LCOV - code coverage report
Current view: top level - intl/icu/source/i18n - decNumber.cpp (source / functions) Hit Total Coverage
Test: output.info Lines: 0 2521 0.0 %
Date: 2017-07-14 16:53:18 Functions: 0 91 0.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : // © 2016 and later: Unicode, Inc. and others.
       2             : // License & terms of use: http://www.unicode.org/copyright.html
       3             : /* ------------------------------------------------------------------ */
       4             : /* Decimal Number arithmetic module                                   */
       5             : /* ------------------------------------------------------------------ */
       6             : /* Copyright (c) IBM Corporation, 2000-2014.  All rights reserved.    */
       7             : /*                                                                    */
       8             : /* This software is made available under the terms of the             */
       9             : /* ICU License -- ICU 1.8.1 and later.                                */
      10             : /*                                                                    */
      11             : /* The description and User's Guide ("The decNumber C Library") for   */
      12             : /* this software is called decNumber.pdf.  This document is           */
      13             : /* available, together with arithmetic and format specifications,     */
      14             : /* testcases, and Web links, on the General Decimal Arithmetic page.  */
      15             : /*                                                                    */
      16             : /* Please send comments, suggestions, and corrections to the author:  */
      17             : /*   mfc@uk.ibm.com                                                   */
      18             : /*   Mike Cowlishaw, IBM Fellow                                       */
      19             : /*   IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK         */
      20             : /* ------------------------------------------------------------------ */
      21             : 
      22             : /* Modified version, for use from within ICU.
      23             :  *    Renamed public functions, to avoid an unwanted export of the 
      24             :  *    standard names from the ICU library.
      25             :  *
      26             :  *    Use ICU's uprv_malloc() and uprv_free()
      27             :  *
      28             :  *    Revert comment syntax to plain C
      29             :  *
      30             :  *    Remove a few compiler warnings.
      31             :  */
      32             : 
      33             : /* This module comprises the routines for arbitrary-precision General */
      34             : /* Decimal Arithmetic as defined in the specification which may be    */
      35             : /* found on the General Decimal Arithmetic pages.  It implements both */
      36             : /* the full ('extended') arithmetic and the simpler ('subset')        */
      37             : /* arithmetic.                                                        */
      38             : /*                                                                    */
      39             : /* Usage notes:                                                       */
      40             : /*                                                                    */
      41             : /* 1. This code is ANSI C89 except:                                   */
      42             : /*                                                                    */
      43             : /*    a) C99 line comments (double forward slash) are used.  (Most C  */
      44             : /*       compilers accept these.  If yours does not, a simple script  */
      45             : /*       can be used to convert them to ANSI C comments.)             */
      46             : /*                                                                    */
      47             : /*    b) Types from C99 stdint.h are used.  If you do not have this   */
      48             : /*       header file, see the User's Guide section of the decNumber   */
      49             : /*       documentation; this lists the necessary definitions.         */
      50             : /*                                                                    */
      51             : /*    c) If DECDPUN>4 or DECUSE64=1, the C99 64-bit int64_t and       */
      52             : /*       uint64_t types may be used.  To avoid these, set DECUSE64=0  */
      53             : /*       and DECDPUN<=4 (see documentation).                          */
      54             : /*                                                                    */
      55             : /*    The code also conforms to C99 restrictions; in particular,      */
      56             : /*    strict aliasing rules are observed.                             */
      57             : /*                                                                    */
      58             : /* 2. The decNumber format which this library uses is optimized for   */
      59             : /*    efficient processing of relatively short numbers; in particular */
      60             : /*    it allows the use of fixed sized structures and minimizes copy  */
      61             : /*    and move operations.  It does, however, support arbitrary       */
      62             : /*    precision (up to 999,999,999 digits) and arbitrary exponent     */
      63             : /*    range (Emax in the range 0 through 999,999,999 and Emin in the  */
      64             : /*    range -999,999,999 through 0).  Mathematical functions (for     */
      65             : /*    example decNumberExp) as identified below are restricted more   */
      66             : /*    tightly: digits, emax, and -emin in the context must be <=      */
      67             : /*    DEC_MAX_MATH (999999), and their operand(s) must be within      */
      68             : /*    these bounds.                                                   */
      69             : /*                                                                    */
      70             : /* 3. Logical functions are further restricted; their operands must   */
      71             : /*    be finite, positive, have an exponent of zero, and all digits   */
      72             : /*    must be either 0 or 1.  The result will only contain digits     */
      73             : /*    which are 0 or 1 (and will have exponent=0 and a sign of 0).    */
      74             : /*                                                                    */
      75             : /* 4. Operands to operator functions are never modified unless they   */
      76             : /*    are also specified to be the result number (which is always     */
      77             : /*    permitted).  Other than that case, operands must not overlap.   */
      78             : /*                                                                    */
      79             : /* 5. Error handling: the type of the error is ORed into the status   */
      80             : /*    flags in the current context (decContext structure).  The       */
      81             : /*    SIGFPE signal is then raised if the corresponding trap-enabler  */
      82             : /*    flag in the decContext is set (is 1).                           */
      83             : /*                                                                    */
      84             : /*    It is the responsibility of the caller to clear the status      */
      85             : /*    flags as required.                                              */
      86             : /*                                                                    */
      87             : /*    The result of any routine which returns a number will always    */
      88             : /*    be a valid number (which may be a special value, such as an     */
      89             : /*    Infinity or NaN).                                               */
      90             : /*                                                                    */
      91             : /* 6. The decNumber format is not an exchangeable concrete            */
      92             : /*    representation as it comprises fields which may be machine-     */
      93             : /*    dependent (packed or unpacked, or special length, for example). */
      94             : /*    Canonical conversions to and from strings are provided; other   */
      95             : /*    conversions are available in separate modules.                  */
      96             : /*                                                                    */
      97             : /* 7. Normally, input operands are assumed to be valid.  Set DECCHECK */
      98             : /*    to 1 for extended operand checking (including NULL operands).   */
      99             : /*    Results are undefined if a badly-formed structure (or a NULL    */
     100             : /*    pointer to a structure) is provided, though with DECCHECK       */
     101             : /*    enabled the operator routines are protected against exceptions. */
     102             : /*    (Except if the result pointer is NULL, which is unrecoverable.) */
     103             : /*                                                                    */
     104             : /*    However, the routines will never cause exceptions if they are   */
     105             : /*    given well-formed operands, even if the value of the operands   */
     106             : /*    is inappropriate for the operation and DECCHECK is not set.     */
     107             : /*    (Except for SIGFPE, as and where documented.)                   */
     108             : /*                                                                    */
     109             : /* 8. Subset arithmetic is available only if DECSUBSET is set to 1.   */
     110             : /* ------------------------------------------------------------------ */
     111             : /* Implementation notes for maintenance of this module:               */
     112             : /*                                                                    */
     113             : /* 1. Storage leak protection:  Routines which use malloc are not     */
     114             : /*    permitted to use return for fastpath or error exits (i.e.,      */
     115             : /*    they follow strict structured programming conventions).         */
     116             : /*    Instead they have a do{}while(0); construct surrounding the     */
     117             : /*    code which is protected -- break may be used to exit this.      */
     118             : /*    Other routines can safely use the return statement inline.      */
     119             : /*                                                                    */
     120             : /*    Storage leak accounting can be enabled using DECALLOC.          */
     121             : /*                                                                    */
     122             : /* 2. All loops use the for(;;) construct.  Any do construct does     */
     123             : /*    not loop; it is for allocation protection as just described.    */
     124             : /*                                                                    */
     125             : /* 3. Setting status in the context must always be the very last      */
     126             : /*    action in a routine, as non-0 status may raise a trap and hence */
     127             : /*    the call to set status may not return (if the handler uses long */
     128             : /*    jump).  Therefore all cleanup must be done first.  In general,  */
     129             : /*    to achieve this status is accumulated and is only applied just  */
     130             : /*    before return by calling decContextSetStatus (via decStatus).   */
     131             : /*                                                                    */
     132             : /*    Routines which allocate storage cannot, in general, use the     */
     133             : /*    'top level' routines which could cause a non-returning          */
     134             : /*    transfer of control.  The decXxxxOp routines are safe (do not   */
     135             : /*    call decStatus even if traps are set in the context) and should */
     136             : /*    be used instead (they are also a little faster).                */
     137             : /*                                                                    */
     138             : /* 4. Exponent checking is minimized by allowing the exponent to      */
     139             : /*    grow outside its limits during calculations, provided that      */
     140             : /*    the decFinalize function is called later.  Multiplication and   */
     141             : /*    division, and intermediate calculations in exponentiation,      */
     142             : /*    require more careful checks because of the risk of 31-bit       */
     143             : /*    overflow (the most negative valid exponent is -1999999997, for  */
     144             : /*    a 999999999-digit number with adjusted exponent of -999999999). */
     145             : /*                                                                    */
     146             : /* 5. Rounding is deferred until finalization of results, with any    */
     147             : /*    'off to the right' data being represented as a single digit     */
     148             : /*    residue (in the range -1 through 9).  This avoids any double-   */
     149             : /*    rounding when more than one shortening takes place (for         */
     150             : /*    example, when a result is subnormal).                           */
     151             : /*                                                                    */
     152             : /* 6. The digits count is allowed to rise to a multiple of DECDPUN    */
     153             : /*    during many operations, so whole Units are handled and exact    */
     154             : /*    accounting of digits is not needed.  The correct digits value   */
     155             : /*    is found by decGetDigits, which accounts for leading zeros.     */
     156             : /*    This must be called before any rounding if the number of digits */
     157             : /*    is not known exactly.                                           */
     158             : /*                                                                    */
     159             : /* 7. The multiply-by-reciprocal 'trick' is used for partitioning     */
     160             : /*    numbers up to four digits, using appropriate constants.  This   */
     161             : /*    is not useful for longer numbers because overflow of 32 bits    */
     162             : /*    would lead to 4 multiplies, which is almost as expensive as     */
     163             : /*    a divide (unless a floating-point or 64-bit multiply is         */
     164             : /*    assumed to be available).                                       */
     165             : /*                                                                    */
     166             : /* 8. Unusual abbreviations that may be used in the commentary:       */
     167             : /*      lhs -- left hand side (operand, of an operation)              */
     168             : /*      lsd -- least significant digit (of coefficient)               */
     169             : /*      lsu -- least significant Unit (of coefficient)                */
     170             : /*      msd -- most significant digit (of coefficient)                */
     171             : /*      msi -- most significant item (in an array)                    */
     172             : /*      msu -- most significant Unit (of coefficient)                 */
     173             : /*      rhs -- right hand side (operand, of an operation)             */
     174             : /*      +ve -- positive                                               */
     175             : /*      -ve -- negative                                               */
     176             : /*      **  -- raise to the power                                     */
     177             : /* ------------------------------------------------------------------ */
     178             : 
     179             : #include <stdlib.h>                /* for malloc, free, etc.  */
     180             : /*  #include <stdio.h>   */        /* for printf [if needed]  */
     181             : #include <string.h>                /* for strcpy  */
     182             : #include <ctype.h>                 /* for lower  */
     183             : #include "cmemory.h"               /* for uprv_malloc, etc., in ICU */
     184             : #include "decNumber.h"             /* base number library  */
     185             : #include "decNumberLocal.h"        /* decNumber local types, etc.  */
     186             : #include "uassert.h"
     187             : 
     188             : /* Constants */
     189             : /* Public lookup table used by the D2U macro  */
     190             : static const uByte d2utable[DECMAXD2U+1]=D2UTABLE;
     191             : 
     192             : #define DECVERB     1              /* set to 1 for verbose DECCHECK  */
     193             : #define powers      DECPOWERS      /* old internal name  */
     194             : 
     195             : /* Local constants  */
     196             : #define DIVIDE      0x80           /* Divide operators  */
     197             : #define REMAINDER   0x40           /* ..  */
     198             : #define DIVIDEINT   0x20           /* ..  */
     199             : #define REMNEAR     0x10           /* ..  */
     200             : #define COMPARE     0x01           /* Compare operators  */
     201             : #define COMPMAX     0x02           /* ..  */
     202             : #define COMPMIN     0x03           /* ..  */
     203             : #define COMPTOTAL   0x04           /* ..  */
     204             : #define COMPNAN     0x05           /* .. [NaN processing]  */
     205             : #define COMPSIG     0x06           /* .. [signaling COMPARE]  */
     206             : #define COMPMAXMAG  0x07           /* ..  */
     207             : #define COMPMINMAG  0x08           /* ..  */
     208             : 
     209             : #define DEC_sNaN     0x40000000    /* local status: sNaN signal  */
     210             : #define BADINT  (Int)0x80000000    /* most-negative Int; error indicator  */
     211             : /* Next two indicate an integer >= 10**6, and its parity (bottom bit)  */
     212             : #define BIGEVEN (Int)0x80000002
     213             : #define BIGODD  (Int)0x80000003
     214             : 
     215             : static const Unit uarrone[1]={1};   /* Unit array of 1, used for incrementing  */
     216             : 
     217             : /* ------------------------------------------------------------------ */
     218             : /* round-for-reround digits                                           */
     219             : /* ------------------------------------------------------------------ */
     220             : #if 0
     221             : static const uByte DECSTICKYTAB[10]={1,1,2,3,4,6,6,7,8,9}; /* used if sticky */
     222             : #endif
     223             : 
     224             : /* ------------------------------------------------------------------ */
     225             : /* Powers of ten (powers[n]==10**n, 0<=n<=9)                          */
     226             : /* ------------------------------------------------------------------ */
     227             : static const uInt DECPOWERS[10]={1, 10, 100, 1000, 10000, 100000, 1000000,
     228             :                           10000000, 100000000, 1000000000};
     229             : 
     230             : 
     231             : /* Granularity-dependent code */
     232             : #if DECDPUN<=4
     233             :   #define eInt  Int           /* extended integer  */
     234             :   #define ueInt uInt          /* unsigned extended integer  */
     235             :   /* Constant multipliers for divide-by-power-of five using reciprocal  */
     236             :   /* multiply, after removing powers of 2 by shifting, and final shift  */
     237             :   /* of 17 [we only need up to **4]  */
     238             :   static const uInt multies[]={131073, 26215, 5243, 1049, 210};
     239             :   /* QUOT10 -- macro to return the quotient of unit u divided by 10**n  */
     240             :   #define QUOT10(u, n) ((((uInt)(u)>>(n))*multies[n])>>17)
     241             : #else
     242             :   /* For DECDPUN>4 non-ANSI-89 64-bit types are needed.  */
     243             :   #if !DECUSE64
     244             :     #error decNumber.c: DECUSE64 must be 1 when DECDPUN>4
     245             :   #endif
     246             :   #define eInt  Long          /* extended integer  */
     247             :   #define ueInt uLong         /* unsigned extended integer  */
     248             : #endif
     249             : 
     250             : /* Local routines */
     251             : static decNumber * decAddOp(decNumber *, const decNumber *, const decNumber *,
     252             :                               decContext *, uByte, uInt *);
     253             : static Flag        decBiStr(const char *, const char *, const char *);
     254             : static uInt        decCheckMath(const decNumber *, decContext *, uInt *);
     255             : static void        decApplyRound(decNumber *, decContext *, Int, uInt *);
     256             : static Int         decCompare(const decNumber *lhs, const decNumber *rhs, Flag);
     257             : static decNumber * decCompareOp(decNumber *, const decNumber *,
     258             :                               const decNumber *, decContext *,
     259             :                               Flag, uInt *);
     260             : static void        decCopyFit(decNumber *, const decNumber *, decContext *,
     261             :                               Int *, uInt *);
     262             : static decNumber * decDecap(decNumber *, Int);
     263             : static decNumber * decDivideOp(decNumber *, const decNumber *,
     264             :                               const decNumber *, decContext *, Flag, uInt *);
     265             : static decNumber * decExpOp(decNumber *, const decNumber *,
     266             :                               decContext *, uInt *);
     267             : static void        decFinalize(decNumber *, decContext *, Int *, uInt *);
     268             : static Int         decGetDigits(Unit *, Int);
     269             : static Int         decGetInt(const decNumber *);
     270             : static decNumber * decLnOp(decNumber *, const decNumber *,
     271             :                               decContext *, uInt *);
     272             : static decNumber * decMultiplyOp(decNumber *, const decNumber *,
     273             :                               const decNumber *, decContext *,
     274             :                               uInt *);
     275             : static decNumber * decNaNs(decNumber *, const decNumber *,
     276             :                               const decNumber *, decContext *, uInt *);
     277             : static decNumber * decQuantizeOp(decNumber *, const decNumber *,
     278             :                               const decNumber *, decContext *, Flag,
     279             :                               uInt *);
     280             : static void        decReverse(Unit *, Unit *);
     281             : static void        decSetCoeff(decNumber *, decContext *, const Unit *,
     282             :                               Int, Int *, uInt *);
     283             : static void        decSetMaxValue(decNumber *, decContext *);
     284             : static void        decSetOverflow(decNumber *, decContext *, uInt *);
     285             : static void        decSetSubnormal(decNumber *, decContext *, Int *, uInt *);
     286             : static Int         decShiftToLeast(Unit *, Int, Int);
     287             : static Int         decShiftToMost(Unit *, Int, Int);
     288             : static void        decStatus(decNumber *, uInt, decContext *);
     289             : static void        decToString(const decNumber *, char[], Flag);
     290             : static decNumber * decTrim(decNumber *, decContext *, Flag, Flag, Int *);
     291             : static Int         decUnitAddSub(const Unit *, Int, const Unit *, Int, Int,
     292             :                               Unit *, Int);
     293             : static Int         decUnitCompare(const Unit *, Int, const Unit *, Int, Int);
     294             : 
     295             : #if !DECSUBSET
     296             : /* decFinish == decFinalize when no subset arithmetic needed */
     297             : #define decFinish(a,b,c,d) decFinalize(a,b,c,d)
     298             : #else
     299             : static void        decFinish(decNumber *, decContext *, Int *, uInt *);
     300             : static decNumber * decRoundOperand(const decNumber *, decContext *, uInt *);
     301             : #endif
     302             : 
     303             : /* Local macros */
     304             : /* masked special-values bits  */
     305             : #define SPECIALARG  (rhs->bits & DECSPECIAL)
     306             : #define SPECIALARGS ((lhs->bits | rhs->bits) & DECSPECIAL)
     307             : 
     308             : /* For use in ICU */
     309             : #define malloc(a) uprv_malloc(a)
     310             : #define free(a) uprv_free(a)
     311             : 
     312             : /* Diagnostic macros, etc. */
     313             : #if DECALLOC
     314             : /* Handle malloc/free accounting.  If enabled, our accountable routines  */
     315             : /* are used; otherwise the code just goes straight to the system malloc  */
     316             : /* and free routines.  */
     317             : #define malloc(a) decMalloc(a)
     318             : #define free(a) decFree(a)
     319             : #define DECFENCE 0x5a              /* corruption detector  */
     320             : /* 'Our' malloc and free:  */
     321             : static void *decMalloc(size_t);
     322             : static void  decFree(void *);
     323             : uInt decAllocBytes=0;              /* count of bytes allocated  */
     324             : /* Note that DECALLOC code only checks for storage buffer overflow.  */
     325             : /* To check for memory leaks, the decAllocBytes variable must be  */
     326             : /* checked to be 0 at appropriate times (e.g., after the test  */
     327             : /* harness completes a set of tests).  This checking may be unreliable  */
     328             : /* if the testing is done in a multi-thread environment.  */
     329             : #endif
     330             : 
     331             : #if DECCHECK
     332             : /* Optional checking routines.  Enabling these means that decNumber  */
     333             : /* and decContext operands to operator routines are checked for  */
     334             : /* correctness.  This roughly doubles the execution time of the  */
     335             : /* fastest routines (and adds 600+ bytes), so should not normally be  */
     336             : /* used in 'production'.  */
     337             : /* decCheckInexact is used to check that inexact results have a full  */
     338             : /* complement of digits (where appropriate -- this is not the case  */
     339             : /* for Quantize, for example)  */
     340             : #define DECUNRESU ((decNumber *)(void *)0xffffffff)
     341             : #define DECUNUSED ((const decNumber *)(void *)0xffffffff)
     342             : #define DECUNCONT ((decContext *)(void *)(0xffffffff))
     343             : static Flag decCheckOperands(decNumber *, const decNumber *,
     344             :                              const decNumber *, decContext *);
     345             : static Flag decCheckNumber(const decNumber *);
     346             : static void decCheckInexact(const decNumber *, decContext *);
     347             : #endif
     348             : 
     349             : #if DECTRACE || DECCHECK
     350             : /* Optional trace/debugging routines (may or may not be used)  */
     351             : void decNumberShow(const decNumber *);  /* displays the components of a number  */
     352             : static void decDumpAr(char, const Unit *, Int);
     353             : #endif
     354             : 
     355             : /* ================================================================== */
     356             : /* Conversions                                                        */
     357             : /* ================================================================== */
     358             : 
     359             : /* ------------------------------------------------------------------ */
     360             : /* from-int32 -- conversion from Int or uInt                          */
     361             : /*                                                                    */
     362             : /*  dn is the decNumber to receive the integer                        */
     363             : /*  in or uin is the integer to be converted                          */
     364             : /*  returns dn                                                        */
     365             : /*                                                                    */
     366             : /* No error is possible.                                              */
     367             : /* ------------------------------------------------------------------ */
     368           0 : U_CAPI decNumber * U_EXPORT2 uprv_decNumberFromInt32(decNumber *dn, Int in) {
     369             :   uInt unsig;
     370           0 :   if (in>=0) unsig=in;
     371             :    else {                               /* negative (possibly BADINT)  */
     372           0 :     if (in==BADINT) unsig=(uInt)1073741824*2; /* special case  */
     373           0 :      else unsig=-in;                    /* invert  */
     374             :     }
     375             :   /* in is now positive  */
     376           0 :   uprv_decNumberFromUInt32(dn, unsig);
     377           0 :   if (in<0) dn->bits=DECNEG;            /* sign needed  */
     378           0 :   return dn;
     379             :   } /* decNumberFromInt32  */
     380             : 
     381           0 : U_CAPI decNumber * U_EXPORT2 uprv_decNumberFromUInt32(decNumber *dn, uInt uin) {
     382             :   Unit *up;                             /* work pointer  */
     383           0 :   uprv_decNumberZero(dn);                    /* clean  */
     384           0 :   if (uin==0) return dn;                /* [or decGetDigits bad call]  */
     385           0 :   for (up=dn->lsu; uin>0; up++) {
     386           0 :     *up=(Unit)(uin%(DECDPUNMAX+1));
     387           0 :     uin=uin/(DECDPUNMAX+1);
     388             :     }
     389           0 :   dn->digits=decGetDigits(dn->lsu, up-dn->lsu);
     390           0 :   return dn;
     391             :   } /* decNumberFromUInt32  */
     392             : 
     393             : /* ------------------------------------------------------------------ */
     394             : /* to-int32 -- conversion to Int or uInt                              */
