644 0 : b = 0;
645 : }
646 : }
647 0 : if(b != 0) {
648 0 : sink.Append(b);
649 : }
650 : }
651 :
652 0 : if((levels & Collation::TERTIARY_LEVEL_FLAG) != 0) {
653 0 : if(!callback.needToWrite(Collation::TERTIARY_LEVEL)) { return; }
654 0 : ok &= tertiaries.isOk();
655 0 : sink.Append(Collation::LEVEL_SEPARATOR_BYTE);
656 0 : tertiaries.appendTo(sink);
657 : }
658 :
659 0 : if((levels & Collation::QUATERNARY_LEVEL_FLAG) != 0) {
660 0 : if(!callback.needToWrite(Collation::QUATERNARY_LEVEL)) { return; }
661 0 : ok &= quaternaries.isOk();
662 0 : sink.Append(Collation::LEVEL_SEPARATOR_BYTE);
663 0 : quaternaries.appendTo(sink);
664 : }
665 :
666 0 : if(!ok || !sink.IsOk()) {
667 0 : errorCode = U_MEMORY_ALLOCATION_ERROR;
668 : }
669 : }
670 :
671 : U_NAMESPACE_END
672 :
673 : #endif // !UCONFIG_NO_COLLATION
|