     395             : /*                                                                    */
     396             : /*  dn is the decNumber to convert                                    */
     397             : /*  set is the context for reporting errors                           */
     398             : /*  returns the converted decNumber, or 0 if Invalid is set           */
     399             : /*                                                                    */
     400             : /* Invalid is set if the decNumber does not have exponent==0 or if    */
     401             : /* it is a NaN, Infinite, or out-of-range.                            */
     402             : /* ------------------------------------------------------------------ */
     403           0 : U_CAPI Int U_EXPORT2 uprv_decNumberToInt32(const decNumber *dn, decContext *set) {
     404             :   #if DECCHECK
     405             :   if (decCheckOperands(DECUNRESU, DECUNUSED, dn, set)) return 0;
     406             :   #endif
     407             : 
     408             :   /* special or too many digits, or bad exponent  */
     409           0 :   if (dn->bits&DECSPECIAL || dn->digits>10 || dn->exponent!=0) ; /* bad  */
     410             :    else { /* is a finite integer with 10 or fewer digits  */
     411             :     Int d;                         /* work  */
     412             :     const Unit *up;                /* ..  */
     413           0 :     uInt hi=0, lo;                 /* ..  */
     414           0 :     up=dn->lsu;                    /* -> lsu  */
     415           0 :     lo=*up;                        /* get 1 to 9 digits  */
     416             :     #if DECDPUN>1                  /* split to higher  */
     417             :       hi=lo/10;
     418             :       lo=lo%10;
     419             :     #endif
     420           0 :     up++;
     421             :     /* collect remaining Units, if any, into hi  */
     422           0 :     for (d=DECDPUN; d<dn->digits; up++, d+=DECDPUN) hi+=*up*powers[d-1];
     423             :     /* now low has the lsd, hi the remainder  */
     424           0 :     if (hi>214748364 || (hi==214748364 && lo>7)) { /* out of range?  */
     425             :       /* most-negative is a reprieve  */
     426           0 :       if (dn->bits&DECNEG && hi==214748364 && lo==8) return 0x80000000;
     427             :       /* bad -- drop through  */
     428             :       }
     429             :      else { /* in-range always  */
     430           0 :       Int i=X10(hi)+lo;
     431           0 :       if (dn->bits&DECNEG) return -i;
     432           0 :       return i;
     433             :       }
     434             :     } /* integer  */
     435           0 :   uprv_decContextSetStatus(set, DEC_Invalid_operation); /* [may not return]  */
     436           0 :   return 0;
     437             :   } /* decNumberToInt32  */
     438             : 
     439           0 : U_CAPI uInt U_EXPORT2 uprv_decNumberToUInt32(const decNumber *dn, decContext *set) {
     440             :   #if DECCHECK
     441             :   if (decCheckOperands(DECUNRESU, DECUNUSED, dn, set)) return 0;
     442             :   #endif
     443             :   /* special or too many digits, or bad exponent, or negative (<0)  */
     444           0 :   if (dn->bits&DECSPECIAL || dn->digits>10 || dn->exponent!=0
     445           0 :     || (dn->bits&DECNEG && !ISZERO(dn)));                   /* bad  */
     446             :    else { /* is a finite integer with 10 or fewer digits  */
     447             :     Int d;                         /* work  */
     448             :     const Unit *up;                /* ..  */
     449           0 :     uInt hi=0, lo;                 /* ..  */
     450           0 :     up=dn->lsu;                    /* -> lsu  */
     451           0 :     lo=*up;                        /* get 1 to 9 digits  */
     452             :     #if DECDPUN>1                  /* split to higher  */
     453             :       hi=lo/10;
     454             :       lo=lo%10;
     455             :     #endif
     456           0 :     up++;
     457             :     /* collect remaining Units, if any, into hi  */
     458           0 :     for (d=DECDPUN; d<dn->digits; up++, d+=DECDPUN) hi+=*up*powers[d-1];
     459             : 
     460             :     /* now low has the lsd, hi the remainder  */
     461           0 :     if (hi>429496729 || (hi==429496729 && lo>5)) ; /* no reprieve possible  */
     462           0 :      else return X10(hi)+lo;
     463             :     } /* integer  */
     464           0 :   uprv_decContextSetStatus(set, DEC_Invalid_operation); /* [may not return]  */
     465           0 :   return 0;
     466             :   } /* decNumberToUInt32  */
     467             : 
     468             : /* ------------------------------------------------------------------ */
     469             : /* to-scientific-string -- conversion to numeric string               */
     470             : /* to-engineering-string -- conversion to numeric string              */
     471             : /*                                                                    */
     472             : /*   decNumberToString(dn, string);                                   */
     473             : /*   decNumberToEngString(dn, string);                                */
     474             : /*                                                                    */
     475             : /*  dn is the decNumber to convert                                    */
     476             : /*  string is the string where the result will be laid out            */
     477             : /*                                                                    */
     478             : /*  string must be at least dn->digits+14 characters long             */
     479             : /*                                                                    */
     480             : /*  No error is possible, and no status can be set.                   */
     481             : /* ------------------------------------------------------------------ */
     482           0 : U_CAPI char * U_EXPORT2 uprv_decNumberToString(const decNumber *dn, char *string){
     483           0 :   decToString(dn, string, 0);
     484           0 :   return string;
     485             :   } /* DecNumberToString  */
     486             : 
     487           0 : U_CAPI char * U_EXPORT2 uprv_decNumberToEngString(const decNumber *dn, char *string){
     488           0 :   decToString(dn, string, 1);
     489           0 :   return string;
     490             :   } /* DecNumberToEngString  */
     491             : 
     492             : /* ------------------------------------------------------------------ */
     493             : /* to-number -- conversion from numeric string                        */
     494             : /*                                                                    */
     495             : /* decNumberFromString -- convert string to decNumber                 */
     496             : /*   dn        -- the number structure to fill                        */
     497             : /*   chars[]   -- the string to convert ('\0' terminated)             */
     498             : /*   set       -- the context used for processing any error,          */
     499             : /*                determining the maximum precision available         */
     500             : /*                (set.digits), determining the maximum and minimum   */
     501             : /*                exponent (set.emax and set.emin), determining if    */
     502             : /*                extended values are allowed, and checking the       */
     503             : /*                rounding mode if overflow occurs or rounding is     */
     504             : /*                needed.                                             */
     505             : /*                                                                    */
     506             : /* The length of the coefficient and the size of the exponent are     */
     507             : /* checked by this routine, so the correct error (Underflow or        */
     508             : /* Overflow) can be reported or rounding applied, as necessary.       */
     509             : /*                                                                    */
     510             : /* If bad syntax is detected, the result will be a quiet NaN.         */
     511             : /* ------------------------------------------------------------------ */
     512           0 : U_CAPI decNumber * U_EXPORT2 uprv_decNumberFromString(decNumber *dn, const char chars[],
     513             :                                 decContext *set) {
     514           0 :   Int   exponent=0;                /* working exponent [assume 0]  */
     515           0 :   uByte bits=0;                    /* working flags [assume +ve]  */
     516             :   Unit  *res;                      /* where result will be built  */
     517             :   Unit  resbuff[SD2U(DECBUFFER+9)];/* local buffer in case need temporary  */
     518             :                                    /* [+9 allows for ln() constants]  */
     519           0 :   Unit  *allocres=NULL;            /* -> allocated result, iff allocated  */
     520           0 :   Int   d=0;                       /* count of digits found in decimal part  */
     521           0 :   const char *dotchar=NULL;        /* where dot was found  */
     522           0 :   const char *cfirst=chars;        /* -> first character of decimal part  */
     523           0 :   const char *last=NULL;           /* -> last digit of decimal part  */
     524             :   const char *c;                   /* work  */
     525             :   Unit  *up;                       /* ..  */
     526             :   #if DECDPUN>1
     527             :   Int   cut, out;                  /* ..  */
     528             :   #endif
     529             :   Int   residue;                   /* rounding residue  */
     530           0 :   uInt  status=0;                  /* error code  */
     531             : 
     532             :   #if DECCHECK
     533             :   if (decCheckOperands(DECUNRESU, DECUNUSED, DECUNUSED, set))
     534             :     return uprv_decNumberZero(dn);
     535             :   #endif
     536             : 
     537             :   do {                             /* status & malloc protection  */
     538           0 :     for (c=chars;; c++) {          /* -> input character  */
     539           0 :       if (*c>='0' && *c<='9') {    /* test for Arabic digit  */
     540           0 :         last=c;
     541           0 :         d++;                       /* count of real digits  */
     542           0 :         continue;                  /* still in decimal part  */
     543             :         }
     544           0 :       if (*c=='.' && dotchar==NULL) { /* first '.'  */
     545           0 :         dotchar=c;                 /* record offset into decimal part  */
     546           0 :         if (c==cfirst) cfirst++;   /* first digit must follow  */
     547           0 :         continue;}
     548           0 :       if (c==chars) {              /* first in string...  */
     549           0 :         if (*c=='-') {             /* valid - sign  */
     550           0 :           cfirst++;
     551           0 :           bits=DECNEG;
     552           0 :           continue;}
     553           0 :         if (*c=='+') {             /* valid + sign  */
     554           0 :           cfirst++;
     555           0 :           continue;}
     556             :         }
     557             :       /* *c is not a digit, or a valid +, -, or '.'  */
     558           0 :       break;
     559             :       } /* c  */
     560             : 
     561           0 :     if (last==NULL) {              /* no digits yet  */
     562           0 :       status=DEC_Conversion_syntax;/* assume the worst  */
     563           0 :       if (*c=='\0') break;         /* and no more to come...  */
     564             :       #if DECSUBSET
     565             :       /* if subset then infinities and NaNs are not allowed  */
     566             :       if (!set->extended) break;   /* hopeless  */
     567             :       #endif
     568             :       /* Infinities and NaNs are possible, here  */
     569           0 :       if (dotchar!=NULL) break;    /* .. unless had a dot  */
     570           0 :       uprv_decNumberZero(dn);           /* be optimistic  */
     571           0 :       if (decBiStr(c, "infinity", "INFINITY")
     572           0 :        || decBiStr(c, "inf", "INF")) {
     573           0 :         dn->bits=bits | DECINF;
     574           0 :         status=0;                  /* is OK  */
     575           0 :         break; /* all done  */
     576             :         }
     577             :       /* a NaN expected  */
     578             :       /* 2003.09.10 NaNs are now permitted to have a sign  */
     579           0 :       dn->bits=bits | DECNAN;      /* assume simple NaN  */
     580           0 :       if (*c=='s' || *c=='S') {    /* looks like an sNaN  */
     581           0 :         c++;
     582           0 :         dn->bits=bits | DECSNAN;
     583             :         }
     584           0 :       if (*c!='n' && *c!='N') break;    /* check caseless "NaN"  */
     585           0 :       c++;
     586           0 :       if (*c!='a' && *c!='A') break;    /* ..  */
     587           0 :       c++;
     588           0 :       if (*c!='n' && *c!='N') break;    /* ..  */
     589           0 :       c++;
     590             :       /* now either nothing, or nnnn payload, expected  */
     591             :       /* -> start of integer and skip leading 0s [including plain 0]  */
     592           0 :       for (cfirst=c; *cfirst=='0';) cfirst++;
     593           0 :       if (*cfirst=='\0') {         /* "NaN" or "sNaN", maybe with all 0s  */
     594           0 :         status=0;                  /* it's good  */
     595           0 :         break;                     /* ..  */
     596             :         }
     597             :       /* something other than 0s; setup last and d as usual [no dots]  */
     598           0 :       for (c=cfirst;; c++, d++) {
     599           0 :         if (*c<'0' || *c>'9') break; /* test for Arabic digit  */
     600           0 :         last=c;
     601             :         }
     602           0 :       if (*c!='\0') break;         /* not all digits  */
     603           0 :       if (d>set->digits-1) {
     604             :         /* [NB: payload in a decNumber can be full length unless  */
     605             :         /* clamped, in which case can only be digits-1]  */
     606           0 :         if (set->clamp) break;
     607           0 :         if (d>set->digits) break;
     608             :         } /* too many digits?  */
     609             :       /* good; drop through to convert the integer to coefficient  */
     610           0 :       status=0;                    /* syntax is OK  */
     611           0 :       bits=dn->bits;               /* for copy-back  */
     612             :       } /* last==NULL  */
     613             : 
     614           0 :      else if (*c!='\0') {          /* more to process...  */
     615             :       /* had some digits; exponent is only valid sequence now  */
     616             :       Flag nege;                   /* 1=negative exponent  */
     617             :       const char *firstexp;        /* -> first significant exponent digit  */
     618           0 :       status=DEC_Conversion_syntax;/* assume the worst  */
     619           0 :       if (*c!='e' && *c!='E') break;
     620             :       /* Found 'e' or 'E' -- now process explicit exponent */
     621             :       /* 1998.07.11: sign no longer required  */
     622           0 :       nege=0;
     623           0 :       c++;                         /* to (possible) sign  */
     624           0 :       if (*c=='-') {nege=1; c++;}
     625           0 :        else if (*c=='+') c++;
     626           0 :       if (*c=='\0') break;
     627             : 
     628           0 :       for (; *c=='0' && *(c+1)!='\0';) c++;  /* strip insignificant zeros  */
     629           0 :       firstexp=c;                            /* save exponent digit place  */
     630           0 :       for (; ;c++) {
     631           0 :         if (*c<'0' || *c>'9') break;         /* not a digit  */
     632           0 :         exponent=X10(exponent)+(Int)*c-(Int)'0';
     633             :         } /* c  */
     634             :       /* if not now on a '\0', *c must not be a digit  */
     635           0 :       if (*c!='\0') break;
     636             : 
     637             :       /* (this next test must be after the syntax checks)  */
     638             :       /* if it was too long the exponent may have wrapped, so check  */
     639             :       /* carefully and set it to a certain overflow if wrap possible  */
     640           0 :       if (c>=firstexp+9+1) {
     641           0 :         if (c>firstexp+9+1 || *firstexp>'1') exponent=DECNUMMAXE*2;
     642             :         /* [up to 1999999999 is OK, for example 1E-1000000998]  */
     643             :         }
     644           0 :       if (nege) exponent=-exponent;     /* was negative  */
     645           0 :       status=0;                         /* is OK  */
     646             :       } /* stuff after digits  */
     647             : 
     648             :     /* Here when whole string has been inspected; syntax is good  */
     649             :     /* cfirst->first digit (never dot), last->last digit (ditto)  */
     650             : 
     651             :     /* strip leading zeros/dot [leave final 0 if all 0's]  */
     652           0 :     if (*cfirst=='0') {                 /* [cfirst has stepped over .]  */
     653           0 :       for (c=cfirst; c<last; c++, cfirst++) {
     654           0 :         if (*c=='.') continue;          /* ignore dots  */
     655           0 :         if (*c!='0') break;             /* non-zero found  */
     656           0 :         d--;                            /* 0 stripped  */
     657             :         } /* c  */
     658             :       #if DECSUBSET
     659             :       /* make a rapid exit for easy zeros if !extended  */
     660             :       if (*cfirst=='0' && !set->extended) {
     661             :         uprv_decNumberZero(dn);              /* clean result  */
     662             :         break;                          /* [could be return]  */
     663             :         }
     664             :       #endif
     665             :       } /* at least one leading 0  */
     666             : 
     667             :     /* Handle decimal point...  */
     668           0 :     if (dotchar!=NULL && dotchar<last)  /* non-trailing '.' found?  */
     669           0 :       exponent-=(last-dotchar);         /* adjust exponent  */
     670             :     /* [we can now ignore the .]  */
     671             : 
     672             :     /* OK, the digits string is good.  Assemble in the decNumber, or in  */
     673             :     /* a temporary units array if rounding is needed  */
     674           0 :     if (d<=set->digits) res=dn->lsu;    /* fits into supplied decNumber  */
     675             :      else {                             /* rounding needed  */
     676           0 :       Int needbytes=D2U(d)*sizeof(Unit);/* bytes needed  */
     677           0 :       res=resbuff;                      /* assume use local buffer  */
     678           0 :       if (needbytes>(Int)sizeof(resbuff)) { /* too big for local  */
     679           0 :         allocres=(Unit *)malloc(needbytes);
     680           0 :         if (allocres==NULL) {status|=DEC_Insufficient_storage; break;}
     681           0 :         res=allocres;
     682             :         }
     683             :       }
     684             :     /* res now -> number lsu, buffer, or allocated storage for Unit array  */
     685             : 
     686             :     /* Place the coefficient into the selected Unit array  */
     687             :     /* [this is often 70% of the cost of this function when DECDPUN>1]  */
     688             :     #if DECDPUN>1
     689             :     out=0;                         /* accumulator  */
     690             :     up=res+D2U(d)-1;               /* -> msu  */
     691             :     cut=d-(up-res)*DECDPUN;        /* digits in top unit  */
     692             :     for (c=cfirst;; c++) {         /* along the digits  */
     693             :       if (*c=='.') continue;       /* ignore '.' [don't decrement cut]  */
     694             :       out=X10(out)+(Int)*c-(Int)'0';
     695             :       if (c==last) break;          /* done [never get to trailing '.']  */
     696             :       cut--;
     697             :       if (cut>0) continue;         /* more for this unit  */
     698             :       *up=(Unit)out;               /* write unit  */
     699             :       up--;                        /* prepare for unit below..  */
     700             :       cut=DECDPUN;                 /* ..  */
     701             :       out=0;                       /* ..  */
     702             :       } /* c  */
     703             :     *up=(Unit)out;                 /* write lsu  */
     704             : 
     705             :     #else
     706             :     /* DECDPUN==1  */
     707           0 :     up=res;                        /* -> lsu  */
     708           0 :     for (c=last; c>=cfirst; c--) { /* over each character, from least  */
     709           0 :       if (*c=='.') continue;       /* ignore . [don't step up]  */
     710           0 :       *up=(Unit)((Int)*c-(Int)'0');
     711           0 :       up++;
     712             :       } /* c  */
     713             :     #endif
     714             : 
     715           0 :     dn->bits=bits;
     716           0 :     dn->exponent=exponent;
     717           0 :     dn->digits=d;
     718             : 
     719             :     /* if not in number (too long) shorten into the number  */
     720           0 :     if (d>set->digits) {
     721           0 :       residue=0;
     722           0 :       decSetCoeff(dn, set, res, d, &residue, &status);
     723             :       /* always check for overflow or subnormal and round as needed  */
     724           0 :       decFinalize(dn, set, &residue, &status);
     725             :       }
     726             :      else { /* no rounding, but may still have overflow or subnormal  */
     727             :       /* [these tests are just for performance; finalize repeats them]  */
     728           0 :       if ((dn->exponent-1<set->emin-dn->digits)
     729           0 :        || (dn->exponent-1>set->emax-set->digits)) {
     730           0 :         residue=0;
     731           0 :         decFinalize(dn, set, &residue, &status);
     732             :         }
     733             :       }
     734             :     /* decNumberShow(dn);  */
     735             :     } while(0);                         /* [for break]  */
     736             : 
     737           0 :   if (allocres!=NULL) free(allocres);   /* drop any storage used  */
     738           0 :   if (status!=0) decStatus(dn, status, set);
     739           0 :   return dn;
     740             :   } /* decNumberFromString */
     741             : 
     742             : /* ================================================================== */
     743             : /* Operators                                                          */
     744             : /* ================================================================== */
     745             : 
     746             : /* ------------------------------------------------------------------ */
     747             : /* decNumberAbs -- absolute value operator                            */
     748             : /*                                                                    */
     749             : /*   This computes C = abs(A)                                         */
     750             : /*                                                                    */
     751             : /*   res is C, the result.  C may be A                                */
     752             : /*   rhs is A                                                         */
     753             : /*   set is the context                                               */
     754             : /*                                                                    */
     755             : /* See also decNumberCopyAbs for a quiet bitwise version of this.     */
     756             : /* C must have space for set->digits digits.                          */
     757             : /* ------------------------------------------------------------------ */
     758             : /* This has the same effect as decNumberPlus unless A is negative,    */
     759             : /* in which case it has the same effect as decNumberMinus.            */
     760             : /* ------------------------------------------------------------------ */
     761           0 : U_CAPI decNumber * U_EXPORT2 uprv_decNumberAbs(decNumber *res, const decNumber *rhs,
     762             :                          decContext *set) {
     763             :   decNumber dzero;                      /* for 0  */
     764           0 :   uInt status=0;                        /* accumulator  */
     765             : 
     766             :   #if DECCHECK
     767             :   if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
     768             :   #endif
     769             : 
     770           0 :   uprv_decNumberZero(&dzero);                /* set 0  */
     771           0 :   dzero.exponent=rhs->exponent;         /* [no coefficient expansion]  */
     772           0 :   decAddOp(res, &dzero, rhs, set, (uByte)(rhs->bits & DECNEG), &status);
     773           0 :   if (status!=0) decStatus(res, status, set);
     774             :   #if DECCHECK
     775             :   decCheckInexact(res, set);
     776             :   #endif
     777           0 :   return res;
     778             :   } /* decNumberAbs  */
     779             : 
     780             : /* ------------------------------------------------------------------ */
     781             : /* decNumberAdd -- add two Numbers                                    */
     782             : /*                                                                    */
     783             : /*   This computes C = A + B                                          */
     784             : /*                                                                    */
     785             : /*   res is C, the result.  C may be A and/or B (e.g., X=X+X)         */
     786             : /*   lhs is A                                                         */
     787             : /*   rhs is B                                                         */
     788             : /*   set is the context                                               */
     789             : /*                                                                    */
     790             : /* C must have space for set->digits digits.                          */
     791             : /* ------------------------------------------------------------------ */
     792             : /* This just calls the routine shared with Subtract                   */
     793           0 : U_CAPI decNumber * U_EXPORT2 uprv_decNumberAdd(decNumber *res, const decNumber *lhs,
     794             :                          const decNumber *rhs, decContext *set) {
     795           0 :   uInt status=0;                        /* accumulator  */
     796           0 :   decAddOp(res, lhs, rhs, set, 0, &status);
     797           0 :   if (status!=0) decStatus(res, status, set);
     798             :   #if DECCHECK
     799             :   decCheckInexact(res, set);
     800             :   #endif
     801           0 :   return res;
     802             :   } /* decNumberAdd  */
     803             : 
     804             : /* ------------------------------------------------------------------ */
     805             : /* decNumberAnd -- AND two Numbers, digitwise                         */
     806             : /*                                                                    */
     807             : /*   This computes C = A & B                                          */
     808             : /*                                                                    */
     809             : /*   res is C, the result.  C may be A and/or B (e.g., X=X&X)         */
     810             : /*   lhs is A                                                         */
     811             : /*   rhs is B                                                         */
     812             : /*   set is the context (used for result length and error report)     */
     813             : /*                                                                    */
     814             : /* C must have space for set->digits digits.                          */
     815             : /*                                                                    */
     816             : /* Logical function restrictions apply (see above); a NaN is          */
     817             : /* returned with Invalid_operation if a restriction is violated.      */
     818             : /* ------------------------------------------------------------------ */
     819           0 : U_CAPI decNumber * U_EXPORT2 uprv_decNumberAnd(decNumber *res, const decNumber *lhs,
     820             :                          const decNumber *rhs, decContext *set) {
     821             :   const Unit *ua, *ub;                  /* -> operands  */
     822             :   const Unit *msua, *msub;              /* -> operand msus  */
     823             :   Unit *uc,  *msuc;                     /* -> result and its msu  */
     824             :   Int   msudigs;                        /* digits in res msu  */
     825             :   #if DECCHECK
     826             :   if (decCheckOperands(res, lhs, rhs, set)) return res;
     827             :   #endif
     828             : 
     829           0 :   if (lhs->exponent!=0 || decNumberIsSpecial(lhs) || decNumberIsNegative(lhs)
     830           0 :    || rhs->exponent!=0 || decNumberIsSpecial(rhs) || decNumberIsNegative(rhs)) {
     831           0 :     decStatus(res, DEC_Invalid_operation, set);
     832           0 :     return res;
     833             :     }
     834             : 
     835             :   /* operands are valid  */
     836           0 :   ua=lhs->lsu;                          /* bottom-up  */
     837           0 :   ub=rhs->lsu;                          /* ..  */
     838           0 :   uc=res->lsu;                          /* ..  */
     839           0 :   msua=ua+D2U(lhs->digits)-1;           /* -> msu of lhs  */
     840           0 :   msub=ub+D2U(rhs->digits)-1;           /* -> msu of rhs  */
     841           0 :   msuc=uc+D2U(set->digits)-1;           /* -> msu of result  */
     842           0 :   msudigs=MSUDIGITS(set->digits);       /* [faster than remainder]  */
     843           0 :   for (; uc<=msuc; ua++, ub++, uc++) {  /* Unit loop  */
     844             :     Unit a, b;                          /* extract units  */
     845           0 :     if (ua>msua) a=0;
     846           0 :      else a=*ua;
     847           0 :     if (ub>msub) b=0;
     848           0 :      else b=*ub;
     849           0 :     *uc=0;                              /* can now write back  */
     850           0 :     if (a|b) {                          /* maybe 1 bits to examine  */
     851             :       Int i, j;
     852           0 :       *uc=0;                            /* can now write back  */
     853             :       /* This loop could be unrolled and/or use BIN2BCD tables  */
     854           0 :       for (i=0; i<DECDPUN; i++) {
     855           0 :         if (a&b&1) *uc=*uc+(Unit)powers[i];  /* effect AND  */
     856           0 :         j=a%10;
     857           0 :         a=a/10;
     858           0 :         j|=b%10;
     859           0 :         b=b/10;
     860           0 :         if (j>1) {
     861           0 :           decStatus(res, DEC_Invalid_operation, set);
     862           0 :           return res;
     863             :           }
     864           0 :         if (uc==msuc && i==msudigs-1) break; /* just did final digit  */
     865             :         } /* each digit  */
     866             :       } /* both OK  */
     867             :     } /* each unit  */
     868             :   /* [here uc-1 is the msu of the result]  */
     869           0 :   res->digits=decGetDigits(res->lsu, uc-res->lsu);
     870           0 :   res->exponent=0;                      /* integer  */
     871           0 :   res->bits=0;                          /* sign=0  */
     872           0 :   return res;  /* [no status to set]  */
     873             :   } /* decNumberAnd  */
     874             : 
     875             : /* ------------------------------------------------------------------ */
     876             : /* decNumberCompare -- compare two Numbers                            */
     877             : /*                                                                    */
     878             : /*   This computes C = A ? B                                          */
     879             : /*                                                                    */
     880             : /*   res is C, the result.  C may be A and/or B (e.g., X=X?X)         */
     881             : /*   lhs is A                                                         */
     882             : /*   rhs is B                                                         */
     883             : /*   set is the context                                               */
     884             : /*                                                                    */
     885             : /* C must have space for one digit (or NaN).                          */
     886             : /* ------------------------------------------------------------------ */
     887           0 : U_CAPI decNumber * U_EXPORT2 uprv_decNumberCompare(decNumber *res, const decNumber *lhs,
     888             :                              const decNumber *rhs, decContext *set) {
     889           0 :   uInt status=0;                        /* accumulator  */
     890           0 :   decCompareOp(res, lhs, rhs, set, COMPARE, &status);
     891           0 :   if (status!=0) decStatus(res, status, set);
     892           0 :   return res;
     893             :   } /* decNumberCompare  */
     894             : 
     895             : /* ------------------------------------------------------------------ */
     896             : /* decNumberCompareSignal -- compare, signalling on all NaNs          */
     897             : /*                                                                    */
     898             : /*   This computes C = A ? B                                          */
     899             : /*                                                                    */
     900             : /*   res is C, the result.  C may be A and/or B (e.g., X=X?X)         */
     901             : /*   lhs is A                                                         */
     902             : /*   rhs is B                                                         */
     903             : /*   set is the context                                               */
     904             : /*                                                                    */
     905             : /* C must have space for one digit (or NaN).                          */
     906             : /* ------------------------------------------------------------------ */
     907           0 : U_CAPI decNumber * U_EXPORT2 uprv_decNumberCompareSignal(decNumber *res, const decNumber *lhs,
     908             :                                    const decNumber *rhs, decContext *set) {
     909           0 :   uInt status=0;                        /* accumulator  */
     910           0 :   decCompareOp(res, lhs, rhs, set, COMPSIG, &status);
     911           0 :   if (status!=0) decStatus(res, status, set);
     912           0 :   return res;
     913             :   } /* decNumberCompareSignal  */
     914             : 
     915             : /* ------------------------------------------------------------------ */
     916             : /* decNumberCompareTotal -- compare two Numbers, using total ordering */
     917             : /*                                                                    */
     918             : /*   This computes C = A ? B, under total ordering                    */
     919             : /*                                                                    */
     920             : /*   res is C, the result.  C may be A and/or B (e.g., X=X?X)         */
     921             : /*   lhs is A                                                         */
     922             : /*   rhs is B                                                         */
     923             : /*   set is the context                                               */
     924             : /*                                                                    */
     925             : /* C must have space for one digit; the result will always be one of  */
     926             : /* -1, 0, or 1.                                                       */
     927             : /* ------------------------------------------------------------------ */
     928           0 : U_CAPI decNumber * U_EXPORT2 uprv_decNumberCompareTotal(decNumber *res, const decNumber *lhs,
     929             :                                   const decNumber *rhs, decContext *set) {
     930           0 :   uInt status=0;                        /* accumulator  */
     931           0 :   decCompareOp(res, lhs, rhs, set, COMPTOTAL, &status);
     932           0 :   if (status!=0) decStatus(res, status, set);
     933           0 :   return res;
     934             :   } /* decNumberCompareTotal  */
     935             : 
     936             : /* ------------------------------------------------------------------ */
     937             : /* decNumberCompareTotalMag -- compare, total ordering of magnitudes  */
     938             : /*                                                                    */
     939             : /*   This computes C = |A| ? |B|, under total ordering                */
     940             : /*                                                                    */
     941             : /*   res is C, the result.  C may be A and/or B (e.g., X=X?X)         */
     942             : /*   lhs is A                                                         */
     943             : /*   rhs is B                                                         */
     944             : /*   set is the context                                               */
     945             : /*                                                                    */
     946             : /* C must have space for one digit; the result will always be one of  */
     947             : /* -1, 0, or 1.                                                       */
     948             : /* ------------------------------------------------------------------ */
     949           0 : U_CAPI decNumber * U_EXPORT2 uprv_decNumberCompareTotalMag(decNumber *res, const decNumber *lhs,
     950             :                                      const decNumber *rhs, decContext *set) {
     951           0 :   uInt status=0;                   /* accumulator  */
     952             :   uInt needbytes;                  /* for space calculations  */
     953             :   decNumber bufa[D2N(DECBUFFER+1)];/* +1 in case DECBUFFER=0  */
     954           0 :   decNumber *allocbufa=NULL;       /* -> allocated bufa, iff allocated  */
     955             :   decNumber bufb[D2N(DECBUFFER+1)];
     956           0 :   decNumber *allocbufb=NULL;       /* -> allocated bufb, iff allocated  */
     957             :   decNumber *a, *b;                /* temporary pointers  */
     958             : 
     959             :   #if DECCHECK
     960             :   if (decCheckOperands(res, lhs, rhs, set)) return res;
     961             :   #endif
     962             : 
     963             :   do {                                  /* protect allocated storage  */
     964             :     /* if either is negative, take a copy and absolute  */
     965           0 :     if (decNumberIsNegative(lhs)) {     /* lhs<0  */
     966           0 :       a=bufa;
     967           0 :       needbytes=sizeof(decNumber)+(D2U(lhs->digits)-1)*sizeof(Unit);
     968           0 :       if (needbytes>sizeof(bufa)) {     /* need malloc space  */
     969           0 :         allocbufa=(decNumber *)malloc(needbytes);
     970           0 :         if (allocbufa==NULL) {          /* hopeless -- abandon  */
     971           0 :           status|=DEC_Insufficient_storage;
     972           0 :           break;}
     973           0 :         a=allocbufa;                    /* use the allocated space  */
     974             :         }
     975           0 :       uprv_decNumberCopy(a, lhs);            /* copy content  */
     976           0 :       a->bits&=~DECNEG;                 /* .. and clear the sign  */
     977           0 :       lhs=a;                            /* use copy from here on  */
     978             :       }
     979           0 :     if (decNumberIsNegative(rhs)) {     /* rhs<0  */
     980           0 :       b=bufb;
     981           0 :       needbytes=sizeof(decNumber)+(D2U(rhs->digits)-1)*sizeof(Unit);
     982           0 :       if (needbytes>sizeof(bufb)) {     /* need malloc space  */
     983           0 :         allocbufb=(decNumber *)malloc(needbytes);
     984           0 :         if (allocbufb==NULL) {          /* hopeless -- abandon  */
     985           0 :           status|=DEC_Insufficient_storage;
     986           0 :           break;}
     987           0 :         b=allocbufb;                    /* use the allocated space  */
     988             :         }
     989           0 :       uprv_decNumberCopy(b, rhs);            /* copy content  */
     990           0 :       b->bits&=~DECNEG;                 /* .. and clear the sign  */
     991           0 :       rhs=b;                            /* use copy from here on  */
     992             :       }
     993           0 :     decCompareOp(res, lhs, rhs, set, COMPTOTAL, &status);
     994             :     } while(0);                         /* end protected  */
     995             : 
     996           0 :   if (allocbufa!=NULL) free(allocbufa); /* drop any storage used  */
     997           0 :   if (allocbufb!=NULL) free(allocbufb); /* ..  */
     998           0 :   if (status!=0) decStatus(res, status, set);
     999           0 :   return res;
    1000             :   } /* decNumberCompareTotalMag  */
    1001             : 
    1002             : /* ------------------------------------------------------------------ */
    1003             : /* decNumberDivide -- divide one number by another                    */
    1004             : /*                                                                    */
    1005             : /*   This computes C = A / B                                          */
    1006             : /*                                                                    */
    1007             : /*   res is C, the result.  C may be A and/or B (e.g., X=X/X)         */
    1008             : /*   lhs is A                                                         */
    1009             : /*   rhs is B                                                         */
    1010             : /*   set is the context                                               */
    1011             : /*                                                                    */
    1012             : /* C must have space for set->digits digits.                          */
    1013             : /* ------------------------------------------------------------------ */
    1014           0 : U_CAPI decNumber * U_EXPORT2 uprv_decNumberDivide(decNumber *res, const decNumber *lhs,
    1015             :                             const decNumber *rhs, decContext *set) {
    1016           0 :   uInt status=0;                        /* accumulator  */
    1017           0 :   decDivideOp(res, lhs, rhs, set, DIVIDE, &status);
    1018           0 :   if (status!=0) decStatus(res, status, set);
    1019             :   #if DECCHECK
    1020             :   decCheckInexact(res, set);
    1021             :   #endif
    1022           0 :   return res;
    1023             :   } /* decNumberDivide  */
    1024             : 
    1025             : /* ------------------------------------------------------------------ */
    1026             : /* decNumberDivideInteger -- divide and return integer quotient       */
    1027             : /*                                                                    */
    1028             : /*   This computes C = A # B, where # is the integer divide operator  */
    1029             : /*                                                                    */
    1030             : /*   res is C, the result.  C may be A and/or B (e.g., X=X#X)         */
    1031             : /*   lhs is A                                                         */
    1032             : /*   rhs is B                                                         */
    1033             : /*   set is the context                                               */
    1034             : /*                                                                    */
    1035             : /* C must have space for set->digits digits.                          */
    1036             : /* ------------------------------------------------------------------ */
    1037           0 : U_CAPI decNumber * U_EXPORT2 uprv_decNumberDivideInteger(decNumber *res, const decNumber *lhs,
    1038             :                                    const decNumber *rhs, decContext *set) {
    1039           0 :   uInt status=0;                        /* accumulator  */
    1040           0 :   decDivideOp(res, lhs, rhs, set, DIVIDEINT, &status);
    1041           0 :   if (status!=0) decStatus(res, status, set);
    1042           0 :   return res;
    1043             :   } /* decNumberDivideInteger  */
    1044             : 
    1045             : /* ------------------------------------------------------------------ */
    1046             : /* decNumberExp -- exponentiation                                     */
    1047             : /*                                                                    */
    1048             : /*   This computes C = exp(A)                                         */
    1049             : /*                                                                    */
    1050             : /*   res is C, the result.  C may be A                                */
    1051             : /*   rhs is A                                                         */
    1052             : /*   set is the context; note that rounding mode has no effect        */
    1053             : /*                                                                    */
    1054             : /* C must have space for set->digits digits.                          */
    1055             : /*                                                                    */
    1056             : /* Mathematical function restrictions apply (see above); a NaN is     */
    1057             : /* returned with Invalid_operation if a restriction is violated.      */
    1058             : /*                                                                    */
    1059             : /* Finite results will always be full precision and Inexact, except   */
    1060             : /* when A is a zero or -Infinity (giving 1 or 0 respectively).        */
    1061             : /*                                                                    */
    1062             : /* An Inexact result is rounded using DEC_ROUND_HALF_EVEN; it will    */
    1063             : /* almost always be correctly rounded, but may be up to 1 ulp in      */
    1064             : /* error in rare cases.                                               */
    1065             : /* ------------------------------------------------------------------ */
    1066             : /* This is a wrapper for decExpOp which can handle the slightly wider */
    1067             : /* (double) range needed by Ln (which has to be able to calculate     */
    1068             : /* exp(-a) where a can be the tiniest number (Ntiny).                 */
    1069             : /* ------------------------------------------------------------------ */
    1070           0 : U_CAPI decNumber * U_EXPORT2 uprv_decNumberExp(decNumber *res, const decNumber *rhs,
    1071             :                          decContext *set) {
    1072           0 :   uInt status=0;                        /* accumulator  */
    1073             :   #if DECSUBSET
    1074             :   decNumber *allocrhs=NULL;        /* non-NULL if rounded rhs allocated  */
    1075             :   #endif
    1076             : 
    1077             :   #if DECCHECK
    1078             :   if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
    1079             :   #endif
    1080             : 
    1081             :   /* Check restrictions; these restrictions ensure that if h=8 (see  */
    1082             :   /* decExpOp) then the result will either overflow or underflow to 0.  */
    1083             :   /* Other math functions restrict the input range, too, for inverses.  */
    1084             :   /* If not violated then carry out the operation.  */
    1085           0 :   if (!decCheckMath(rhs, set, &status)) do { /* protect allocation  */
    1086             :     #if DECSUBSET
    1087             :     if (!set->extended) {
    1088             :       /* reduce operand and set lostDigits status, as needed  */
    1089             :       if (rhs->digits>set->digits) {
    1090             :         allocrhs=decRoundOperand(rhs, set, &status);
    1091             :         if (allocrhs==NULL) break;
    1092             :         rhs=allocrhs;
    1093             :         }
    1094             :       }
    1095             :     #endif
    1096           0 :     decExpOp(res, rhs, set, &status);
    1097             :     } while(0);                         /* end protected  */
    1098             : 
    1099             :   #if DECSUBSET
    1100             :   if (allocrhs !=NULL) free(allocrhs);  /* drop any storage used  */
    1101             :   #endif
    1102             :   /* apply significant status  */
    1103           0 :   if (status!=0) decStatus(res, status, set);
    1104             :   #if DECCHECK
    1105             :   decCheckInexact(res, set);
    1106             :   #endif
    1107           0 :   return res;
    1108             :   } /* decNumberExp  */
    1109             : 
    1110             : /* ------------------------------------------------------------------ */
    1111             : /* decNumberFMA -- fused multiply add                                 */
    1112             : /*                                                                    */
    1113             : /*   This computes D = (A * B) + C with only one rounding             */
    1114             : /*                                                                    */
    1115             : /*   res is D, the result.  D may be A or B or C (e.g., X=FMA(X,X,X)) */
    1116             : /*   lhs is A                                                         */
    1117             : /*   rhs is B                                                         */
    1118             : /*   fhs is C [far hand side]                                         */
    1119             : /*   set is the context                                               */
    1120             : /*                                                                    */
    1121             : /* Mathematical function restrictions apply (see above); a NaN is     */
    1122             : /* returned with Invalid_operation if a restriction is violated.      */
    1123             : /*                                                                    */
    1124             : /* C must have space for set->digits digits.                          */
    1125             : /* ------------------------------------------------------------------ */
    1126           0 : U_CAPI decNumber * U_EXPORT2 uprv_decNumberFMA(decNumber *res, const decNumber *lhs,
    1127             :                          const decNumber *rhs, const decNumber *fhs,
    1128             :                          decContext *set) {
    1129           0 :   uInt status=0;                   /* accumulator  */
    1130             :   decContext dcmul;                /* context for the multiplication  */
    1131             :   uInt needbytes;                  /* for space calculations  */
    1132             :   decNumber bufa[D2N(DECBUFFER*2+1)];
    1133           0 :   decNumber *allocbufa=NULL;       /* -> allocated bufa, iff allocated  */
    1134             :   decNumber *acc;                  /* accumulator pointer  */
    1135             :   decNumber dzero;                 /* work  */
    1136             : 
    1137             :   #if DECCHECK
    1138             :   if (decCheckOperands(res, lhs, rhs, set)) return res;
    1139             :   if (decCheckOperands(res, fhs, DECUNUSED, set)) return res;
    1140             :   #endif
    1141             : 
    1142             :   do {                                  /* protect allocated storage  */
    1143             :     #if DECSUBSET
    1144             :     if (!set->extended) {               /* [undefined if subset]  */
    1145             :       status|=DEC_Invalid_operation;
    1146             :       break;}
    1147             :     #endif
    1148             :     /* Check math restrictions [these ensure no overflow or underflow]  */
    1149           0 :     if ((!decNumberIsSpecial(lhs) && decCheckMath(lhs, set, &status))
    1150           0 :      || (!decNumberIsSpecial(rhs) && decCheckMath(rhs, set, &status))
    1151           0 :      || (!decNumberIsSpecial(fhs) && decCheckMath(fhs, set, &status))) break;
    1152             :     /* set up context for multiply  */
    1153           0 :     dcmul=*set;
    1154           0 :     dcmul.digits=lhs->digits+rhs->digits; /* just enough  */
    1155             :     /* [The above may be an over-estimate for subset arithmetic, but that's OK]  */
    1156           0 :     dcmul.emax=DEC_MAX_EMAX;            /* effectively unbounded ..  */
    1157           0 :     dcmul.emin=DEC_MIN_EMIN;            /* [thanks to Math restrictions]  */
    1158             :     /* set up decNumber space to receive the result of the multiply  */
    1159           0 :     acc=bufa;                           /* may fit  */
    1160           0 :     needbytes=sizeof(decNumber)+(D2U(dcmul.digits)-1)*sizeof(Unit);
    1161           0 :     if (needbytes>sizeof(bufa)) {       /* need malloc space  */
    1162           0 :       allocbufa=(decNumber *)malloc(needbytes);
    1163           0 :       if (allocbufa==NULL) {            /* hopeless -- abandon  */
    1164           0 :         status|=DEC_Insufficient_storage;
    1165           0 :         break;}
    1166           0 :       acc=allocbufa;                    /* use the allocated space  */
    1167             :       }
    1168             :     /* multiply with extended range and necessary precision  */
    1169             :     /*printf("emin=%ld\n", dcmul.emin);  */
    1170           0 :     decMultiplyOp(acc, lhs, rhs, &dcmul, &status);
    1171             :     /* Only Invalid operation (from sNaN or Inf * 0) is possible in  */
    1172             :     /* status; if either is seen than ignore fhs (in case it is  */
    1173             :     /* another sNaN) and set acc to NaN unless we had an sNaN  */
    1174             :     /* [decMultiplyOp leaves that to caller]  */
    1175             :     /* Note sNaN has to go through addOp to shorten payload if  */
    1176             :     /* necessary  */
    1177           0 :     if ((status&DEC_Invalid_operation)!=0) {
    1178           0 :       if (!(status&DEC_sNaN)) {         /* but be true invalid  */
    1179           0 :         uprv_decNumberZero(res);             /* acc not yet set  */
    1180           0 :         res->bits=DECNAN;
    1181           0 :         break;
    1182             :         }
    1183           0 :       uprv_decNumberZero(&dzero);            /* make 0 (any non-NaN would do)  */
    1184           0 :       fhs=&dzero;                       /* use that  */
    1185             :       }
    1186             :     #if DECCHECK
    1187             :      else { /* multiply was OK  */
    1188             :       if (status!=0) printf("Status=%08lx after FMA multiply\n", (LI)status);
    1189             :       }
    1190             :     #endif
    1191             :     /* add the third operand and result -> res, and all is done  */
    1192           0 :     decAddOp(res, acc, fhs, set, 0, &status);
    1193             :     } while(0);                         /* end protected  */
    1194             : 
    1195           0 :   if (allocbufa!=NULL) free(allocbufa); /* drop any storage used  */
    1196           0 :   if (status!=0) decStatus(res, status, set);
    1197             :   #if DECCHECK
    1198             :   decCheckInexact(res, set);
    1199             :   #endif
    1200           0 :   return res;
    1201             :   } /* decNumberFMA  */
    1202             : 
    1203             : /* ------------------------------------------------------------------ */
    1204             : /* decNumberInvert -- invert a Number, digitwise                      */
    1205             : /*                                                                    */
    1206             : /*   This computes C = ~A                                             */
    1207             : /*                                                                    */
    1208             : /*   res is C, the result.  C may be A (e.g., X=~X)                   */
    1209             : /*   rhs is A                                                         */
    1210             : /*   set is the context (used for result length and error report)     */
    1211             : /*                                                                    */
    1212             : /* C must have space for set->digits digits.                          */
    1213             : /*                                                                    */
    1214             : /* Logical function restrictions apply (see above); a NaN is          */
    1215             : /* returned with Invalid_operation if a restriction is violated.      */
    1216             : /* ------------------------------------------------------------------ */
    1217           0 : U_CAPI decNumber * U_EXPORT2 uprv_decNumberInvert(decNumber *res, const decNumber *rhs,
    1218             :                             decContext *set) {
    1219             :   const Unit *ua, *msua;                /* -> operand and its msu  */
    1220             :   Unit  *uc, *msuc;                     /* -> result and its msu  */
    1221             :   Int   msudigs;                        /* digits in res msu  */
    1222             :   #if DECCHECK
    1223             :   if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
    1224             :   #endif
    1225             : 
    1226           0 :   if (rhs->exponent!=0 || decNumberIsSpecial(rhs) || decNumberIsNegative(rhs)) {
    1227           0 :     decStatus(res, DEC_Invalid_operation, set);
    1228           0 :     return res;
    1229             :     }
    1230             :   /* operand is valid  */
    1231           0 :   ua=rhs->lsu;                          /* bottom-up  */
    1232           0 :   uc=res->lsu;                          /* ..  */
    1233           0 :   msua=ua+D2U(rhs->digits)-1;           /* -> msu of rhs  */
    1234           0 :   msuc=uc+D2U(set->digits)-1;           /* -> msu of result  */
    1235           0 :   msudigs=MSUDIGITS(set->digits);       /* [faster than remainder]  */
    1236           0 :   for (; uc<=msuc; ua++, uc++) {        /* Unit loop  */
    1237             :     Unit a;                             /* extract unit  */
    1238             :     Int  i, j;                          /* work  */
    1239           0 :     if (ua>msua) a=0;
    1240           0 :      else a=*ua;
    1241           0 :     *uc=0;                              /* can now write back  */
    1242             :     /* always need to examine all bits in rhs  */
    1243             :     /* This loop could be unrolled and/or use BIN2BCD tables  */
    1244           0 :     for (i=0; i<DECDPUN; i++) {
    1245           0 :       if ((~a)&1) *uc=*uc+(Unit)powers[i];   /* effect INVERT  */
    1246           0 :       j=a%10;
    1247           0 :       a=a/10;
    1248           0 :       if (j>1) {
    1249           0 :         decStatus(res, DEC_Invalid_operation, set);
    1250           0 :         return res;
    1251             :         }
    1252           0 :       if (uc==msuc && i==msudigs-1) break;   /* just did final digit  */
    1253             :       } /* each digit  */
    1254             :     } /* each unit  */
    1255             :   /* [here uc-1 is the msu of the result]  */
    1256           0 :   res->digits=decGetDigits(res->lsu, uc-res->lsu);
    1257           0 :   res->exponent=0;                      /* integer  */
    1258           0 :   res->bits=0;                          /* sign=0  */
    1259           0 :   return res;  /* [no status to set]  */
    1260             :   } /* decNumberInvert  */
    1261             : 
    1262             : /* ------------------------------------------------------------------ */
    1263             : /* decNumberLn -- natural logarithm                                   */
    1264             : /*                                                                    */
    1265             : /*   This computes C = ln(A)                                          */
    1266             : /*                                                                    */
    1267             : /*   res is C, the result.  C may be A                                */
    1268             : /*   rhs is A                                                         */
    1269             : /*   set is the context; note that rounding mode has no effect        */
    1270             : /*                                                                    */
    1271             : /* C must have space for set->digits digits.                          */
    1272             : /*                                                                    */
    1273             : /* Notable cases:                                                     */
    1274             : /*   A<0 -> Invalid                                                   */
    1275             : /*   A=0 -> -Infinity (Exact)                                         */
    1276             : /*   A=+Infinity -> +Infinity (Exact)                                 */
    1277             : /*   A=1 exactly -> 0 (Exact)                                         */
    1278             : /*                                                                    */
    1279             : /* Mathematical function restrictions apply (see above); a NaN is     */
    1280             : /* returned with Invalid_operation if a restriction is violated.      */
    1281             : /*                                                                    */
    1282             : /* An Inexact result is rounded using DEC_ROUND_HALF_EVEN; it will    */
    1283             : /* almost always be correctly rounded, but may be up to 1 ulp in      */
    1284             : /* error in rare cases.                                               */
    1285             : /* ------------------------------------------------------------------ */
    1286             : /* This is a wrapper for decLnOp which can handle the slightly wider  */
    1287             : /* (+11) range needed by Ln, Log10, etc. (which may have to be able   */
    1288             : /* to calculate at p+e+2).                                            */
    1289             : /* ------------------------------------------------------------------ */
    1290           0 : U_CAPI decNumber * U_EXPORT2 uprv_decNumberLn(decNumber *res, const decNumber *rhs,
    1291             :                         decContext *set) {
    1292           0 :   uInt status=0;                   /* accumulator  */
    1293             :   #if DECSUBSET
    1294             :   decNumber *allocrhs=NULL;        /* non-NULL if rounded rhs allocated  */
    1295             :   #endif
    1296             : 
    1297             :   #if DECCHECK
    1298             :   if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
    1299             :   #endif
    1300             : 
    1301             :   /* Check restrictions; this is a math function; if not violated  */
    1302             :   /* then carry out the operation.  */
    1303           0 :   if (!decCheckMath(rhs, set, &status)) do { /* protect allocation  */
    1304             :     #if DECSUBSET
    1305             :     if (!set->extended) {
    1306             :       /* reduce operand and set lostDigits status, as needed  */
    1307             :       if (rhs->digits>set->digits) {
    1308             :         allocrhs=decRoundOperand(rhs, set, &status);
    1309             :         if (allocrhs==NULL) break;
    1310             :         rhs=allocrhs;
    1311             :         }
    1312             :       /* special check in subset for rhs=0  */
    1313             :       if (ISZERO(rhs)) {                /* +/- zeros -> error  */
    1314             :         status|=DEC_Invalid_operation;
    1315             :         break;}
    1316             :       } /* extended=0  */
    1317             :     #endif
    1318           0 :     decLnOp(res, rhs, set, &status);
    1319             :     } while(0);                         /* end protected  */
    1320             : 
    1321             :   #if DECSUBSET
    1322             :   if (allocrhs !=NULL) free(allocrhs);  /* drop any storage used  */
    1323             :   #endif
    1324             :   /* apply significant status  */
    1325           0 :   if (status!=0) decStatus(res, status, set);
    1326             :   #if DECCHECK
    1327             :   decCheckInexact(res, set);
    1328             :   #endif
    1329           0 :   return res;
    1330             :   } /* decNumberLn  */
    1331             : 
    1332             : /* ------------------------------------------------------------------ */
    1333             : /* decNumberLogB - get adjusted exponent, by 754 rules                */
    1334             : /*                                                                    */
    1335             : /*   This computes C = adjustedexponent(A)                            */
    1336             : /*                                                                    */
    1337             : /*   res is C, the result.  C may be A                                */
    1338             : /*   rhs is A                                                         */
    1339             : /*   set is the context, used only for digits and status              */
    1340             : /*                                                                    */
    1341             : /* C must have space for 10 digits (A might have 10**9 digits and     */
    1342             : /* an exponent of +999999999, or one digit and an exponent of         */
    1343             : /* -1999999999).                                                      */
    1344             : /*                                                                    */
    1345             : /* This returns the adjusted exponent of A after (in theory) padding  */
    1346             : /* with zeros on the right to set->digits digits while keeping the    */
    1347             : /* same value.  The exponent is not limited by emin/emax.             */
    1348             : /*                                                                    */
    1349             : /* Notable cases:                                                     */
    1350             : /*   A<0 -> Use |A|                                                   */
    1351             : /*   A=0 -> -Infinity (Division by zero)                              */
    1352             : /*   A=Infinite -> +Infinity (Exact)                                  */
    1353             : /*   A=1 exactly -> 0 (Exact)                                         */
    1354             : /*   NaNs are propagated as usual                                     */
    1355             : /* ------------------------------------------------------------------ */
    1356           0 : U_CAPI decNumber * U_EXPORT2 uprv_decNumberLogB(decNumber *res, const decNumber *rhs,
    1357             :                           decContext *set) {
    1358           0 :   uInt status=0;                   /* accumulator  */
    1359             : 
    1360             :   #if DECCHECK
    1361             :   if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
    1362             :   #endif
    1363             : 
    1364             :   /* NaNs as usual; Infinities return +Infinity; 0->oops  */
    1365           0 :   if (decNumberIsNaN(rhs)) decNaNs(res, rhs, NULL, set, &status);
    1366           0 :    else if (decNumberIsInfinite(rhs)) uprv_decNumberCopyAbs(res, rhs);
    1367           0 :    else if (decNumberIsZero(rhs)) {
    1368           0 :     uprv_decNumberZero(res);                 /* prepare for Infinity  */
    1369           0 :     res->bits=DECNEG|DECINF;            /* -Infinity  */
    1370           0 :     status|=DEC_Division_by_zero;       /* as per 754  */
    1371             :     }
    1372             :    else { /* finite non-zero  */
    1373           0 :     Int ae=rhs->exponent+rhs->digits-1; /* adjusted exponent  */
    1374           0 :     uprv_decNumberFromInt32(res, ae);        /* lay it out  */
    1375             :     }
    1376             : 
    1377           0 :   if (status!=0) decStatus(res, status, set);
    1378           0 :   return res;
    1379             :   } /* decNumberLogB  */
    1380             : 
    1381             : /* ------------------------------------------------------------------ */
    1382             : /* decNumberLog10 -- logarithm in base 10                             */
    1383             : /*                                                                    */
    1384             : /*   This computes C = log10(A)                                       */
    1385             : /*                                                                    */
    1386             : /*   res is C, the result.  C may be A                                */
    1387             : /*   rhs is A                                                         */
    1388             : /*   set is the context; note that rounding mode has no effect        */
    1389             : /*                                                                    */
    1390             : /* C must have space for set->digits digits.                          */
    1391             : /*                                                                    */
    1392             : /* Notable cases:                                                     */
    1393             : /*   A<0 -> Invalid                                                   */
    1394             : /*   A=0 -> -Infinity (Exact)                                         */
    1395             : /*   A=+Infinity -> +Infinity (Exact)                                 */
    1396             : /*   A=10**n (if n is an integer) -> n (Exact)                        */
    1397             : /*                                                                    */
    1398             : /* Mathematical function restrictions apply (see above); a NaN is     */
    1399             : /* returned with Invalid_operation if a restriction is violated.      */
    1400             : /*                                                                    */
    1401             : /* An Inexact result is rounded using DEC_ROUND_HALF_EVEN; it will    */
    1402             : /* almost always be correctly rounded, but may be up to 1 ulp in      */
    1403             : /* error in rare cases.                                               */
    1404             : /* ------------------------------------------------------------------ */
    1405             : /* This calculates ln(A)/ln(10) using appropriate precision.  For     */
    1406             : /* ln(A) this is the max(p, rhs->digits + t) + 3, where p is the      */
    1407             : /* requested digits and t is the number of digits in the exponent     */
    1408             : /* (maximum 6).  For ln(10) it is p + 3; this is often handled by the */
    1409             : /* fastpath in decLnOp.  The final division is done to the requested  */
    1410             : /* precision.                                                         */
    1411             : /* ------------------------------------------------------------------ */
    1412             : #if defined(__clang__) || U_GCC_MAJOR_MINOR >= 406
    1413             : #pragma GCC diagnostic push
    1414             : #pragma GCC diagnostic ignored "-Warray-bounds"
    1415             : #endif
    1416           0 : U_CAPI decNumber * U_EXPORT2 uprv_decNumberLog10(decNumber *res, const decNumber *rhs,
    1417             :                           decContext *set) {
    1418           0 :   uInt status=0, ignore=0;         /* status accumulators  */
    1419             :   uInt needbytes;                  /* for space calculations  */
    1420             :   Int p;                           /* working precision  */
    1421             :   Int t;                           /* digits in exponent of A  */
    1422             : 
    1423             :   /* buffers for a and b working decimals  */
    1424             :   /* (adjustment calculator, same size)  */
    1425             :   decNumber bufa[D2N(DECBUFFER+2)];
    1426           0 :   decNumber *allocbufa=NULL;       /* -> allocated bufa, iff allocated  */
    1427           0 :   decNumber *a=bufa;               /* temporary a  */
    1428             :   decNumber bufb[D2N(DECBUFFER+2)];
    1429           0 :   decNumber *allocbufb=NULL;       /* -> allocated bufb, iff allocated  */
    1430           0 :   decNumber *b=bufb;               /* temporary b  */
    1431             :   decNumber bufw[D2N(10)];         /* working 2-10 digit number  */
    1432           0 :   decNumber *w=bufw;               /* ..  */
    1433             :   #if DECSUBSET
    1434             :   decNumber *allocrhs=NULL;        /* non-NULL if rounded rhs allocated  */
    1435             :   #endif
    1436             : 
    1437             :   decContext aset;                 /* working context  */
    1438             : 
    1439             :   #if DECCHECK
    1440             :   if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
    1441             :   #endif
    1442             : 
    1443             :   /* Check restrictions; this is a math function; if not violated  */
    1444             :   /* then carry out the operation.  */
    1445           0 :   if (!decCheckMath(rhs, set, &status)) do { /* protect malloc  */
    1446             :     #if DECSUBSET
    1447             :     if (!set->extended) {
    1448             :       /* reduce operand and set lostDigits status, as needed  */
    1449             :       if (rhs->digits>set->digits) {
    1450             :         allocrhs=decRoundOperand(rhs, set, &status);
    1451             :         if (allocrhs==NULL) break;
    1452             :         rhs=allocrhs;
    1453             :         }
    1454             :       /* special check in subset for rhs=0  */
    1455             :       if (ISZERO(rhs)) {                /* +/- zeros -> error  */
    1456             :         status|=DEC_Invalid_operation;
    1457             :         break;}
    1458             :       } /* extended=0  */
    1459             :     #endif
    1460             : 
    1461           0 :     uprv_decContextDefault(&aset, DEC_INIT_DECIMAL64); /* clean context  */
    1462             : 
    1463             :     /* handle exact powers of 10; only check if +ve finite  */
    1464           0 :     if (!(rhs->bits&(DECNEG|DECSPECIAL)) && !ISZERO(rhs)) {
    1465           0 :       Int residue=0;               /* (no residue)  */
    1466           0 :       uInt copystat=0;             /* clean status  */
    1467             : 
    1468             :       /* round to a single digit...  */
    1469           0 :       aset.digits=1;
    1470           0 :       decCopyFit(w, rhs, &aset, &residue, &copystat); /* copy & shorten  */
    1471             :       /* if exact and the digit is 1, rhs is a power of 10  */
    1472           0 :       if (!(copystat&DEC_Inexact) && w->lsu[0]==1) {
    1473             :         /* the exponent, conveniently, is the power of 10; making  */
    1474             :         /* this the result needs a little care as it might not fit,  */
    1475             :         /* so first convert it into the working number, and then move  */
    1476             :         /* to res  */
    1477           0 :         uprv_decNumberFromInt32(w, w->exponent);
    1478           0 :         residue=0;
    1479           0 :         decCopyFit(res, w, set, &residue, &status); /* copy & round  */
    1480           0 :         decFinish(res, set, &residue, &status);     /* cleanup/set flags  */
    1481           0 :         break;
    1482             :         } /* not a power of 10  */
    1483             :       } /* not a candidate for exact  */
    1484             : 
    1485             :     /* simplify the information-content calculation to use 'total  */
    1486             :     /* number of digits in a, including exponent' as compared to the  */
    1487             :     /* requested digits, as increasing this will only rarely cost an  */
    1488             :     /* iteration in ln(a) anyway  */
    1489           0 :     t=6;                                /* it can never be >6  */
    1490             : 
    1491             :     /* allocate space when needed...  */
    1492           0 :     p=(rhs->digits+t>set->digits?rhs->digits+t:set->digits)+3;
    1493           0 :     needbytes=sizeof(decNumber)+(D2U(p)-1)*sizeof(Unit);
    1494           0 :     if (needbytes>sizeof(bufa)) {       /* need malloc space  */
    1495           0 :       allocbufa=(decNumber *)malloc(needbytes);
    1496           0 :       if (allocbufa==NULL) {            /* hopeless -- abandon  */
    1497           0 :         status|=DEC_Insufficient_storage;
    1498           0 :         break;}
    1499           0 :       a=allocbufa;                      /* use the allocated space  */
    1500             :       }
    1501           0 :     aset.digits=p;                      /* as calculated  */
    1502           0 :     aset.emax=DEC_MAX_MATH;             /* usual bounds  */
    1503           0 :     aset.emin=-DEC_MAX_MATH;            /* ..  */
    1504           0 :     aset.clamp=0;                       /* and no concrete format  */
    1505           0 :     decLnOp(a, rhs, &aset, &status);    /* a=ln(rhs)  */
    1506             : 
    1507             :     /* skip the division if the result so far is infinite, NaN, or  */
    1508             :     /* zero, or there was an error; note NaN from sNaN needs copy  */
    1509           0 :     if (status&DEC_NaNs && !(status&DEC_sNaN)) break;
    1510           0 :     if (a->bits&DECSPECIAL || ISZERO(a)) {
    1511           0 :       uprv_decNumberCopy(res, a);            /* [will fit]  */
    1512           0 :       break;}
    1513             : 
    1514             :     /* for ln(10) an extra 3 digits of precision are needed  */
    1515           0 :     p=set->digits+3;
    1516           0 :     needbytes=sizeof(decNumber)+(D2U(p)-1)*sizeof(Unit);
    1517           0 :     if (needbytes>sizeof(bufb)) {       /* need malloc space  */
    1518           0 :       allocbufb=(decNumber *)malloc(needbytes);
    1519           0 :       if (allocbufb==NULL) {            /* hopeless -- abandon  */
    1520           0 :         status|=DEC_Insufficient_storage;
    1521           0 :         break;}
    1522           0 :       b=allocbufb;                      /* use the allocated space  */
    1523             :       }
    1524           0 :     uprv_decNumberZero(w);                   /* set up 10...  */
    1525             :     #if DECDPUN==1
    1526           0 :     w->lsu[1]=1; w->lsu[0]=0;           /* ..  */
    1527             :     #else
    1528             :     w->lsu[0]=10;                       /* ..  */
    1529             :     #endif
    1530           0 :     w->digits=2;                        /* ..  */
    1531             : 
    1532           0 :     aset.digits=p;
    1533           0 :     decLnOp(b, w, &aset, &ignore);      /* b=ln(10)  */
    1534             : 
    1535           0 :     aset.digits=set->digits;            /* for final divide  */
    1536           0 :     decDivideOp(res, a, b, &aset, DIVIDE, &status); /* into result  */
    1537             :     } while(0);                         /* [for break]  */
    1538             : 
    1539           0 :   if (allocbufa!=NULL) free(allocbufa); /* drop any storage used  */
    1540           0 :   if (allocbufb!=NULL) free(allocbufb); /* ..  */
    1541             :   #if DECSUBSET
    1542             :   if (allocrhs !=NULL) free(allocrhs);  /* ..  */
    1543             :   #endif
    1544             :   /* apply significant status  */
    1545           0 :   if (status!=0) decStatus(res, status, set);
    1546             :   #if DECCHECK
    1547             :   decCheckInexact(res, set);
    1548             :   #endif
    1549           0 :   return res;
    1550             :   } /* decNumberLog10  */
    1551             : #if defined(__clang__) || U_GCC_MAJOR_MINOR >= 406
    1552             : #pragma GCC diagnostic pop
    1553             : #endif
    1554             : 
    1555             : /* ------------------------------------------------------------------ */
    1556             : /* decNumberMax -- compare two Numbers and return the maximum         */
    1557             : /*                                                                    */
    1558             : /*   This computes C = A ? B, returning the maximum by 754 rules      */
    1559             : /*                                                                    */
    1560             : /*   res is C, the result.  C may be A and/or B (e.g., X=X?X)         */
    1561             : /*   lhs is A                                                         */
    1562             : /*   rhs is B                                                         */
    1563             : /*   set is the context                                               */
    1564             : /*                                                                    */
    1565             : /* C must have space for set->digits digits.                          */
    1566             : /* ------------------------------------------------------------------ */
    1567           0 : U_CAPI decNumber * U_EXPORT2 uprv_decNumberMax(decNumber *res, const decNumber *lhs,
    1568             :                          const decNumber *rhs, decContext *set) {
    1569           0 :   uInt status=0;                        /* accumulator  */
    1570           0 :   decCompareOp(res, lhs, rhs, set, COMPMAX, &status);
    1571           0 :   if (status!=0) decStatus(res, status, set);
    1572             :   #if DECCHECK
    1573             :   decCheckInexact(res, set);
    1574             :   #endif
    1575           0 :   return res;
    1576             :   } /* decNumberMax  */
    1577             : 
    1578             : /* ------------------------------------------------------------------ */
    1579             : /* decNumberMaxMag -- compare and return the maximum by magnitude     */
    1580             : /*                                                                    */
    1581             : /*   This computes C = A ? B, returning the maximum by 754 rules      */
    1582             : /*                                                                    */
    1583             : /*   res is C, the result.  C may be A and/or B (e.g., X=X?X)         */
    1584             : /*   lhs is A                                                         */
    1585             : /*   rhs is B                                                         */
    1586             : /*   set is the context                                               */
    1587             : /*                                                                    */
    1588             : /* C must have space for set->digits digits.                          */
    1589             : /* ------------------------------------------------------------------ */
    1590           0 : U_CAPI decNumber * U_EXPORT2 uprv_decNumberMaxMag(decNumber *res, const decNumber *lhs,
    1591             :                          const decNumber *rhs, decContext *set) {
    1592           0 :   uInt status=0;                        /* accumulator  */
    1593           0 :   decCompareOp(res, lhs, rhs, set, COMPMAXMAG, &status);
    1594           0 :   if (status!=0) decStatus(res, status, set);
    1595             :   #if DECCHECK
    1596             :   decCheckInexact(res, set);
    1597             :   #endif
    1598           0 :   return res;
    1599             :   } /* decNumberMaxMag  */
    1600             : 
    1601             : /* ------------------------------------------------------------------ */
    1602             : /* decNumberMin -- compare two Numbers and return the minimum         */
    1603             : /*                                                                    */
    1604             : /*   This computes C = A ? B, returning the minimum by 754 rules      */
    1605             : /*                                                                    */
    1606             : /*   res is C, the result.  C may be A and/or B (e.g., X=X?X)         */
    1607             : /*   lhs is A                                                         */
    1608             : /*   rhs is B                                                         */
    1609             : /*   set is the context                                               */
    1610             : /*                                                                    */
    1611             : /* C must have space for set->digits digits.                          */
    1612             : /* ------------------------------------------------------------------ */
    1613           0 : U_CAPI decNumber * U_EXPORT2 uprv_decNumberMin(decNumber *res, const decNumber *lhs,
    1614             :                          const decNumber *rhs, decContext *set) {
    1615           0 :   uInt status=0;                        /* accumulator  */
    1616           0 :   decCompareOp(res, lhs, rhs, set, COMPMIN, &status);
    1617           0 :   if (status!=0) decStatus(res, status, set);
    1618             :   #if DECCHECK
    1619             :   decCheckInexact(res, set);
    1620             :   #endif
    1621           0 :   return res;
    1622             :   } /* decNumberMin  */
    1623             : 
    1624             : /* ------------------------------------------------------------------ */
    1625             : /* decNumberMinMag -- compare and return the minimum by magnitude     */
    1626             : /*                                                                    */
    1627             : /*   This computes C = A ? B, returning the minimum by 754 rules      */
    1628             : /*                                                                    */
    1629             : /*   res is C, the result.  C may be A and/or B (e.g., X=X?X)         */
    1630             : /*   lhs is A                                                         */
    1631             : /*   rhs is B                                                         */
    1632             : /*   set is the context                                               */
    1633             : /*                                                                    */
    1634             : /* C must have space for set->digits digits.                          */
    1635             : /* ------------------------------------------------------------------ */
    1636           0 : U_CAPI decNumber * U_EXPORT2 uprv_decNumberMinMag(decNumber *res, const decNumber *lhs,
    1637             :                          const decNumber *rhs, decContext *set) {
    1638           0 :   uInt status=0;                        /* accumulator  */
    1639           0 :   decCompareOp(res, lhs, rhs, set, COMPMINMAG, &status);
    1640           0 :   if (status!=0) decStatus(res, status, set);
    1641             :   #if DECCHECK
    1642             :   decCheckInexact(res, set);
    1643             :   #endif
    1644           0 :   return res;
    1645             :   } /* decNumberMinMag  */
    1646             : 
    1647             : /* ------------------------------------------------------------------ */
    1648             : /* decNumberMinus -- prefix minus operator                            */
    1649             : /*                                                                    */
    1650             : /*   This computes C = 0 - A                                          */
    1651             : /*                                                                    */
    1652             : /*   res is C, the result.  C may be A                                */
    1653             : /*   rhs is A                                                         */
    1654             : /*   set is the context                                               */
    1655             : /*                                                                    */
    1656             : /* See also decNumberCopyNegate for a quiet bitwise version of this.  */
    1657             : /* C must have space for set->digits digits.                          */
    1658             : /* ------------------------------------------------------------------ */
    1659             : /* Simply use AddOp for the subtract, which will do the necessary.    */
    1660             : /* ------------------------------------------------------------------ */
    1661           0 : U_CAPI decNumber * U_EXPORT2 uprv_decNumberMinus(decNumber *res, const decNumber *rhs,
    1662             :                            decContext *set) {
    1663             :   decNumber dzero;
    1664           0 :   uInt status=0;                        /* accumulator  */
    1665             : 
    1666             :   #if DECCHECK
    1667             :   if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
    1668             :   #endif
    1669             : 
    1670           0 :   uprv_decNumberZero(&dzero);                /* make 0  */
    1671           0 :   dzero.exponent=rhs->exponent;         /* [no coefficient expansion]  */
    1672           0 :   decAddOp(res, &dzero, rhs, set, DECNEG, &status);
    1673           0 :   if (status!=0) decStatus(res, status, set);
    1674             :   #if DECCHECK
    1675             :   decCheckInexact(res, set);
    1676             :   #endif
    1677           0 :   return res;
    1678             :   } /* decNumberMinus  */
    1679             : 
    1680             : /* ------------------------------------------------------------------ */
    1681             : /* decNumberNextMinus -- next towards -Infinity                       */
    1682             : /*                                                                    */
    1683             : /*   This computes C = A - infinitesimal, rounded towards -Infinity   */
    1684             : /*                                                                    */
    1685             : /*   res is C, the result.  C may be A                                */
    1686             : /*   rhs is A                                                         */
    1687             : /*   set is the context                                               */
    1688             : /*                                                                    */
    1689             : /* This is a generalization of 754 NextDown.                          */
    1690             : /* ------------------------------------------------------------------ */
    1691           0 : U_CAPI decNumber * U_EXPORT2 uprv_decNumberNextMinus(decNumber *res, const decNumber *rhs,
    1692             :                                decContext *set) {
    1693             :   decNumber dtiny;                           /* constant  */
    1694           0 :   decContext workset=*set;                   /* work  */
    1695           0 :   uInt status=0;                             /* accumulator  */
    1696             :   #if DECCHECK
    1697             :   if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
    1698             :   #endif
    1699             : 
    1700             :   /* +Infinity is the special case  */
    1701           0 :   if ((rhs->bits&(DECINF|DECNEG))==DECINF) {
    1702           0 :     decSetMaxValue(res, set);                /* is +ve  */
    1703             :     /* there is no status to set  */
    1704           0 :     return res;
    1705             :     }
    1706           0 :   uprv_decNumberZero(&dtiny);                     /* start with 0  */
    1707           0 :   dtiny.lsu[0]=1;                            /* make number that is ..  */
    1708           0 :   dtiny.exponent=DEC_MIN_EMIN-1;             /* .. smaller than tiniest  */
    1709           0 :   workset.round=DEC_ROUND_FLOOR;
    1710           0 :   decAddOp(res, rhs, &dtiny, &workset, DECNEG, &status);
    1711           0 :   status&=DEC_Invalid_operation|DEC_sNaN;    /* only sNaN Invalid please  */
    1712           0 :   if (status!=0) decStatus(res, status, set);
    1713           0 :   return res;
    1714             :   } /* decNumberNextMinus  */
    1715             : 
    1716             : /* ------------------------------------------------------------------ */
    1717             : /* decNumberNextPlus -- next towards +Infinity                        */
    1718             : /*                                                                    */
    1719             : /*   This computes C = A + infinitesimal, rounded towards +Infinity   */
    1720             : /*                                                                    */
    1721             : /*   res is C, the result.  C may be A                                */
    1722             : /*   rhs is A                                                         */
    1723             : /*   set is the context                                               */
    1724             : /*                                                                    */
    1725             : /* This is a generalization of 754 NextUp.                            */
    1726             : /* ------------------------------------------------------------------ */
    1727           0 : U_CAPI decNumber * U_EXPORT2 uprv_decNumberNextPlus(decNumber *res, const decNumber *rhs,
    1728             :                               decContext *set) {
    1729             :   decNumber dtiny;                           /* constant  */
    1730           0 :   decContext workset=*set;                   /* work  */
    1731           0 :   uInt status=0;                             /* accumulator  */
    1732             :   #if DECCHECK
    1733             :   if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
    1734             :   #endif
    1735             : 
    1736             :   /* -Infinity is the special case  */
    1737           0 :   if ((rhs->bits&(DECINF|DECNEG))==(DECINF|DECNEG)) {
    1738           0 :     decSetMaxValue(res, set);
    1739           0 :     res->bits=DECNEG;                        /* negative  */
    1740             :     /* there is no status to set  */
    1741           0 :     return res;
    1742             :     }
    1743           0 :   uprv_decNumberZero(&dtiny);                     /* start with 0  */
    1744           0 :   dtiny.lsu[0]=1;                            /* make number that is ..  */
    1745           0 :   dtiny.exponent=DEC_MIN_EMIN-1;             /* .. smaller than tiniest  */
    1746           0 :   workset.round=DEC_ROUND_CEILING;
    1747           0 :   decAddOp(res, rhs, &dtiny, &workset, 0, &status);
    1748           0 :   status&=DEC_Invalid_operation|DEC_sNaN;    /* only sNaN Invalid please  */
    1749           0 :   if (status!=0) decStatus(res, status, set);
    1750           0 :   return res;
    1751             :   } /* decNumberNextPlus  */
    1752             : 
    1753             : /* ------------------------------------------------------------------ */
    1754             : /* decNumberNextToward -- next towards rhs                            */
    1755             : /*                                                                    */
    1756             : /*   This computes C = A +/- infinitesimal, rounded towards           */
    1757             : /*   +/-Infinity in the direction of B, as per 754-1985 nextafter     */
    1758             : /*   modified during revision but dropped from 754-2008.              */
    1759             : /*                                                                    */
    1760             : /*   res is C, the result.  C may be A or B.                          */
    1761             : /*   lhs is A                                                         */
    1762             : /*   rhs is B                                                         */
    1763             : /*   set is the context                                               */
    1764             : /*                                                                    */
    1765             : /* This is a generalization of 754-1985 NextAfter.                    */
    1766             : /* ------------------------------------------------------------------ */
    1767           0 : U_CAPI decNumber * U_EXPORT2 uprv_decNumberNextToward(decNumber *res, const decNumber *lhs,
    1768             :                                 const decNumber *rhs, decContext *set) {
    1769             :   decNumber dtiny;                           /* constant  */
    1770           0 :   decContext workset=*set;                   /* work  */
    1771             :   Int result;                                /* ..  */
    1772           0 :   uInt status=0;                             /* accumulator  */
    1773             :   #if DECCHECK
    1774             :   if (decCheckOperands(res, lhs, rhs, set)) return res;
    1775             :   #endif
    1776             : 
    1777           0 :   if (decNumberIsNaN(lhs) || decNumberIsNaN(rhs)) {
    1778           0 :     decNaNs(res, lhs, rhs, set, &status);
    1779             :     }
    1780             :    else { /* Is numeric, so no chance of sNaN Invalid, etc.  */
    1781           0 :     result=decCompare(lhs, rhs, 0);     /* sign matters  */
    1782           0 :     if (result==BADINT) status|=DEC_Insufficient_storage; /* rare  */
    1783             :      else { /* valid compare  */
    1784           0 :       if (result==0) uprv_decNumberCopySign(res, lhs, rhs); /* easy  */
    1785             :        else { /* differ: need NextPlus or NextMinus  */
    1786             :         uByte sub;                      /* add or subtract  */
    1787           0 :         if (result<0) {                 /* lhs<rhs, do nextplus  */
    1788             :           /* -Infinity is the special case  */
    1789           0 :           if ((lhs->bits&(DECINF|DECNEG))==(DECINF|DECNEG)) {
    1790           0 :             decSetMaxValue(res, set);
    1791           0 :             res->bits=DECNEG;           /* negative  */
    1792           0 :             return res;                 /* there is no status to set  */
    1793             :             }
    1794           0 :           workset.round=DEC_ROUND_CEILING;
    1795           0 :           sub=0;                        /* add, please  */
    1796             :           } /* plus  */
    1797             :          else {                         /* lhs>rhs, do nextminus  */
    1798             :           /* +Infinity is the special case  */
    1799           0 :           if ((lhs->bits&(DECINF|DECNEG))==DECINF) {
    1800           0 :             decSetMaxValue(res, set);
    1801           0 :             return res;                 /* there is no status to set  */
    1802             :             }
    1803           0 :           workset.round=DEC_ROUND_FLOOR;
    1804           0 :           sub=DECNEG;                   /* subtract, please  */
    1805             :           } /* minus  */
    1806           0 :         uprv_decNumberZero(&dtiny);          /* start with 0  */
    1807           0 :         dtiny.lsu[0]=1;                 /* make number that is ..  */
    1808           0 :         dtiny.exponent=DEC_MIN_EMIN-1;  /* .. smaller than tiniest  */
    1809           0 :         decAddOp(res, lhs, &dtiny, &workset, sub, &status); /* + or -  */
    1810             :         /* turn off exceptions if the result is a normal number  */
    1811             :         /* (including Nmin), otherwise let all status through  */
    1812           0 :         if (uprv_decNumberIsNormal(res, set)) status=0;
    1813             :         } /* unequal  */
    1814             :       } /* compare OK  */
    1815             :     } /* numeric  */
    1816           0 :   if (status!=0) decStatus(res, status, set);
    1817           0 :   return res;
    1818             :   } /* decNumberNextToward  */
    1819             : 
    1820             : /* ------------------------------------------------------------------ */
    1821             : /* decNumberOr -- OR two Numbers, digitwise                           */
    1822             : /*                                                                    */
    1823             : /*   This computes C = A | B                                          */
    1824             : /*                                                                    */
    1825             : /*   res is C, the result.  C may be A and/or B (e.g., X=X|X)         */
    1826             : /*   lhs is A                                                         */
    1827             : /*   rhs is B                                                         */
    1828             : /*   set is the context (used for result length and error report)     */
    1829             : /*                                                                    */
    1830             : /* C must have space for set->digits digits.                          */
    1831             : /*                                                                    */
    1832             : /* Logical function restrictions apply (see above); a NaN is          */
    1833             : /* returned with Invalid_operation if a restriction is violated.      */
    1834             : /* ------------------------------------------------------------------ */
    1835           0 : U_CAPI decNumber * U_EXPORT2 uprv_decNumberOr(decNumber *res, const decNumber *lhs,
    1836             :                         const decNumber *rhs, decContext *set) {
    1837             :   const Unit *ua, *ub;                  /* -> operands  */
    1838             :   const Unit *msua, *msub;              /* -> operand msus  */
    1839             :   Unit  *uc, *msuc;                     /* -> result and its msu  */
    1840             :   Int   msudigs;                        /* digits in res msu  */
    1841             :   #if DECCHECK
    1842             :   if (decCheckOperands(res, lhs, rhs, set)) return res;
    1843             :   #endif
    1844             : 
    1845           0 :   if (lhs->exponent!=0 || decNumberIsSpecial(lhs) || decNumberIsNegative(lhs)
    1846           0 :    || rhs->exponent!=0 || decNumberIsSpecial(rhs) || decNumberIsNegative(rhs)) {
    1847           0 :     decStatus(res, DEC_Invalid_operation, set);
    1848           0 :     return res;
    1849             :     }
    1850             :   /* operands are valid  */
    1851           0 :   ua=lhs->lsu;                          /* bottom-up  */
    1852           0 :   ub=rhs->lsu;                          /* ..  */
    1853           0 :   uc=res->lsu;                          /* ..  */
    1854           0 :   msua=ua+D2U(lhs->digits)-1;           /* -> msu of lhs  */
    1855           0 :   msub=ub+D2U(rhs->digits)-1;           /* -> msu of rhs  */
    1856           0 :   msuc=uc+D2U(set->digits)-1;           /* -> msu of result  */
    1857           0 :   msudigs=MSUDIGITS(set->digits);       /* [faster than remainder]  */
    1858           0 :   for (; uc<=msuc; ua++, ub++, uc++) {  /* Unit loop  */
    1859             :     Unit a, b;                          /* extract units  */
    1860           0 :     if (ua>msua) a=0;
    1861           0 :      else a=*ua;
    1862           0 :     if (ub>msub) b=0;
    1863           0 :      else b=*ub;
    1864           0 :     *uc=0;                              /* can now write back  */
    1865           0 :     if (a|b) {                          /* maybe 1 bits to examine  */
    1866             :       Int i, j;
    1867             :       /* This loop could be unrolled and/or use BIN2BCD tables  */
    1868           0 :       for (i=0; i<DECDPUN; i++) {
    1869           0 :         if ((a|b)&1) *uc=*uc+(Unit)powers[i];     /* effect OR  */
    1870           0 :         j=a%10;
    1871           0 :         a=a/10;
    1872           0 :         j|=b%10;
    1873           0 :         b=b/10;
    1874           0 :         if (j>1) {
    1875           0 :           decStatus(res, DEC_Invalid_operation, set);
    1876           0 :           return res;
    1877             :           }
    1878           0 :         if (uc==msuc && i==msudigs-1) break;      /* just did final digit  */
    1879             :         } /* each digit  */
    1880             :       } /* non-zero  */
    1881             :     } /* each unit  */
    1882             :   /* [here uc-1 is the msu of the result]  */
    1883           0 :   res->digits=decGetDigits(res->lsu, uc-res->lsu);
    1884           0 :   res->exponent=0;                      /* integer  */
    1885           0 :   res->bits=0;                          /* sign=0  */
    1886           0 :   return res;  /* [no status to set]  */
    1887             :   } /* decNumberOr  */
    1888             : 
    1889             : /* ------------------------------------------------------------------ */
    1890             : /* decNumberPlus -- prefix plus operator                              */
    1891             : /*                                                                    */
    1892             : /*   This computes C = 0 + A                                          */
    1893             : /*                                                                    */
    1894             : /*   res is C, the result.  C may be A                                */
    1895             : /*   rhs is A                                                         */
    1896             : /*   set is the context                                               */
    1897             : /*                                                                    */
    1898             : /* See also decNumberCopy for a quiet bitwise version of this.        */
    1899             : /* C must have space for set->digits digits.                          */
    1900             : /* ------------------------------------------------------------------ */
    1901             : /* This simply uses AddOp; Add will take fast path after preparing A. */
    1902             : /* Performance is a concern here, as this routine is often used to    */
    1903             : /* check operands and apply rounding and overflow/underflow testing.  */
    1904             : /* ------------------------------------------------------------------ */
    1905           0 : U_CAPI decNumber * U_EXPORT2 uprv_decNumberPlus(decNumber *res, const decNumber *rhs,
    1906             :                           decContext *set) {
    1907             :   decNumber dzero;
    1908           0 :   uInt status=0;                        /* accumulator  */
    1909             :   #if DECCHECK
    1910             :   if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
    1911             :   #endif
    1912             : 
    1913           0 :   uprv_decNumberZero(&dzero);                /* make 0  */
    1914           0 :   dzero.exponent=rhs->exponent;         /* [no coefficient expansion]  */
    1915           0 :   decAddOp(res, &dzero, rhs, set, 0, &status);
    1916           0 :   if (status!=0) decStatus(res, status, set);
    1917             :   #if DECCHECK
    1918             :   decCheckInexact(res, set);
    1919             :   #endif
    1920           0 :   return res;
    1921             :   } /* decNumberPlus  */
    1922             : 
    1923             : /* ------------------------------------------------------------------ */
    1924             : /* decNumberMultiply -- multiply two Numbers                          */
    1925             : /*                                                                    */
    1926             : /*   This computes C = A x B                                          */
    1927             : /*                                                                    */
    1928             : /*   res is C, the result.  C may be A and/or B (e.g., X=X+X)         */
    1929             : /*   lhs is A                                                         */
    1930             : /*   rhs is B                                                         */
    1931             : /*   set is the context                                               */
    1932             : /*                                                                    */
    1933             : /* C must have space for set->digits digits.                          */
    1934             : /* ------------------------------------------------------------------ */
    1935           0 : U_CAPI decNumber * U_EXPORT2 uprv_decNumberMultiply(decNumber *res, const decNumber *lhs,
    1936             :                               const decNumber *rhs, decContext *set) {
    1937           0 :   uInt status=0;                   /* accumulator  */
    1938           0 :   decMultiplyOp(res, lhs, rhs, set, &status);
    1939           0 :   if (status!=0) decStatus(res, status, set);
    1940             :   #if DECCHECK
    1941             :   decCheckInexact(res, set);
    1942             :   #endif
    1943           0 :   return res;
    1944             :   } /* decNumberMultiply  */
    1945             : 
    1946             : /* ------------------------------------------------------------------ */
    1947             : /* decNumberPower -- raise a number to a power                        */
    1948             : /*                                                                    */
    1949             : /*   This computes C = A ** B                                         */
    1950             : /*                                                                    */
    1951             : /*   res is C, the result.  C may be A and/or B (e.g., X=X**X)        */
    1952             : /*   lhs is A                                                         */
    1953             : /*   rhs is B                                                         */
    1954             : /*   set is the context                                               */
    1955             : /*                                                                    */
    1956             : /* C must have space for set->digits digits.                          */
    1957             : /*                                                                    */
    1958             : /* Mathematical function restrictions apply (see above); a NaN is     */
    1959             : /* returned with Invalid_operation if a restriction is violated.      */
    1960             : /*                                                                    */
    1961             : /* However, if 1999999997<=B<=999999999 and B is an integer then the  */
    1962             : /* restrictions on A and the context are relaxed to the usual bounds, */
    1963             : /* for compatibility with the earlier (integer power only) version    */
    1964             : /* of this function.                                                  */
    1965             : /*                                                                    */
    1966             : /* When B is an integer, the result may be exact, even if rounded.    */
    1967             : /*                                                                    */
    1968             : /* The final result is rounded according to the context; it will      */
    1969             : /* almost always be correctly rounded, but may be up to 1 ulp in      */
    1970             : /* error in rare cases.                                               */
    1971             : /* ------------------------------------------------------------------ */
    1972           0 : U_CAPI decNumber * U_EXPORT2 uprv_decNumberPower(decNumber *res, const decNumber *lhs,
    1973             :                            const decNumber *rhs, decContext *set) {
    1974             :   #if DECSUBSET
    1975             :   decNumber *alloclhs=NULL;        /* non-NULL if rounded lhs allocated  */
    1976             :   decNumber *allocrhs=NULL;        /* .., rhs  */
    1977             :   #endif
    1978           0 :   decNumber *allocdac=NULL;        /* -> allocated acc buffer, iff used  */
    1979           0 :   decNumber *allocinv=NULL;        /* -> allocated 1/x buffer, iff used  */
    1980           0 :   Int   reqdigits=set->digits;     /* requested DIGITS  */
    1981             :   Int   n;                         /* rhs in binary  */
    1982           0 :   Flag  rhsint=0;                  /* 1 if rhs is an integer  */
    1983           0 :   Flag  useint=0;                  /* 1 if can use integer calculation  */
    1984           0 :   Flag  isoddint=0;                /* 1 if rhs is an integer and odd  */
    1985             :   Int   i;                         /* work  */
    1986             :   #if DECSUBSET
    1987             :   Int   dropped;                   /* ..  */
    1988             :   #endif
    1989             :   uInt  needbytes;                 /* buffer size needed  */
    1990             :   Flag  seenbit;                   /* seen a bit while powering  */
    1991           0 :   Int   residue=0;                 /* rounding residue  */
    1992           0 :   uInt  status=0;                  /* accumulators  */
    1993           0 :   uByte bits=0;                    /* result sign if errors  */
    1994             :   decContext aset;                 /* working context  */
    1995             :   decNumber dnOne;                 /* work value 1...  */
    1996             :   /* local accumulator buffer [a decNumber, with digits+elength+1 digits]  */
    1997             :   decNumber dacbuff[D2N(DECBUFFER+9)];
    1998           0 :   decNumber *dac=dacbuff;          /* -> result accumulator  */
    1999             :   /* same again for possible 1/lhs calculation  */
    2000             :   decNumber invbuff[D2N(DECBUFFER+9)];
    2001             : 
    2002             :   #if DECCHECK
    2003             :   if (decCheckOperands(res, lhs, rhs, set)) return res;
    2004             :   #endif
    2005             : 
    2006             :   do {                             /* protect allocated storage  */
    2007             :     #if DECSUBSET
    2008             :     if (!set->extended) { /* reduce operands and set status, as needed  */
    2009             :       if (lhs->digits>reqdigits) {
    2010             :         alloclhs=decRoundOperand(lhs, set, &status);
    2011             :         if (alloclhs==NULL) break;
    2012             :         lhs=alloclhs;
    2013             :         }
    2014             :       if (rhs->digits>reqdigits) {
    2015             :         allocrhs=decRoundOperand(rhs, set, &status);
    2016             :         if (allocrhs==NULL) break;
    2017             :         rhs=allocrhs;
    2018             :         }
    2019             :       }
    2020             :     #endif
    2021             :     /* [following code does not require input rounding]  */
    2022             : 
    2023             :     /* handle NaNs and rhs Infinity (lhs infinity is harder)  */
    2024           0 :     if (SPECIALARGS) {
    2025           0 :       if (decNumberIsNaN(lhs) || decNumberIsNaN(rhs)) { /* NaNs  */
    2026           0 :         decNaNs(res, lhs, rhs, set, &status);
    2027           0 :         break;}
    2028           0 :       if (decNumberIsInfinite(rhs)) {   /* rhs Infinity  */
    2029           0 :         Flag rhsneg=rhs->bits&DECNEG;   /* save rhs sign  */
    2030           0 :         if (decNumberIsNegative(lhs)    /* lhs<0  */
    2031           0 :          && !decNumberIsZero(lhs))      /* ..  */
    2032           0 :           status|=DEC_Invalid_operation;
    2033             :          else {                         /* lhs >=0  */
    2034           0 :           uprv_decNumberZero(&dnOne);        /* set up 1  */
    2035           0 :           dnOne.lsu[0]=1;
    2036           0 :           uprv_decNumberCompare(dac, lhs, &dnOne, set); /* lhs ? 1  */
    2037           0 :           uprv_decNumberZero(res);           /* prepare for 0/1/Infinity  */
    2038           0 :           if (decNumberIsNegative(dac)) {    /* lhs<1  */
    2039           0 :             if (rhsneg) res->bits|=DECINF;   /* +Infinity [else is +0]  */
    2040             :             }
    2041           0 :            else if (dac->lsu[0]==0) {        /* lhs=1  */
    2042             :             /* 1**Infinity is inexact, so return fully-padded 1.0000  */
    2043           0 :             Int shift=set->digits-1;
    2044           0 :             *res->lsu=1;                     /* was 0, make int 1  */
    2045           0 :             res->digits=decShiftToMost(res->lsu, 1, shift);
    2046           0 :             res->exponent=-shift;            /* make 1.0000...  */
    2047           0 :             status|=DEC_Inexact|DEC_Rounded; /* deemed inexact  */
    2048             :             }
    2049             :            else {                            /* lhs>1  */
    2050           0 :             if (!rhsneg) res->bits|=DECINF;  /* +Infinity [else is +0]  */
    2051             :             }
    2052             :           } /* lhs>=0  */
    2053           0 :         break;}
    2054             :       /* [lhs infinity drops through]  */
    2055             :       } /* specials  */
    2056             : 
    2057             :     /* Original rhs may be an integer that fits and is in range  */
    2058           0 :     n=decGetInt(rhs);
    2059           0 :     if (n!=BADINT) {                    /* it is an integer  */
    2060           0 :       rhsint=1;                         /* record the fact for 1**n  */
    2061           0 :       isoddint=(Flag)n&1;               /* [works even if big]  */
    2062           0 :       if (n!=BIGEVEN && n!=BIGODD)      /* can use integer path?  */
    2063           0 :         useint=1;                       /* looks good  */
    2064             :       }
    2065             : 
    2066           0 :     if (decNumberIsNegative(lhs)        /* -x ..  */
    2067           0 :       && isoddint) bits=DECNEG;         /* .. to an odd power  */
    2068             : 
    2069             :     /* handle LHS infinity  */
    2070           0 :     if (decNumberIsInfinite(lhs)) {     /* [NaNs already handled]  */
    2071           0 :       uByte rbits=rhs->bits;            /* save  */
    2072           0 :       uprv_decNumberZero(res);               /* prepare  */
    2073           0 :       if (n==0) *res->lsu=1;            /* [-]Inf**0 => 1  */
    2074             :        else {
    2075             :         /* -Inf**nonint -> error  */
    2076           0 :         if (!rhsint && decNumberIsNegative(lhs)) {
    2077           0 :           status|=DEC_Invalid_operation;     /* -Inf**nonint is error  */
    2078           0 :           break;}
    2079           0 :         if (!(rbits & DECNEG)) bits|=DECINF; /* was not a **-n  */
    2080             :         /* [otherwise will be 0 or -0]  */
    2081           0 :         res->bits=bits;
    2082             :         }
    2083           0 :       break;}
    2084             : 
    2085             :     /* similarly handle LHS zero  */
    2086           0 :     if (decNumberIsZero(lhs)) {
    2087           0 :       if (n==0) {                            /* 0**0 => Error  */
    2088             :         #if DECSUBSET
    2089             :         if (!set->extended) {                /* [unless subset]  */
    2090             :           uprv_decNumberZero(res);
    2091             :           *res->lsu=1;                       /* return 1  */
    2092             :           break;}
    2093             :         #endif
    2094           0 :         status|=DEC_Invalid_operation;
    2095             :         }
    2096             :        else {                                /* 0**x  */
    2097           0 :         uByte rbits=rhs->bits;               /* save  */
    2098           0 :         if (rbits & DECNEG) {                /* was a 0**(-n)  */
    2099             :           #if DECSUBSET
    2100             :           if (!set->extended) {              /* [bad if subset]  */
    2101             :             status|=DEC_Invalid_operation;
    2102             :             break;}
    2103             :           #endif
    2104           0 :           bits|=DECINF;
    2105             :           }
    2106           0 :         uprv_decNumberZero(res);                  /* prepare  */
    2107             :         /* [otherwise will be 0 or -0]  */
    2108           0 :         res->bits=bits;
    2109             :         }
    2110           0 :       break;}
    2111             : 
    2112             :     /* here both lhs and rhs are finite; rhs==0 is handled in the  */
    2113             :     /* integer path.  Next handle the non-integer cases  */
    2114           0 :     if (!useint) {                      /* non-integral rhs  */
    2115             :       /* any -ve lhs is bad, as is either operand or context out of  */
    2116             :       /* bounds  */
    2117           0 :       if (decNumberIsNegative(lhs)) {
    2118           0 :         status|=DEC_Invalid_operation;
    2119           0 :         break;}
    2120           0 :       if (decCheckMath(lhs, set, &status)
    2121           0 :        || decCheckMath(rhs, set, &status)) break; /* variable status  */
    2122             : 
    2123           0 :       uprv_decContextDefault(&aset, DEC_INIT_DECIMAL64); /* clean context  */
    2124           0 :       aset.emax=DEC_MAX_MATH;           /* usual bounds  */
    2125           0 :       aset.emin=-DEC_MAX_MATH;          /* ..  */
    2126           0 :       aset.clamp=0;                     /* and no concrete format  */
    2127             : 
    2128             :       /* calculate the result using exp(ln(lhs)*rhs), which can  */
    2129             :       /* all be done into the accumulator, dac.  The precision needed  */
    2130             :       /* is enough to contain the full information in the lhs (which  */
    2131             :       /* is the total digits, including exponent), or the requested  */
    2132             :       /* precision, if larger, + 4; 6 is used for the exponent  */
    2133             :       /* maximum length, and this is also used when it is shorter  */
    2134             :       /* than the requested digits as it greatly reduces the >0.5 ulp  */
    2135             :       /* cases at little cost (because Ln doubles digits each  */
    2136             :       /* iteration so a few extra digits rarely causes an extra  */
    2137             :       /* iteration)  */
    2138           0 :       aset.digits=MAXI(lhs->digits, set->digits)+6+4;
    2139             :       } /* non-integer rhs  */
    2140             : 
    2141             :      else { /* rhs is in-range integer  */
    2142           0 :       if (n==0) {                       /* x**0 = 1  */
    2143             :         /* (0**0 was handled above)  */
    2144           0 :         uprv_decNumberZero(res);             /* result=1  */
    2145           0 :         *res->lsu=1;                    /* ..  */
    2146           0 :         break;}
    2147             :       /* rhs is a non-zero integer  */
    2148           0 :       if (n<0) n=-n;                    /* use abs(n)  */
    2149             : 
    2150           0 :       aset=*set;                        /* clone the context  */
    2151           0 :       aset.round=DEC_ROUND_HALF_EVEN;   /* internally use balanced  */
    2152             :       /* calculate the working DIGITS  */
    2153           0 :       aset.digits=reqdigits+(rhs->digits+rhs->exponent)+2;
    2154             :       #if DECSUBSET
    2155             :       if (!set->extended) aset.digits--;     /* use classic precision  */
    2156             :       #endif
    2157             :       /* it's an error if this is more than can be handled  */
    2158           0 :       if (aset.digits>DECNUMMAXP) {status|=DEC_Invalid_operation; break;}
    2159             :       } /* integer path  */
    2160             : 
    2161             :     /* aset.digits is the count of digits for the accumulator needed  */
    2162             :     /* if accumulator is too long for local storage, then allocate  */
    2163           0 :     needbytes=sizeof(decNumber)+(D2U(aset.digits)-1)*sizeof(Unit);
    2164             :     /* [needbytes also used below if 1/lhs needed]  */
    2165           0 :     if (needbytes>sizeof(dacbuff)) {
    2166           0 :       allocdac=(decNumber *)malloc(needbytes);
    2167           0 :       if (allocdac==NULL) {   /* hopeless -- abandon  */
    2168           0 :         status|=DEC_Insufficient_storage;
    2169           0 :         break;}
    2170           0 :       dac=allocdac;           /* use the allocated space  */
    2171             :       }
    2172             :     /* here, aset is set up and accumulator is ready for use  */
    2173             : 
    2174           0 :     if (!useint) {                           /* non-integral rhs  */
    2175             :       /* x ** y; special-case x=1 here as it will otherwise always  */
    2176             :       /* reduce to integer 1; decLnOp has a fastpath which detects  */
    2177             :       /* the case of x=1  */
    2178           0 :       decLnOp(dac, lhs, &aset, &status);     /* dac=ln(lhs)  */
    2179             :       /* [no error possible, as lhs 0 already handled]  */
    2180           0 :       if (ISZERO(dac)) {                     /* x==1, 1.0, etc.  */
    2181             :         /* need to return fully-padded 1.0000 etc., but rhsint->1  */
    2182           0 :         *dac->lsu=1;                         /* was 0, make int 1  */
    2183           0 :         if (!rhsint) {                       /* add padding  */
    2184           0 :           Int shift=set->digits-1;
    2185           0 :           dac->digits=decShiftToMost(dac->lsu, 1, shift);
    2186           0 :           dac->exponent=-shift;              /* make 1.0000...  */
    2187           0 :           status|=DEC_Inexact|DEC_Rounded;   /* deemed inexact  */
    2188           0 :           }
    2189             :         }
    2190             :        else {
    2191           0 :         decMultiplyOp(dac, dac, rhs, &aset, &status);  /* dac=dac*rhs  */
    2192           0 :         decExpOp(dac, dac, &aset, &status);            /* dac=exp(dac)  */
    2193             :         }
    2194             :       /* and drop through for final rounding  */
    2195             :       } /* non-integer rhs  */
    2196             : 
    2197             :      else {                             /* carry on with integer  */
    2198           0 :       uprv_decNumberZero(dac);               /* acc=1  */
    2199           0 :       *dac->lsu=1;                      /* ..  */
    2200             : 
    2201             :       /* if a negative power the constant 1 is needed, and if not subset  */
    2202             :       /* invert the lhs now rather than inverting the result later  */
    2203           0 :       if (decNumberIsNegative(rhs)) {   /* was a **-n [hence digits>0]  */
    2204           0 :         decNumber *inv=invbuff;         /* asssume use fixed buffer  */
    2205           0 :         uprv_decNumberCopy(&dnOne, dac);     /* dnOne=1;  [needed now or later]  */
    2206             :         #if DECSUBSET
    2207             :         if (set->extended) {            /* need to calculate 1/lhs  */
    2208             :         #endif
    2209             :           /* divide lhs into 1, putting result in dac [dac=1/dac]  */
    2210           0 :           decDivideOp(dac, &dnOne, lhs, &aset, DIVIDE, &status);
    2211             :           /* now locate or allocate space for the inverted lhs  */
    2212           0 :           if (needbytes>sizeof(invbuff)) {
    2213           0 :             allocinv=(decNumber *)malloc(needbytes);
    2214           0 :             if (allocinv==NULL) {       /* hopeless -- abandon  */
    2215           0 :               status|=DEC_Insufficient_storage;
    2216           0 :               break;}
    2217           0 :             inv=allocinv;               /* use the allocated space  */
    2218             :             }
    2219             :           /* [inv now points to big-enough buffer or allocated storage]  */
    2220           0 :           uprv_decNumberCopy(inv, dac);      /* copy the 1/lhs  */
    2221           0 :           uprv_decNumberCopy(dac, &dnOne);   /* restore acc=1  */
    2222           0 :           lhs=inv;                      /* .. and go forward with new lhs  */
    2223             :         #if DECSUBSET
    2224             :           }
    2225             :         #endif
    2226             :         }
    2227             : 
    2228             :       /* Raise-to-the-power loop...  */
    2229           0 :       seenbit=0;                   /* set once a 1-bit is encountered  */
    2230           0 :       for (i=1;;i++){              /* for each bit [top bit ignored]  */
    2231             :         /* abandon if had overflow or terminal underflow  */
    2232           0 :         if (status & (DEC_Overflow|DEC_Underflow)) { /* interesting?  */
    2233           0 :           if (status&DEC_Overflow || ISZERO(dac)) break;
    2234             :           }
    2235             :         /* [the following two lines revealed an optimizer bug in a C++  */
    2236             :         /* compiler, with symptom: 5**3 -> 25, when n=n+n was used]  */
    2237           0 :         n=n<<1;                    /* move next bit to testable position  */
    2238           0 :         if (n<0) {                 /* top bit is set  */
    2239           0 :           seenbit=1;               /* OK, significant bit seen  */
    2240           0 :           decMultiplyOp(dac, dac, lhs, &aset, &status); /* dac=dac*x  */
    2241             :           }
    2242           0 :         if (i==31) break;          /* that was the last bit  */
    2243           0 :         if (!seenbit) continue;    /* no need to square 1  */
    2244           0 :         decMultiplyOp(dac, dac, dac, &aset, &status); /* dac=dac*dac [square]  */
    2245             :         } /*i*/ /* 32 bits  */
    2246             : 
    2247             :       /* complete internal overflow or underflow processing  */
    2248           0 :       if (status & (DEC_Overflow|DEC_Underflow)) {
    2249             :         #if DECSUBSET
    2250             :         /* If subset, and power was negative, reverse the kind of -erflow  */
    2251             :         /* [1/x not yet done]  */
    2252             :         if (!set->extended && decNumberIsNegative(rhs)) {
    2253             :           if (status & DEC_Overflow)
    2254             :             status^=DEC_Overflow | DEC_Underflow | DEC_Subnormal;
    2255             :            else { /* trickier -- Underflow may or may not be set  */
    2256             :             status&=~(DEC_Underflow | DEC_Subnormal); /* [one or both]  */
    2257             :             status|=DEC_Overflow;
    2258             :             }
    2259             :           }
    2260             :         #endif
    2261           0 :         dac->bits=(dac->bits & ~DECNEG) | bits; /* force correct sign  */
    2262             :         /* round subnormals [to set.digits rather than aset.digits]  */
    2263             :         /* or set overflow result similarly as required  */
    2264           0 :         decFinalize(dac, set, &residue, &status);
    2265           0 :         uprv_decNumberCopy(res, dac);   /* copy to result (is now OK length)  */
    2266           0 :         break;
    2267             :         }
    2268             : 
    2269             :       #if DECSUBSET
    2270             :       if (!set->extended &&                  /* subset math  */
    2271             :           decNumberIsNegative(rhs)) {        /* was a **-n [hence digits>0]  */
    2272             :         /* so divide result into 1 [dac=1/dac]  */
    2273             :         decDivideOp(dac, &dnOne, dac, &aset, DIVIDE, &status);
    2274             :         }
    2275             :       #endif
    2276             :       } /* rhs integer path  */
    2277             : 
    2278             :     /* reduce result to the requested length and copy to result  */
    2279           0 :     decCopyFit(res, dac, set, &residue, &status);
    2280           0 :     decFinish(res, set, &residue, &status);  /* final cleanup  */
    2281             :     #if DECSUBSET
    2282             :     if (!set->extended) decTrim(res, set, 0, 1, &dropped); /* trailing zeros  */
    2283             :     #endif
    2284             :     } while(0);                         /* end protected  */
    2285             : 
    2286           0 :   if (allocdac!=NULL) free(allocdac);   /* drop any storage used  */
    2287           0 :   if (allocinv!=NULL) free(allocinv);   /* ..  */
    2288             :   #if DECSUBSET
    2289             :   if (alloclhs!=NULL) free(alloclhs);   /* ..  */
    2290             :   if (allocrhs!=NULL) free(allocrhs);   /* ..  */
    2291             :   #endif
    2292           0 :   if (status!=0) decStatus(res, status, set);
    2293             :   #if DECCHECK
    2294             :   decCheckInexact(res, set);
    2295             :   #endif
    2296           0 :   return res;
    2297             :   } /* decNumberPower  */
    2298             : 
    2299             : /* ------------------------------------------------------------------ */
    2300             : /* decNumberQuantize -- force exponent to requested value             */
    2301             : /*                                                                    */
    2302             : /*   This computes C = op(A, B), where op adjusts the coefficient     */
    2303             : /*   of C (by rounding or shifting) such that the exponent (-scale)   */
    2304             : /*   of C has exponent of B.  The numerical value of C will equal A,  */
    2305             : /*   except for the effects of any rounding that occurred.            */
    2306             : /*                                                                    */
    2307             : /*   res is C, the result.  C may be A or B                           */
    2308             : /*   lhs is A, the number to adjust                                   */
    2309             : /*   rhs is B, the number with exponent to match                      */
    2310             : /*   set is the context                                               */
    2311             : /*                                                                    */
    2312             : /* C must have space for set->digits digits.                          */
    2313             : /*                                                                    */
    2314             : /* Unless there is an error or the result is infinite, the exponent   */
    2315             : /* after the operation is guaranteed to be equal to that of B.        */
    2316             : /* ------------------------------------------------------------------ */
    2317           0 : U_CAPI decNumber * U_EXPORT2 uprv_decNumberQuantize(decNumber *res, const decNumber *lhs,
    2318             :                               const decNumber *rhs, decContext *set) {
    2319           0 :   uInt status=0;                        /* accumulator  */
    2320           0 :   decQuantizeOp(res, lhs, rhs, set, 1, &status);
    2321           0 :   if (status!=0) decStatus(res, status, set);
    2322           0 :   return res;
    2323             :   } /* decNumberQuantize  */
    2324             : 
    2325             : /* ------------------------------------------------------------------ */
    2326             : /* decNumberReduce -- remove trailing zeros                           */
    2327             : /*                                                                    */
    2328             : /*   This computes C = 0 + A, and normalizes the result               */
    2329             : /*                                                                    */
    2330             : /*   res is C, the result.  C may be A                                */
    2331             : /*   rhs is A                                                         */
    2332             : /*   set is the context                                               */
    2333             : /*                                                                    */
    2334             : /* C must have space for set->digits digits.                          */
    2335             : /* ------------------------------------------------------------------ */
    2336             : /* Previously known as Normalize  */
    2337           0 : U_CAPI decNumber * U_EXPORT2 uprv_decNumberNormalize(decNumber *res, const decNumber *rhs,
    2338             :                                decContext *set) {
    2339           0 :   return uprv_decNumberReduce(res, rhs, set);
    2340             :   } /* decNumberNormalize  */
    2341             : 
    2342           0 : U_CAPI decNumber * U_EXPORT2 uprv_decNumberReduce(decNumber *res, const decNumber *rhs,
    2343             :                             decContext *set) {
    2344             :   #if DECSUBSET
    2345             :   decNumber *allocrhs=NULL;        /* non-NULL if rounded rhs allocated  */
    2346             :   #endif
    2347           0 :   uInt status=0;                   /* as usual  */
    2348           0 :   Int  residue=0;                  /* as usual  */
    2349             :   Int  dropped;                    /* work  */
    2350             : 
    2351             :   #if DECCHECK
    2352             :   if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
    2353             :   #endif
    2354             : 
    2355             :   do {                             /* protect allocated storage  */
    2356             :     #if DECSUBSET
    2357             :     if (!set->extended) {
    2358             :       /* reduce operand and set lostDigits status, as needed  */
    2359             :       if (rhs->digits>set->digits) {
    2360             :         allocrhs=decRoundOperand(rhs, set, &status);
    2361             :         if (allocrhs==NULL) break;
    2362             :         rhs=allocrhs;
    2363             :         }
    2364             :       }
    2365             :     #endif
    2366             :     /* [following code does not require input rounding]  */
    2367             : 
    2368             :     /* Infinities copy through; NaNs need usual treatment  */
    2369           0 :     if (decNumberIsNaN(rhs)) {
    2370           0 :       decNaNs(res, rhs, NULL, set, &status);
    2371           0 :       break;
    2372             :       }
    2373             : 
    2374             :     /* reduce result to the requested length and copy to result  */
    2375           0 :     decCopyFit(res, rhs, set, &residue, &status); /* copy & round  */
    2376           0 :     decFinish(res, set, &residue, &status);       /* cleanup/set flags  */
    2377           0 :     decTrim(res, set, 1, 0, &dropped);            /* normalize in place  */
    2378             :                                                   /* [may clamp]  */
    2379             :     } while(0);                              /* end protected  */
    2380             : 
    2381             :   #if DECSUBSET
    2382             :   if (allocrhs !=NULL) free(allocrhs);       /* ..  */
    2383             :   #endif
    2384           0 :   if (status!=0) decStatus(res, status, set);/* then report status  */
    2385           0 :   return res;
    2386             :   } /* decNumberReduce  */
    2387             : 
    2388             : /* ------------------------------------------------------------------ */
    2389             : /* decNumberRescale -- force exponent to requested value              */
    2390             : /*                                                                    */
    2391             : /*   This computes C = op(A, B), where op adjusts the coefficient     */
    2392             : /*   of C (by rounding or shifting) such that the exponent (-scale)   */
    2393             : /*   of C has the value B.  The numerical value of C will equal A,    */
    2394             : /*   except for the effects of any rounding that occurred.            */
    2395             : /*                                                                    */
    2396             : /*   res is C, the result.  C may be A or B                           */
    2397             : /*   lhs is A, the number to adjust                                   */
    2398             : /*   rhs is B, the requested exponent                                 */
    2399             : /*   set is the context                                               */
    2400             : /*                                                                    */
    2401             : /* C must have space for set->digits digits.                          */
    2402             : /*                                                                    */
    2403             : /* Unless there is an error or the result is infinite, the exponent   */
    2404             : /* after the operation is guaranteed to be equal to B.                */
    2405             : /* ------------------------------------------------------------------ */
    2406           0 : U_CAPI decNumber * U_EXPORT2 uprv_decNumberRescale(decNumber *res, const decNumber *lhs,
    2407             :                              const decNumber *rhs, decContext *set) {
    2408           0 :   uInt status=0;                        /* accumulator  */
    2409           0 :   decQuantizeOp(res, lhs, rhs, set, 0, &status);
    2410           0 :   if (status!=0) decStatus(res, status, set);
    2411           0 :   return res;
    2412             :   } /* decNumberRescale  */
    2413             : 
    2414             : /* ------------------------------------------------------------------ */
    2415             : /* decNumberRemainder -- divide and return remainder                  */
    2416             : /*                                                                    */
    2417             : /*   This computes C = A % B                                          */
    2418             : /*                                                                    */
    2419             : /*   res is C, the result.  C may be A and/or B (e.g., X=X%X)         */
    2420             : /*   lhs is A                                                         */
    2421             : /*   rhs is B                                                         */
    2422             : /*   set is the context                                               */
    2423             : /*                                                                    */
    2424             : /* C must have space for set->digits digits.                          */
    2425             : /* ------------------------------------------------------------------ */
    2426           0 : U_CAPI decNumber * U_EXPORT2 uprv_decNumberRemainder(decNumber *res, const decNumber *lhs,
    2427             :                                const decNumber *rhs, decContext *set) {
    2428           0 :   uInt status=0;                        /* accumulator  */
    2429           0 :   decDivideOp(res, lhs, rhs, set, REMAINDER, &status);
    2430           0 :   if (status!=0) decStatus(res, status, set);
    2431             :   #if DECCHECK
    2432             :   decCheckInexact(res, set);
    2433             :   #endif
    2434           0 :   return res;
    2435             :   } /* decNumberRemainder  */
    2436             : 
    2437             : /* ------------------------------------------------------------------ */
    2438             : /* decNumberRemainderNear -- divide and return remainder from nearest */
    2439             : /*                                                                    */
    2440             : /*   This computes C = A % B, where % is the IEEE remainder operator  */
    2441             : /*                                                                    */
    2442             : /*   res is C, the result.  C may be A and/or B (e.g., X=X%X)         */
    2443             : /*   lhs is A                                                         */
    2444             : /*   rhs is B                                                         */
    2445             : /*   set is the context                                               */
    2446             : /*                                                                    */
    2447             : /* C must have space for set->digits digits.                          */
    2448             : /* ------------------------------------------------------------------ */
    2449           0 : U_CAPI decNumber * U_EXPORT2 uprv_decNumberRemainderNear(decNumber *res, const decNumber *lhs,
    2450             :                                    const decNumber *rhs, decContext *set) {
    2451           0 :   uInt status=0;                        /* accumulator  */
    2452           0 :   decDivideOp(res, lhs, rhs, set, REMNEAR, &status);
    2453           0 :   if (status!=0) decStatus(res, status, set);
    2454             :   #if DECCHECK
    2455             :   decCheckInexact(res, set);
    2456             :   #endif
    2457           0 :   return res;
    2458             :   } /* decNumberRemainderNear  */
    2459             : 
    2460             : /* ------------------------------------------------------------------ */
    2461             : /* decNumberRotate -- rotate the coefficient of a Number left/right   */
    2462             : /*                                                                    */
    2463             : /*   This computes C = A rot B  (in base ten and rotating set->digits */
    2464             : /*   digits).                                                         */
    2465             : /*                                                                    */
    2466             : /*   res is C, the result.  C may be A and/or B (e.g., X=XrotX)       */
    2467             : /*   lhs is A                                                         */
    2468             : /*   rhs is B, the number of digits to rotate (-ve to right)          */
    2469             : /*   set is the context                                               */
    2470             : /*                                                                    */
    2471             : /* The digits of the coefficient of A are rotated to the left (if B   */
    2472             : /* is positive) or to the right (if B is negative) without adjusting  */
    2473             : /* the exponent or the sign of A.  If lhs->digits is less than        */
    2474             : /* set->digits the coefficient is padded with zeros on the left       */
    2475             : /* before the rotate.  Any leading zeros in the result are removed    */
    2476             : /* as usual.                                                          */
    2477             : /*                                                                    */
    2478             : /* B must be an integer (q=0) and in the range -set->digits through   */
    2479             : /* +set->digits.                                                      */
    2480             : /* C must have space for set->digits digits.                          */
    2481             : /* NaNs are propagated as usual.  Infinities are unaffected (but      */
    2482             : /* B must be valid).  No status is set unless B is invalid or an      */
    2483             : /* operand is an sNaN.                                                */
    2484             : /* ------------------------------------------------------------------ */
    2485           0 : U_CAPI decNumber * U_EXPORT2 uprv_decNumberRotate(decNumber *res, const decNumber *lhs,
    2486             :                            const decNumber *rhs, decContext *set) {
    2487           0 :   uInt status=0;              /* accumulator  */
    2488             :   Int  rotate;                /* rhs as an Int  */
    2489             : 
    2490             :   #if DECCHECK
    2491             :   if (decCheckOperands(res, lhs, rhs, set)) return res;
    2492             :   #endif
    2493             : 
    2494             :   /* NaNs propagate as normal  */
    2495           0 :   if (decNumberIsNaN(lhs) || decNumberIsNaN(rhs))
    2496           0 :     decNaNs(res, lhs, rhs, set, &status);
    2497             :    /* rhs must be an integer  */
    2498           0 :    else if (decNumberIsInfinite(rhs) || rhs->exponent!=0)
    2499           0 :     status=DEC_Invalid_operation;
    2500             :    else { /* both numeric, rhs is an integer  */
    2501           0 :     rotate=decGetInt(rhs);                   /* [cannot fail]  */
    2502           0 :     if (rotate==BADINT                       /* something bad ..  */
    2503           0 :      || rotate==BIGODD || rotate==BIGEVEN    /* .. very big ..  */
    2504           0 :      || abs(rotate)>set->digits)             /* .. or out of range  */
    2505           0 :       status=DEC_Invalid_operation;
    2506             :      else {                                  /* rhs is OK  */
    2507           0 :       uprv_decNumberCopy(res, lhs);
    2508             :       /* convert -ve rotate to equivalent positive rotation  */
    2509           0 :       if (rotate<0) rotate=set->digits+rotate;
    2510           0 :       if (rotate!=0 && rotate!=set->digits   /* zero or full rotation  */
    2511           0 :        && !decNumberIsInfinite(res)) {       /* lhs was infinite  */
    2512             :         /* left-rotate to do; 0 < rotate < set->digits  */
    2513             :         uInt units, shift;                   /* work  */
    2514             :         uInt msudigits;                      /* digits in result msu  */
    2515           0 :         Unit *msu=res->lsu+D2U(res->digits)-1;    /* current msu  */
    2516           0 :         Unit *msumax=res->lsu+D2U(set->digits)-1; /* rotation msu  */
    2517           0 :         for (msu++; msu<=msumax; msu++) *msu=0;   /* ensure high units=0  */
    2518           0 :         res->digits=set->digits;                  /* now full-length  */
    2519           0 :         msudigits=MSUDIGITS(res->digits);         /* actual digits in msu  */
    2520             : 
    2521             :         /* rotation here is done in-place, in three steps  */
    2522             :         /* 1. shift all to least up to one unit to unit-align final  */
    2523             :         /*    lsd [any digits shifted out are rotated to the left,  */
    2524             :         /*    abutted to the original msd (which may require split)]  */
    2525             :         /*  */
    2526             :         /*    [if there are no whole units left to rotate, the  */
    2527             :         /*    rotation is now complete]  */
    2528             :         /*  */
    2529             :         /* 2. shift to least, from below the split point only, so that  */
    2530             :         /*    the final msd is in the right place in its Unit [any  */
    2531             :         /*    digits shifted out will fit exactly in the current msu,  */
    2532             :         /*    left aligned, no split required]  */
    2533             :         /*  */
    2534             :         /* 3. rotate all the units by reversing left part, right  */
    2535             :         /*    part, and then whole  */
    2536             :         /*  */
    2537             :         /* example: rotate right 8 digits (2 units + 2), DECDPUN=3.  */
    2538             :         /*  */
    2539             :         /*   start: 00a bcd efg hij klm npq  */
    2540             :         /*  */
    2541             :         /*      1a  000 0ab cde fgh|ijk lmn [pq saved]  */
    2542             :         /*      1b  00p qab cde fgh|ijk lmn  */
    2543             :         /*  */
    2544             :         /*      2a  00p qab cde fgh|00i jkl [mn saved]  */
    2545             :         /*      2b  mnp qab cde fgh|00i jkl  */
    2546             :         /*  */
    2547             :         /*      3a  fgh cde qab mnp|00i jkl  */
    2548             :         /*      3b  fgh cde qab mnp|jkl 00i  */
    2549             :         /*      3c  00i jkl mnp qab cde fgh  */
    2550             : 
    2551             :         /* Step 1: amount to shift is the partial right-rotate count  */
    2552           0 :         rotate=set->digits-rotate;      /* make it right-rotate  */
    2553           0 :         units=rotate/DECDPUN;           /* whole units to rotate  */
    2554           0 :         shift=rotate%DECDPUN;           /* left-over digits count  */
    2555           0 :         if (shift>0) {                  /* not an exact number of units  */
    2556           0 :           uInt save=res->lsu[0]%powers[shift];    /* save low digit(s)  */
    2557           0 :           decShiftToLeast(res->lsu, D2U(res->digits), shift);
    2558           0 :           if (shift>msudigits) {        /* msumax-1 needs >0 digits  */
    2559           0 :             uInt rem=save%powers[shift-msudigits];/* split save  */
    2560           0 :             *msumax=(Unit)(save/powers[shift-msudigits]); /* and insert  */
    2561           0 :             *(msumax-1)=*(msumax-1)
    2562           0 :                        +(Unit)(rem*powers[DECDPUN-(shift-msudigits)]); /* ..  */
    2563             :             }
    2564             :            else { /* all fits in msumax  */
    2565           0 :             *msumax=*msumax+(Unit)(save*powers[msudigits-shift]); /* [maybe *1]  */
    2566             :             }
    2567             :           } /* digits shift needed  */
    2568             : 
    2569             :         /* If whole units to rotate...  */
    2570           0 :         if (units>0) {                  /* some to do  */
    2571             :           /* Step 2: the units to touch are the whole ones in rotate,  */
    2572             :           /*   if any, and the shift is DECDPUN-msudigits (which may be  */
    2573             :           /*   0, again)  */
    2574           0 :           shift=DECDPUN-msudigits;
    2575           0 :           if (shift>0) {                /* not an exact number of units  */
    2576           0 :             uInt save=res->lsu[0]%powers[shift];  /* save low digit(s)  */
    2577           0 :             decShiftToLeast(res->lsu, units, shift);
    2578           0 :             *msumax=*msumax+(Unit)(save*powers[msudigits]);
    2579             :             } /* partial shift needed  */
    2580             : 
    2581             :           /* Step 3: rotate the units array using triple reverse  */
    2582             :           /* (reversing is easy and fast)  */
    2583           0 :           decReverse(res->lsu+units, msumax);     /* left part  */
    2584           0 :           decReverse(res->lsu, res->lsu+units-1); /* right part  */
    2585           0 :           decReverse(res->lsu, msumax);           /* whole  */
    2586             :           } /* whole units to rotate  */
    2587             :         /* the rotation may have left an undetermined number of zeros  */
    2588             :         /* on the left, so true length needs to be calculated  */
    2589           0 :         res->digits=decGetDigits(res->lsu, msumax-res->lsu+1);
    2590             :         } /* rotate needed  */
    2591             :       } /* rhs OK  */
    2592             :     } /* numerics  */
    2593           0 :   if (status!=0) decStatus(res, status, set);
    2594           0 :   return res;
    2595             :   } /* decNumberRotate  */
    2596             : 
    2597             : /* ------------------------------------------------------------------ */
    2598             : /* decNumberSameQuantum -- test for equal exponents                   */
    2599             : /*                                                                    */
    2600             : /*   res is the result number, which will contain either 0 or 1       */
    2601             : /*   lhs is a number to test                                          */
    2602             : /*   rhs is the second (usually a pattern)                            */
    2603             : /*                                                                    */
    2604             : /* No errors are possible and no context is needed.                   */
    2605             : /* ------------------------------------------------------------------ */
    2606           0 : U_CAPI decNumber * U_EXPORT2 uprv_decNumberSameQuantum(decNumber *res, const decNumber *lhs,
    2607             :                                  const decNumber *rhs) {
    2608           0 :   Unit ret=0;                      /* return value  */
    2609             : 
    2610             :   #if DECCHECK
    2611             :   if (decCheckOperands(res, lhs, rhs, DECUNCONT)) return res;
    2612             :   #endif
    2613             : 
    2614           0 :   if (SPECIALARGS) {
    2615           0 :     if (decNumberIsNaN(lhs) && decNumberIsNaN(rhs)) ret=1;
    2616           0 :      else if (decNumberIsInfinite(lhs) && decNumberIsInfinite(rhs)) ret=1;
    2617             :      /* [anything else with a special gives 0]  */
    2618             :     }
    2619           0 :    else if (lhs->exponent==rhs->exponent) ret=1;
    2620             : 
    2621           0 :   uprv_decNumberZero(res);              /* OK to overwrite an operand now  */
    2622           0 :   *res->lsu=ret;
    2623           0 :   return res;
    2624             :   } /* decNumberSameQuantum  */
    2625             : 
    2626             : /* ------------------------------------------------------------------ */
    2627             : /* decNumberScaleB -- multiply by a power of 10                       */
    2628             : /*                                                                    */
    2629             : /* This computes C = A x 10**B where B is an integer (q=0) with       */
    2630             : /* maximum magnitude 2*(emax+digits)                                  */
    2631             : /*                                                                    */
    2632             : /*   res is C, the result.  C may be A or B                           */
    2633             : /*   lhs is A, the number to adjust                                   */
    2634             : /*   rhs is B, the requested power of ten to use                      */
    2635             : /*   set is the context                                               */
    2636             : /*                                                                    */
    2637             : /* C must have space for set->digits digits.                          */
    2638             : /*                                                                    */
    2639             : /* The result may underflow or overflow.                              */
    2640             : /* ------------------------------------------------------------------ */
    2641           0 : U_CAPI decNumber * U_EXPORT2 uprv_decNumberScaleB(decNumber *res, const decNumber *lhs,
    2642             :                             const decNumber *rhs, decContext *set) {
    2643             :   Int  reqexp;                /* requested exponent change [B]  */
    2644           0 :   uInt status=0;              /* accumulator  */
    2645             :   Int  residue;               /* work  */
    2646             : 
    2647             :   #if DECCHECK
    2648             :   if (decCheckOperands(res, lhs, rhs, set)) return res;
    2649             :   #endif
    2650             : 
    2651             :   /* Handle special values except lhs infinite  */
    2652           0 :   if (decNumberIsNaN(lhs) || decNumberIsNaN(rhs))
    2653           0 :     decNaNs(res, lhs, rhs, set, &status);
    2654             :     /* rhs must be an integer  */
    2655           0 :    else if (decNumberIsInfinite(rhs) || rhs->exponent!=0)
    2656           0 :     status=DEC_Invalid_operation;
    2657             :    else {
    2658             :     /* lhs is a number; rhs is a finite with q==0  */
    2659           0 :     reqexp=decGetInt(rhs);                   /* [cannot fail]  */
    2660           0 :     if (reqexp==BADINT                       /* something bad ..  */
    2661           0 :      || reqexp==BIGODD || reqexp==BIGEVEN    /* .. very big ..  */
    2662           0 :      || abs(reqexp)>(2*(set->digits+set->emax))) /* .. or out of range  */
    2663           0 :       status=DEC_Invalid_operation;
    2664             :      else {                                  /* rhs is OK  */
    2665           0 :       uprv_decNumberCopy(res, lhs);               /* all done if infinite lhs  */
    2666           0 :       if (!decNumberIsInfinite(res)) {       /* prepare to scale  */
    2667           0 :         res->exponent+=reqexp;               /* adjust the exponent  */
    2668           0 :         residue=0;
    2669           0 :         decFinalize(res, set, &residue, &status); /* .. and check  */
    2670             :         } /* finite LHS  */
    2671             :       } /* rhs OK  */
    2672             :     } /* rhs finite  */
    2673           0 :   if (status!=0) decStatus(res, status, set);
    2674           0 :   return res;
    2675             :   } /* decNumberScaleB  */
    2676             : 
    2677             : /* ------------------------------------------------------------------ */
    2678             : /* decNumberShift -- shift the coefficient of a Number left or right  */
    2679             : /*                                                                    */
    2680             : /*   This computes C = A << B or C = A >> -B  (in base ten).          */
    2681             : /*                                                                    */
    2682             : /*   res is C, the result.  C may be A and/or B (e.g., X=X<<X)        */
    2683             : /*   lhs is A                                                         */
    2684             : /*   rhs is B, the number of digits to shift (-ve to right)           */
    2685             : /*   set is the context                                               */
    2686             : /*                                                                    */
    2687             : /* The digits of the coefficient of A are shifted to the left (if B   */
    2688             : /* is positive) or to the right (if B is negative) without adjusting  */
    2689             : /* the exponent or the sign of A.                                     */
    2690             : /*                                                                    */
    2691             : /* B must be an integer (q=0) and in the range -set->digits through   */
    2692             : /* +set->digits.                                                      */
    2693             : /* C must have space for set->digits digits.                          */
    2694             : /* NaNs are propagated as usual.  Infinities are unaffected (but      */
    2695             : /* B must be valid).  No status is set unless B is invalid or an      */
    2696             : /* operand is an sNaN.                                                */
    2697             : /* ------------------------------------------------------------------ */
    2698           0 : U_CAPI decNumber * U_EXPORT2 uprv_decNumberShift(decNumber *res, const decNumber *lhs,
    2699             :                            const decNumber *rhs, decContext *set) {
    2700           0 :   uInt status=0;              /* accumulator  */
    2701             :   Int  shift;                 /* rhs as an Int  */
    2702             : 
    2703             :   #if DECCHECK
    2704             :   if (decCheckOperands(res, lhs, rhs, set)) return res;
    2705             :   #endif
    2706             : 
    2707             :   /* NaNs propagate as normal  */
    2708           0 :   if (decNumberIsNaN(lhs) || decNumberIsNaN(rhs))
    2709           0 :     decNaNs(res, lhs, rhs, set, &status);
    2710             :    /* rhs must be an integer  */
    2711           0 :    else if (decNumberIsInfinite(rhs) || rhs->exponent!=0)
    2712           0 :     status=DEC_Invalid_operation;
    2713             :    else { /* both numeric, rhs is an integer  */
    2714           0 :     shift=decGetInt(rhs);                    /* [cannot fail]  */
    2715           0 :     if (shift==BADINT                        /* something bad ..  */
    2716           0 :      || shift==BIGODD || shift==BIGEVEN      /* .. very big ..  */
    2717           0 :      || abs(shift)>set->digits)              /* .. or out of range  */
    2718           0 :       status=DEC_Invalid_operation;
    2719             :      else {                                  /* rhs is OK  */
    2720           0 :       uprv_decNumberCopy(res, lhs);
    2721           0 :       if (shift!=0 && !decNumberIsInfinite(res)) { /* something to do  */
    2722           0 :         if (shift>0) {                       /* to left  */
    2723           0 :           if (shift==set->digits) {          /* removing all  */
    2724           0 :             *res->lsu=0;                     /* so place 0  */
    2725           0 :             res->digits=1;                   /* ..  */
    2726             :             }
    2727             :            else {                            /*  */
    2728             :             /* first remove leading digits if necessary  */
    2729           0 :             if (res->digits+shift>set->digits) {
    2730           0 :               decDecap(res, res->digits+shift-set->digits);
    2731             :               /* that updated res->digits; may have gone to 1 (for a  */
    2732             :               /* single digit or for zero  */
    2733             :               }
    2734           0 :             if (res->digits>1 || *res->lsu)  /* if non-zero..  */
    2735           0 :               res->digits=decShiftToMost(res->lsu, res->digits, shift);
    2736             :             } /* partial left  */
    2737             :           } /* left  */
    2738             :          else { /* to right  */
    2739           0 :           if (-shift>=res->digits) {         /* discarding all  */
    2740           0 :             *res->lsu=0;                     /* so place 0  */
    2741           0 :             res->digits=1;                   /* ..  */
    2742             :             }
    2743             :            else {
    2744           0 :             decShiftToLeast(res->lsu, D2U(res->digits), -shift);
    2745           0 :             res->digits-=(-shift);
    2746             :             }
    2747             :           } /* to right  */
    2748             :         } /* non-0 non-Inf shift  */
    2749             :       } /* rhs OK  */
    2750             :     } /* numerics  */
    2751           0 :   if (status!=0) decStatus(res, status, set);
    2752           0 :   return res;
    2753             :   } /* decNumberShift  */
    2754             : 
    2755             : /* ------------------------------------------------------------------ */
    2756             : /* decNumberSquareRoot -- square root operator                        */
    2757             : /*                                                                    */
    2758             : /*   This computes C = squareroot(A)                                  */
    2759             : /*                                                                    */
    2760             : /*   res is C, the result.  C may be A                                */
    2761             : /*   rhs is A                                                         */
    2762             : /*   set is the context; note that rounding mode has no effect        */
    2763             : /*                                                                    */
    2764             : /* C must have space for set->digits digits.                          */
    2765             : /* ------------------------------------------------------------------ */
    2766             : /* This uses the following varying-precision algorithm in:            */
    2767             : /*                                                                    */
    2768             : /*   Properly Rounded Variable Precision Square Root, T. E. Hull and  */
    2769             : /*   A. Abrham, ACM Transactions on Mathematical Software, Vol 11 #3, */
    2770             : /*   pp229-237, ACM, September 1985.                                  */
    2771             : /*                                                                    */
    2772             : /* The square-root is calculated using Newton's method, after which   */
    2773             : /* a check is made to ensure the result is correctly rounded.         */
    2774             : /*                                                                    */
    2775             : /* % [Reformatted original Numerical Turing source code follows.]     */
    2776             : /* function sqrt(x : real) : real                                     */
    2777             : /* % sqrt(x) returns the properly rounded approximation to the square */
    2778             : /* % root of x, in the precision of the calling environment, or it    */
    2779             : /* % fails if x < 0.                                                  */
    2780             : /* % t e hull and a abrham, august, 1984                              */
    2781             : /* if x <= 0 then                                                     */
    2782             : /*   if x < 0 then                                                    */
    2783             : /*     assert false                                                   */
    2784             : /*   else                                                             */
    2785             : /*     result 0                                                       */
    2786             : /*   end if                                                           */
    2787             : /* end if                                                             */
    2788             : /* var f := setexp(x, 0)  % fraction part of x   [0.1 <= x < 1]       */
    2789             : /* var e := getexp(x)     % exponent part of x                        */
    2790             : /* var approx : real                                                  */
    2791             : /* if e mod 2 = 0  then                                               */
    2792             : /*   approx := .259 + .819 * f   % approx to root of f                */
    2793             : /* else                                                               */
    2794             : /*   f := f/l0                   % adjustments                        */
    2795             : /*   e := e + 1                  %   for odd                          */
    2796             : /*   approx := .0819 + 2.59 * f  %   exponent                         */
    2797             : /* end if                                                             */
    2798             : /*                                                                    */
    2799             : /* var p:= 3                                                          */
    2800             : /* const maxp := currentprecision + 2                                 */
    2801             : /* loop                                                               */
    2802             : /*   p := min(2*p - 2, maxp)     % p = 4,6,10, . . . , maxp           */
    2803             : /*   precision p                                                      */
    2804             : /*   approx := .5 * (approx + f/approx)                               */
    2805             : /*   exit when p = maxp                                               */
    2806             : /* end loop                                                           */
    2807             : /*                                                                    */
    2808             : /* % approx is now within 1 ulp of the properly rounded square root   */
    2809             : /* % of f; to ensure proper rounding, compare squares of (approx -    */
    2810             : /* % l/2 ulp) and (approx + l/2 ulp) with f.                          */
    2811             : /* p := currentprecision                                              */
    2812             : /* begin                                                              */
    2813             : /*   precision p + 2                                                  */
    2814             : /*   const approxsubhalf := approx - setexp(.5, -p)                   */
    2815             : /*   if mulru(approxsubhalf, approxsubhalf) > f then                  */
    2816             : /*     approx := approx - setexp(.l, -p + 1)                          */
    2817             : /*   else                                                             */
    2818             : /*     const approxaddhalf := approx + setexp(.5, -p)                 */
    2819             : /*     if mulrd(approxaddhalf, approxaddhalf) < f then                */
    2820             : /*       approx := approx + setexp(.l, -p + 1)                        */
    2821             : /*     end if                                                         */
    2822             : /*   end if                                                           */
    2823             : /* end                                                                */
    2824             : /* result setexp(approx, e div 2)  % fix exponent                     */
    2825             : /* end sqrt                                                           */
    2826             : /* ------------------------------------------------------------------ */
    2827             : #if defined(__clang__) || U_GCC_MAJOR_MINOR >= 406
    2828             : #pragma GCC diagnostic push
    2829             : #pragma GCC diagnostic ignored "-Warray-bounds"
    2830             : #endif
    2831           0 : U_CAPI decNumber * U_EXPORT2 uprv_decNumberSquareRoot(decNumber *res, const decNumber *rhs,
    2832             :                                 decContext *set) {
    2833             :   decContext workset, approxset;   /* work contexts  */
    2834             :   decNumber dzero;                 /* used for constant zero  */
    2835             :   Int  maxp;                       /* largest working precision  */
    2836             :   Int  workp;                      /* working precision  */
    2837           0 :   Int  residue=0;                  /* rounding residue  */
    2838           0 :   uInt status=0, ignore=0;         /* status accumulators  */
    2839             :   uInt rstatus;                    /* ..  */
    2840             :   Int  exp;                        /* working exponent  */
    2841             :   Int  ideal;                      /* ideal (preferred) exponent  */
    2842             :   Int  needbytes;                  /* work  */
    2843             :   Int  dropped;                    /* ..  */
    2844             : 
    2845             :   #if DECSUBSET
    2846             :   decNumber *allocrhs=NULL;        /* non-NULL if rounded rhs allocated  */
    2847             :   #endif
    2848             :   /* buffer for f [needs +1 in case DECBUFFER 0]  */
    2849             :   decNumber buff[D2N(DECBUFFER+1)];
    2850             :   /* buffer for a [needs +2 to match likely maxp]  */
    2851             :   decNumber bufa[D2N(DECBUFFER+2)];
    2852             :   /* buffer for temporary, b [must be same size as a]  */
    2853             :   decNumber bufb[D2N(DECBUFFER+2)];
    2854           0 :   decNumber *allocbuff=NULL;       /* -> allocated buff, iff allocated  */
    2855           0 :   decNumber *allocbufa=NULL;       /* -> allocated bufa, iff allocated  */
    2856           0 :   decNumber *allocbufb=NULL;       /* -> allocated bufb, iff allocated  */
    2857           0 :   decNumber *f=buff;               /* reduced fraction  */
    2858           0 :   decNumber *a=bufa;               /* approximation to result  */
    2859           0 :   decNumber *b=bufb;               /* intermediate result  */
    2860             :   /* buffer for temporary variable, up to 3 digits  */
    2861             :   decNumber buft[D2N(3)];
    2862           0 :   decNumber *t=buft;               /* up-to-3-digit constant or work  */
    2863             : 
    2864             :   #if DECCHECK
    2865             :   if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
    2866             :   #endif
    2867             : 
    2868             :   do {                             /* protect allocated storage  */
    2869             :     #if DECSUBSET
    2870             :     if (!set->extended) {
    2871             :       /* reduce operand and set lostDigits status, as needed  */
    2872             :       if (rhs->digits>set->digits) {
    2873             :         allocrhs=decRoundOperand(rhs, set, &status);
    2874             :         if (allocrhs==NULL) break;
    2875             :         /* [Note: 'f' allocation below could reuse this buffer if  */
    2876             :         /* used, but as this is rare they are kept separate for clarity.]  */
    2877             :         rhs=allocrhs;
    2878             :         }
    2879             :       }
    2880             :     #endif
    2881             :     /* [following code does not require input rounding]  */
    2882             : 
    2883             :     /* handle infinities and NaNs  */
    2884           0 :     if (SPECIALARG) {
    2885           0 :       if (decNumberIsInfinite(rhs)) {         /* an infinity  */
    2886           0 :         if (decNumberIsNegative(rhs)) status|=DEC_Invalid_operation;
    2887           0 :          else uprv_decNumberCopy(res, rhs);        /* +Infinity  */
    2888             :         }
    2889           0 :        else decNaNs(res, rhs, NULL, set, &status); /* a NaN  */
    2890           0 :       break;
    2891             :       }
    2892             : 
    2893             :     /* calculate the ideal (preferred) exponent [floor(exp/2)]  */
    2894             :     /* [It would be nicer to write: ideal=rhs->exponent>>1, but this  */
    2895             :     /* generates a compiler warning.  Generated code is the same.]  */
    2896           0 :     ideal=(rhs->exponent&~1)/2;         /* target  */
    2897             : 
    2898             :     /* handle zeros  */
    2899           0 :     if (ISZERO(rhs)) {
    2900           0 :       uprv_decNumberCopy(res, rhs);          /* could be 0 or -0  */
    2901           0 :       res->exponent=ideal;              /* use the ideal [safe]  */
    2902             :       /* use decFinish to clamp any out-of-range exponent, etc.  */
    2903           0 :       decFinish(res, set, &residue, &status);
    2904           0 :       break;
    2905             :       }
    2906             : 
    2907             :     /* any other -x is an oops  */
    2908           0 :     if (decNumberIsNegative(rhs)) {
    2909           0 :       status|=DEC_Invalid_operation;
    2910           0 :       break;
    2911             :       }
    2912             : 
    2913             :     /* space is needed for three working variables  */
    2914             :     /*   f -- the same precision as the RHS, reduced to 0.01->0.99...  */
    2915             :     /*   a -- Hull's approximation -- precision, when assigned, is  */
    2916             :     /*        currentprecision+1 or the input argument precision,  */
    2917             :     /*        whichever is larger (+2 for use as temporary)  */
    2918             :     /*   b -- intermediate temporary result (same size as a)  */
    2919             :     /* if any is too long for local storage, then allocate  */
    2920           0 :     workp=MAXI(set->digits+1, rhs->digits);  /* actual rounding precision  */
    2921           0 :     workp=MAXI(workp, 7);                    /* at least 7 for low cases  */
    2922           0 :     maxp=workp+2;                            /* largest working precision  */
    2923             : 
    2924           0 :     needbytes=sizeof(decNumber)+(D2U(rhs->digits)-1)*sizeof(Unit);
    2925           0 :     if (needbytes>(Int)sizeof(buff)) {
    2926           0 :       allocbuff=(decNumber *)malloc(needbytes);
    2927           0 :       if (allocbuff==NULL) {  /* hopeless -- abandon  */
    2928           0 :         status|=DEC_Insufficient_storage;
    2929           0 :         break;}
    2930           0 :       f=allocbuff;            /* use the allocated space  */
    2931             :       }
    2932             :     /* a and b both need to be able to hold a maxp-length number  */
    2933           0 :     needbytes=sizeof(decNumber)+(D2U(maxp)-1)*sizeof(Unit);
    2934           0 :     if (needbytes>(Int)sizeof(bufa)) {            /* [same applies to b]  */
    2935           0 :       allocbufa=(decNumber *)malloc(needbytes);
    2936           0 :       allocbufb=(decNumber *)malloc(needbytes);
    2937           0 :       if (allocbufa==NULL || allocbufb==NULL) {   /* hopeless  */
    2938           0 :         status|=DEC_Insufficient_storage;
    2939           0 :         break;}
    2940           0 :       a=allocbufa;            /* use the allocated spaces  */
    2941           0 :       b=allocbufb;            /* ..  */
    2942             :       }
    2943             : 
    2944             :     /* copy rhs -> f, save exponent, and reduce so 0.1 <= f < 1  */
    2945           0 :     uprv_decNumberCopy(f, rhs);
    2946           0 :     exp=f->exponent+f->digits;               /* adjusted to Hull rules  */
    2947           0 :     f->exponent=-(f->digits);                /* to range  */
    2948             : 
    2949             :     /* set up working context  */
    2950           0 :     uprv_decContextDefault(&workset, DEC_INIT_DECIMAL64);
    2951           0 :     workset.emax=DEC_MAX_EMAX;
    2952           0 :     workset.emin=DEC_MIN_EMIN;
    2953             : 
    2954             :     /* [Until further notice, no error is possible and status bits  */
    2955             :     /* (Rounded, etc.) should be ignored, not accumulated.]  */
    2956             : 
    2957             :     /* Calculate initial approximation, and allow for odd exponent  */
    2958           0 :     workset.digits=workp;                    /* p for initial calculation  */
    2959           0 :     t->bits=0; t->digits=3;
    2960           0 :     a->bits=0; a->digits=3;
    2961           0 :     if ((exp & 1)==0) {                      /* even exponent  */
    2962             :       /* Set t=0.259, a=0.819  */
    2963           0 :       t->exponent=-3;
    2964           0 :       a->exponent=-3;
    2965             :       #if DECDPUN>=3
    2966             :         t->lsu[0]=259;
    2967             :         a->lsu[0]=819;
    2968             :       #elif DECDPUN==2
    2969             :         t->lsu[0]=59; t->lsu[1]=2;
    2970             :         a->lsu[0]=19; a->lsu[1]=8;
    2971             :       #else
    2972           0 :         t->lsu[0]=9; t->lsu[1]=5; t->lsu[2]=2;
    2973           0 :         a->lsu[0]=9; a->lsu[1]=1; a->lsu[2]=8;
    2974             :       #endif
    2975             :       }
    2976             :      else {                                  /* odd exponent  */
    2977             :       /* Set t=0.0819, a=2.59  */
    2978           0 :       f->exponent--;                         /* f=f/10  */
    2979           0 :       exp++;                                 /* e=e+1  */
    2980           0 :       t->exponent=-4;
    2981           0 :       a->exponent=-2;
    2982             :       #if DECDPUN>=3
    2983             :         t->lsu[0]=819;
    2984             :         a->lsu[0]=259;
    2985             :       #elif DECDPUN==2
    2986             :         t->lsu[0]=19; t->lsu[1]=8;
    2987             :         a->lsu[0]=59; a->lsu[1]=2;
    2988             :       #else
    2989           0 :         t->lsu[0]=9; t->lsu[1]=1; t->lsu[2]=8;
    2990           0 :         a->lsu[0]=9; a->lsu[1]=5; a->lsu[2]=2;
    2991             :       #endif
    2992             :       }
    2993             : 
    2994           0 :     decMultiplyOp(a, a, f, &workset, &ignore);    /* a=a*f  */
    2995           0 :     decAddOp(a, a, t, &workset, 0, &ignore);      /* ..+t  */
    2996             :     /* [a is now the initial approximation for sqrt(f), calculated with  */
    2997             :     /* currentprecision, which is also a's precision.]  */
    2998             : 
    2999             :     /* the main calculation loop  */
    3000           0 :     uprv_decNumberZero(&dzero);                   /* make 0  */
    3001           0 :     uprv_decNumberZero(t);                        /* set t = 0.5  */
    3002           0 :     t->lsu[0]=5;                             /* ..  */
    3003           0 :     t->exponent=-1;                          /* ..  */
    3004           0 :     workset.digits=3;                        /* initial p  */
    3005           0 :     for (; workset.digits<maxp;) {
    3006             :       /* set p to min(2*p - 2, maxp)  [hence 3; or: 4, 6, 10, ... , maxp]  */
    3007           0 :       workset.digits=MINI(workset.digits*2-2, maxp);
    3008             :       /* a = 0.5 * (a + f/a)  */
    3009             :       /* [calculated at p then rounded to currentprecision]  */
    3010           0 :       decDivideOp(b, f, a, &workset, DIVIDE, &ignore); /* b=f/a  */
    3011           0 :       decAddOp(b, b, a, &workset, 0, &ignore);         /* b=b+a  */
    3012           0 :       decMultiplyOp(a, b, t, &workset, &ignore);       /* a=b*0.5  */
    3013             :       } /* loop  */
    3014             : 
    3015             :     /* Here, 0.1 <= a < 1 [Hull], and a has maxp digits  */
    3016             :     /* now reduce to length, etc.; this needs to be done with a  */
    3017             :     /* having the correct exponent so as to handle subnormals  */
    3018             :     /* correctly  */
    3019           0 :     approxset=*set;                          /* get emin, emax, etc.  */
    3020           0 :     approxset.round=DEC_ROUND_HALF_EVEN;
    3021           0 :     a->exponent+=exp/2;                      /* set correct exponent  */
    3022           0 :     rstatus=0;                               /* clear status  */
    3023           0 :     residue=0;                               /* .. and accumulator  */
    3024           0 :     decCopyFit(a, a, &approxset, &residue, &rstatus);  /* reduce (if needed)  */
    3025           0 :     decFinish(a, &approxset, &residue, &rstatus);      /* clean and finalize  */
    3026             : 
    3027             :     /* Overflow was possible if the input exponent was out-of-range,  */
    3028             :     /* in which case quit  */
    3029           0 :     if (rstatus&DEC_Overflow) {
    3030           0 :       status=rstatus;                        /* use the status as-is  */
    3031           0 :       uprv_decNumberCopy(res, a);                 /* copy to result  */
    3032           0 :       break;
    3033             :       }
    3034             : 
    3035             :     /* Preserve status except Inexact/Rounded  */
    3036           0 :     status|=(rstatus & ~(DEC_Rounded|DEC_Inexact));
    3037             : 
    3038             :     /* Carry out the Hull correction  */
    3039           0 :     a->exponent-=exp/2;                      /* back to 0.1->1  */
    3040             : 
    3041             :     /* a is now at final precision and within 1 ulp of the properly  */
    3042             :     /* rounded square root of f; to ensure proper rounding, compare  */
    3043             :     /* squares of (a - l/2 ulp) and (a + l/2 ulp) with f.  */
    3044             :     /* Here workset.digits=maxp and t=0.5, and a->digits determines  */
    3045             :     /* the ulp  */
    3046           0 :     workset.digits--;                             /* maxp-1 is OK now  */
    3047           0 :     t->exponent=-a->digits-1;                     /* make 0.5 ulp  */
    3048           0 :     decAddOp(b, a, t, &workset, DECNEG, &ignore); /* b = a - 0.5 ulp  */
    3049           0 :     workset.round=DEC_ROUND_UP;
    3050           0 :     decMultiplyOp(b, b, b, &workset, &ignore);    /* b = mulru(b, b)  */
    3051           0 :     decCompareOp(b, f, b, &workset, COMPARE, &ignore); /* b ? f, reversed  */
    3052           0 :     if (decNumberIsNegative(b)) {                 /* f < b [i.e., b > f]  */
    3053             :       /* this is the more common adjustment, though both are rare  */
    3054           0 :       t->exponent++;                              /* make 1.0 ulp  */
    3055           0 :       t->lsu[0]=1;                                /* ..  */
    3056           0 :       decAddOp(a, a, t, &workset, DECNEG, &ignore); /* a = a - 1 ulp  */
    3057             :       /* assign to approx [round to length]  */
    3058           0 :       approxset.emin-=exp/2;                      /* adjust to match a  */
    3059           0 :       approxset.emax-=exp/2;
    3060           0 :       decAddOp(a, &dzero, a, &approxset, 0, &ignore);
    3061             :       }
    3062             :      else {
    3063           0 :       decAddOp(b, a, t, &workset, 0, &ignore);    /* b = a + 0.5 ulp  */
    3064           0 :       workset.round=DEC_ROUND_DOWN;
    3065           0 :       decMultiplyOp(b, b, b, &workset, &ignore);  /* b = mulrd(b, b)  */
    3066           0 :       decCompareOp(b, b, f, &workset, COMPARE, &ignore);   /* b ? f  */
    3067           0 :       if (decNumberIsNegative(b)) {               /* b < f  */
    3068           0 :         t->exponent++;                            /* make 1.0 ulp  */
    3069           0 :         t->lsu[0]=1;                              /* ..  */
    3070           0 :         decAddOp(a, a, t, &workset, 0, &ignore);  /* a = a + 1 ulp  */
    3071             :         /* assign to approx [round to length]  */
    3072           0 :         approxset.emin-=exp/2;                    /* adjust to match a  */
    3073           0 :         approxset.emax-=exp/2;
    3074           0 :         decAddOp(a, &dzero, a, &approxset, 0, &ignore);
    3075             :         }
    3076             :       }
    3077             :     /* [no errors are possible in the above, and rounding/inexact during  */
    3078             :     /* estimation are irrelevant, so status was not accumulated]  */
    3079             : 
    3080             :     /* Here, 0.1 <= a < 1  (still), so adjust back  */
    3081           0 :     a->exponent+=exp/2;                      /* set correct exponent  */
    3082             : 
    3083             :     /* count droppable zeros [after any subnormal rounding] by  */
    3084             :     /* trimming a copy  */
    3085           0 :     uprv_decNumberCopy(b, a);
    3086           0 :     decTrim(b, set, 1, 1, &dropped);         /* [drops trailing zeros]  */
    3087             : 
    3088             :     /* Set Inexact and Rounded.  The answer can only be exact if  */
    3089             :     /* it is short enough so that squaring it could fit in workp  */
    3090             :     /* digits, so this is the only (relatively rare) condition that  */
    3091             :     /* a careful check is needed  */
    3092           0 :     if (b->digits*2-1 > workp) {             /* cannot fit  */
    3093           0 :       status|=DEC_Inexact|DEC_Rounded;
    3094             :       }
    3095             :      else {                                  /* could be exact/unrounded  */
    3096           0 :       uInt mstatus=0;                        /* local status  */
    3097           0 :       decMultiplyOp(b, b, b, &workset, &mstatus); /* try the multiply  */
    3098           0 :       if (mstatus&DEC_Overflow) {            /* result just won't fit  */
    3099           0 :         status|=DEC_Inexact|DEC_Rounded;
    3100             :         }
    3101             :        else {                                /* plausible  */
    3102           0 :         decCompareOp(t, b, rhs, &workset, COMPARE, &mstatus); /* b ? rhs  */
    3103           0 :         if (!ISZERO(t)) status|=DEC_Inexact|DEC_Rounded; /* not equal  */
    3104             :          else {                              /* is Exact  */
    3105             :           /* here, dropped is the count of trailing zeros in 'a'  */
    3106             :           /* use closest exponent to ideal...  */
    3107           0 :           Int todrop=ideal-a->exponent;      /* most that can be dropped  */
    3108           0 :           if (todrop<0) status|=DEC_Rounded; /* ideally would add 0s  */
    3109             :            else {                            /* unrounded  */
    3110             :             /* there are some to drop, but emax may not allow all  */
    3111           0 :             Int maxexp=set->emax-set->digits+1;
    3112           0 :             Int maxdrop=maxexp-a->exponent;
    3113           0 :             if (todrop>maxdrop && set->clamp) { /* apply clamping  */
    3114           0 :               todrop=maxdrop;
    3115           0 :               status|=DEC_Clamped;
    3116             :               }
    3117           0 :             if (dropped<todrop) {            /* clamp to those available  */
    3118           0 :               todrop=dropped;
    3119           0 :               status|=DEC_Clamped;
    3120             :               }
    3121           0 :             if (todrop>0) {                  /* have some to drop  */
    3122           0 :               decShiftToLeast(a->lsu, D2U(a->digits), todrop);
    3123           0 :               a->exponent+=todrop;           /* maintain numerical value  */
    3124           0 :               a->digits-=todrop;             /* new length  */
    3125             :               }
    3126             :             }
    3127             :           }
    3128             :         }
    3129             :       }
    3130             : 
    3131             :     /* double-check Underflow, as perhaps the result could not have  */
    3132             :     /* been subnormal (initial argument too big), or it is now Exact  */
    3133           0 :     if (status&DEC_Underflow) {
    3134           0 :       Int ae=rhs->exponent+rhs->digits-1;    /* adjusted exponent  */
    3135             :       /* check if truly subnormal  */
    3136             :       #if DECEXTFLAG                         /* DEC_Subnormal too  */
    3137           0 :         if (ae>=set->emin*2) status&=~(DEC_Subnormal|DEC_Underflow);
    3138             :       #else
    3139             :         if (ae>=set->emin*2) status&=~DEC_Underflow;
    3140             :       #endif
    3141             :       /* check if truly inexact  */
    3142           0 :       if (!(status&DEC_Inexact)) status&=~DEC_Underflow;
    3143             :       }
    3144             : 
    3145           0 :     uprv_decNumberCopy(res, a);                   /* a is now the result  */
    3146             :     } while(0);                              /* end protected  */
    3147             : 
    3148           0 :   if (allocbuff!=NULL) free(allocbuff);      /* drop any storage used  */
    3149           0 :   if (allocbufa!=NULL) free(allocbufa);      /* ..  */
    3150           0 :   if (allocbufb!=NULL) free(allocbufb);      /* ..  */
    3151             :   #if DECSUBSET
    3152             :   if (allocrhs !=NULL) free(allocrhs);       /* ..  */
    3153             :   #endif
    3154           0 :   if (status!=0) decStatus(res, status, set);/* then report status  */
    3155             :   #if DECCHECK
    3156             :   decCheckInexact(res, set);
    3157             :   #endif
    3158           0 :   return res;
    3159             :   } /* decNumberSquareRoot  */
    3160             : #if defined(__clang__) || U_GCC_MAJOR_MINOR >= 406
    3161             : #pragma GCC diagnostic pop
    3162             : #endif
    3163             : 
    3164             : /* ------------------------------------------------------------------ */
    3165             : /* decNumberSubtract -- subtract two Numbers                          */
    3166             : /*                                                                    */
    3167             : /*   This computes C = A - B                                          */
    3168             : /*                                                                    */
    3169             : /*   res is C, the result.  C may be A and/or B (e.g., X=X-X)         */
    3170             : /*   lhs is A                                                         */
    3171             : /*   rhs is B                                                         */
    3172             : /*   set is the context                                               */
    3173             : /*                                                                    */
    3174             : /* C must have space for set->digits digits.                          */
    3175             : /* ------------------------------------------------------------------ */
    3176           0 : U_CAPI decNumber * U_EXPORT2 uprv_decNumberSubtract(decNumber *res, const decNumber *lhs,
    3177             :                               const decNumber *rhs, decContext *set) {
    3178           0 :   uInt status=0;                        /* accumulator  */
    3179             : 
    3180           0 :   decAddOp(res, lhs, rhs, set, DECNEG, &status);
    3181           0 :   if (status!=0) decStatus(res, status, set);
    3182             :   #if DECCHECK
    3183             :   decCheckInexact(res, set);
    3184             :   #endif
    3185           0 :   return res;
    3186             :   } /* decNumberSubtract  */
    3187             : 
    3188             : /* ------------------------------------------------------------------ */
    3189             : /* decNumberToIntegralExact -- round-to-integral-value with InExact   */
    3190             : /* decNumberToIntegralValue -- round-to-integral-value                */
    3191             : /*                                                                    */
    3192             : /*   res is the result                                                */
    3193             : /*   rhs is input number                                              */
    3194             : /*   set is the context                                               */
    3195             : /*                                                                    */
    3196             : /* res must have space for any value of rhs.                          */
    3197             : /*                                                                    */
    3198             : /* This implements the IEEE special operators and therefore treats    */
    3199             : /* special values as valid.  For finite numbers it returns            */
    3200             : /* rescale(rhs, 0) if rhs->exponent is <0.                            */
    3201             : /* Otherwise the result is rhs (so no error is possible, except for   */
    3202             : /* sNaN).                                                             */
    3203             : /*                                                                    */
    3204             : /* The context is used for rounding mode and status after sNaN, but   */
    3205             : /* the digits setting is ignored.  The Exact version will signal      */
    3206             : /* Inexact if the result differs numerically from rhs; the other      */
    3207             : /* never signals Inexact.                                             */
    3208             : /* ------------------------------------------------------------------ */
    3209           0 : U_CAPI decNumber * U_EXPORT2 uprv_decNumberToIntegralExact(decNumber *res, const decNumber *rhs,
    3210             :                                      decContext *set) {
    3211             :   decNumber dn;
    3212             :   decContext workset;              /* working context  */
    3213           0 :   uInt status=0;                   /* accumulator  */
    3214             : 
    3215             :   #if DECCHECK
    3216             :   if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
    3217             :   #endif
    3218             : 
    3219             :   /* handle infinities and NaNs  */
    3220           0 :   if (SPECIALARG) {
    3221           0 :     if (decNumberIsInfinite(rhs)) uprv_decNumberCopy(res, rhs); /* an Infinity  */
    3222           0 :      else decNaNs(res, rhs, NULL, set, &status); /* a NaN  */
    3223             :     }
    3224             :    else { /* finite  */
    3225             :     /* have a finite number; no error possible (res must be big enough)  */
    3226           0 :     if (rhs->exponent>=0) return uprv_decNumberCopy(res, rhs);
    3227             :     /* that was easy, but if negative exponent there is work to do...  */
    3228           0 :     workset=*set;                  /* clone rounding, etc.  */
    3229           0 :     workset.digits=rhs->digits;    /* no length rounding  */
    3230           0 :     workset.traps=0;               /* no traps  */
    3231           0 :     uprv_decNumberZero(&dn);            /* make a number with exponent 0  */
    3232           0 :     uprv_decNumberQuantize(res, rhs, &dn, &workset);
    3233           0 :     status|=workset.status;
    3234             :     }
    3235           0 :   if (status!=0) decStatus(res, status, set);
    3236           0 :   return res;
    3237             :   } /* decNumberToIntegralExact  */
    3238             : 
    3239           0 : U_CAPI decNumber * U_EXPORT2 uprv_decNumberToIntegralValue(decNumber *res, const decNumber *rhs,
    3240             :                                      decContext *set) {
    3241           0 :   decContext workset=*set;         /* working context  */
    3242           0 :   workset.traps=0;                 /* no traps  */
    3243           0 :   uprv_decNumberToIntegralExact(res, rhs, &workset);
    3244             :   /* this never affects set, except for sNaNs; NaN will have been set  */
    3245             :   /* or propagated already, so no need to call decStatus  */
    3246           0 :   set->status|=workset.status&DEC_Invalid_operation;
    3247           0 :   return res;
    3248             :   } /* decNumberToIntegralValue  */
    3249             : 
    3250             : /* ------------------------------------------------------------------ */
    3251             : /* decNumberXor -- XOR two Numbers, digitwise                         */
    3252             : /*                                                                    */
    3253             : /*   This computes C = A ^ B                                          */
    3254             : /*                                                                    */
    3255             : /*   res is C, the result.  C may be A and/or B (e.g., X=X^X)         */
    3256             : /*   lhs is A                                                         */
    3257             : /*   rhs is B                                                         */
    3258             : /*   set is the context (used for result length and error report)     */
    3259             : /*                                                                    */
    3260             : /* C must have space for set->digits digits.                          */
    3261             : /*                                                                    */
    3262             : /* Logical function restrictions apply (see above); a NaN is          */
    3263             : /* returned with Invalid_operation if a restriction is violated.      */
    3264             : /* ------------------------------------------------------------------ */
    3265           0 : U_CAPI decNumber * U_EXPORT2 uprv_decNumberXor(decNumber *res, const decNumber *lhs,
    3266             :                          const decNumber *rhs, decContext *set) {
    3267             :   const Unit *ua, *ub;                  /* -> operands  */
    3268             :   const Unit *msua, *msub;              /* -> operand msus  */
    3269             :   Unit  *uc, *msuc;                     /* -> result and its msu  */
    3270             :   Int   msudigs;                        /* digits in res msu  */
    3271             :   #if DECCHECK
    3272             :   if (decCheckOperands(res, lhs, rhs, set)) return res;
    3273             :   #endif
    3274             : 
    3275           0 :   if (lhs->exponent!=0 || decNumberIsSpecial(lhs) || decNumberIsNegative(lhs)
    3276           0 :    || rhs->exponent!=0 || decNumberIsSpecial(rhs) || decNumberIsNegative(rhs)) {
    3277           0 :     decStatus(res, DEC_Invalid_operation, set);
    3278           0 :     return res;
    3279             :     }
    3280             :   /* operands are valid  */
    3281           0 :   ua=lhs->lsu;                          /* bottom-up  */
    3282           0 :   ub=rhs->lsu;                          /* ..  */
    3283           0 :   uc=res->lsu;                          /* ..  */
    3284           0 :   msua=ua+D2U(lhs->digits)-1;           /* -> msu of lhs  */
    3285           0 :   msub=ub+D2U(rhs->digits)-1;           /* -> msu of rhs  */
    3286           0 :   msuc=uc+D2U(set->digits)-1;           /* -> msu of result  */
    3287           0 :   msudigs=MSUDIGITS(set->digits);       /* [faster than remainder]  */
    3288           0 :   for (; uc<=msuc; ua++, ub++, uc++) {  /* Unit loop  */
    3289             :     Unit a, b;                          /* extract units  */
    3290           0 :     if (ua>msua) a=0;
    3291           0 :      else a=*ua;
    3292           0 :     if (ub>msub) b=0;
    3293           0 :      else b=*ub;
    3294           0 :     *uc=0;                              /* can now write back  */
    3295           0 :     if (a|b) {                          /* maybe 1 bits to examine  */
    3296             :       Int i, j;
    3297             :       /* This loop could be unrolled and/or use BIN2BCD tables  */
    3298           0 :       for (i=0; i<DECDPUN; i++) {
    3299           0 :         if ((a^b)&1) *uc=*uc+(Unit)powers[i];     /* effect XOR  */
    3300           0 :         j=a%10;
    3301           0 :         a=a/10;
    3302           0 :         j|=b%10;
    3303           0 :         b=b/10;
    3304           0 :         if (j>1) {
    3305           0 :           decStatus(res, DEC_Invalid_operation, set);
    3306           0 :           return res;
    3307             :           }
    3308           0 :         if (uc==msuc && i==msudigs-1) break;      /* just did final digit  */
    3309             :         } /* each digit  */
    3310             :       } /* non-zero  */
    3311             :     } /* each unit  */
    3312             :   /* [here uc-1 is the msu of the result]  */
    3313           0 :   res->digits=decGetDigits(res->lsu, uc-res->lsu);
    3314           0 :   res->exponent=0;                      /* integer  */
    3315           0 :   res->bits=0;                          /* sign=0  */
    3316           0 :   return res;  /* [no status to set]  */
    3317             :   } /* decNumberXor  */
    3318             : 
    3319             : 
    3320             : /* ================================================================== */
    3321             : /* Utility routines                                                   */
    3322             : /* ================================================================== */
    3323             : 
    3324             : /* ------------------------------------------------------------------ */
    3325             : /* decNumberClass -- return the decClass of a decNumber               */
    3326             : /*   dn -- the decNumber to test                                      */
    3327             : /*   set -- the context to use for Emin                               */
    3328             : /*   returns the decClass enum                                        */
    3329             : /* ------------------------------------------------------------------ */
    3330           0 : enum decClass uprv_decNumberClass(const decNumber *dn, decContext *set) {
    3331           0 :   if (decNumberIsSpecial(dn)) {
    3332           0 :     if (decNumberIsQNaN(dn)) return DEC_CLASS_QNAN;
    3333           0 :     if (decNumberIsSNaN(dn)) return DEC_CLASS_SNAN;
    3334             :     /* must be an infinity  */
    3335           0 :     if (decNumberIsNegative(dn)) return DEC_CLASS_NEG_INF;
    3336           0 :     return DEC_CLASS_POS_INF;
    3337             :     }
    3338             :   /* is finite  */
    3339           0 :   if (uprv_decNumberIsNormal(dn, set)) { /* most common  */
    3340           0 :     if (decNumberIsNegative(dn)) return DEC_CLASS_NEG_NORMAL;
    3341           0 :     return DEC_CLASS_POS_NORMAL;
    3342             :     }
    3343             :   /* is subnormal or zero  */
    3344           0 :   if (decNumberIsZero(dn)) {    /* most common  */
    3345           0 :     if (decNumberIsNegative(dn)) return DEC_CLASS_NEG_ZERO;
    3346           0 :     return DEC_CLASS_POS_ZERO;
    3347             :     }
    3348           0 :   if (decNumberIsNegative(dn)) return DEC_CLASS_NEG_SUBNORMAL;
    3349           0 :   return DEC_CLASS_POS_SUBNORMAL;
    3350             :   } /* decNumberClass  */
    3351             : 
    3352             : /* ------------------------------------------------------------------ */
    3353             : /* decNumberClassToString -- convert decClass to a string             */
    3354             : /*                                                                    */
    3355             : /*  eclass is a valid decClass                                        */
    3356             : /*  returns a constant string describing the class (max 13+1 chars)   */
    3357             : /* ------------------------------------------------------------------ */
    3358           0 : const char *uprv_decNumberClassToString(enum decClass eclass) {
    3359           0 :   if (eclass==DEC_CLASS_POS_NORMAL)    return DEC_ClassString_PN;
    3360           0 :   if (eclass==DEC_CLASS_NEG_NORMAL)    return DEC_ClassString_NN;
    3361           0 :   if (eclass==DEC_CLASS_POS_ZERO)      return DEC_ClassString_PZ;
    3362           0 :   if (eclass==DEC_CLASS_NEG_ZERO)      return DEC_ClassString_NZ;
    3363           0 :   if (eclass==DEC_CLASS_POS_SUBNORMAL) return DEC_ClassString_PS;
    3364           0 :   if (eclass==DEC_CLASS_NEG_SUBNORMAL) return DEC_ClassString_NS;
    3365           0 :   if (eclass==DEC_CLASS_POS_INF)       return DEC_ClassString_PI;
    3366           0 :   if (eclass==DEC_CLASS_NEG_INF)       return DEC_ClassString_NI;
    3367           0 :   if (eclass==DEC_CLASS_QNAN)          return DEC_ClassString_QN;
    3368           0 :   if (eclass==DEC_CLASS_SNAN)          return DEC_ClassString_SN;
    3369           0 :   return DEC_ClassString_UN;           /* Unknown  */
    3370             :   } /* decNumberClassToString  */
    3371             : 
    3372             : /* ------------------------------------------------------------------ */
    3373             : /* decNumberCopy -- copy a number                                     */
    3374             : /*                                                                    */
    3375             : /*   dest is the target decNumber                                     */
    3376             : /*   src  is the source decNumber                                     */
    3377             : /*   returns dest                                                     */
    3378             : /*                                                                    */
    3379             : /* (dest==src is allowed and is a no-op)                              */
    3380             : /* All fields are updated as required.  This is a utility operation,  */
    3381             : /* so special values are unchanged and no error is possible.          */
    3382             : /* ------------------------------------------------------------------ */
    3383           0 : U_CAPI decNumber * U_EXPORT2 uprv_decNumberCopy(decNumber *dest, const decNumber *src) {
    3384             : 
    3385             :   #if DECCHECK
    3386             :   if (src==NULL) return uprv_decNumberZero(dest);
    3387             :   #endif
    3388             : 
    3389           0 :   if (dest==src) return dest;                /* no copy required  */
    3390             : 
    3391             :   /* Use explicit assignments here as structure assignment could copy  */
    3392             :   /* more than just the lsu (for small DECDPUN).  This would not affect  */
    3393             :   /* the value of the results, but could disturb test harness spill  */
    3394             :   /* checking.  */
    3395           0 :   dest->bits=src->bits;
    3396           0 :   dest->exponent=src->exponent;
    3397           0 :   dest->digits=src->digits;
    3398           0 :   dest->lsu[0]=src->lsu[0];
    3399           0 :   if (src->digits>DECDPUN) {                 /* more Units to come  */
    3400             :     const Unit *smsup, *s;                   /* work  */
    3401             :     Unit  *d;                                /* ..  */
    3402             :     /* memcpy for the remaining Units would be safe as they cannot  */
    3403             :     /* overlap.  However, this explicit loop is faster in short cases.  */
    3404           0 :     d=dest->lsu+1;                           /* -> first destination  */
    3405           0 :     smsup=src->lsu+D2U(src->digits);         /* -> source msu+1  */
    3406           0 :     for (s=src->lsu+1; s<smsup; s++, d++) *d=*s;
    3407             :     }
    3408           0 :   return dest;
    3409             :   } /* decNumberCopy  */
    3410             : 
    3411             : /* ------------------------------------------------------------------ */
    3412             : /* decNumberCopyAbs -- quiet absolute value operator                  */
    3413             : /*                                                                    */
    3414             : /*   This sets C = abs(A)                                             */
    3415             : /*                                                                    */
    3416             : /*   res is C, the result.  C may be A                                */
    3417             : /*   rhs is A                                                         */
    3418             : /*                                                                    */
    3419             : /* C must have space for set->digits digits.                          */
    3420             : /* No exception or error can occur; this is a quiet bitwise operation.*/
    3421             : /* See also decNumberAbs for a checking version of this.              */
    3422             : /* ------------------------------------------------------------------ */
    3423           0 : U_CAPI decNumber * U_EXPORT2 uprv_decNumberCopyAbs(decNumber *res, const decNumber *rhs) {
    3424             :   #if DECCHECK
    3425             :   if (decCheckOperands(res, DECUNUSED, rhs, DECUNCONT)) return res;
    3426             :   #endif
    3427           0 :   uprv_decNumberCopy(res, rhs);
    3428           0 :   res->bits&=~DECNEG;                   /* turn off sign  */
    3429           0 :   return res;
    3430             :   } /* decNumberCopyAbs  */
    3431             : 
    3432             : /* ------------------------------------------------------------------ */
    3433             : /* decNumberCopyNegate -- quiet negate value operator                 */
    3434             : /*                                                                    */
    3435             : /*   This sets C = negate(A)                                          */
    3436             : /*                                                                    */
    3437             : /*   res is C, the result.  C may be A                                */
    3438             : /*   rhs is A                                                         */
    3439             : /*                                                                    */
    3440             : /* C must have space for set->digits digits.                          */
    3441             : /* No exception or error can occur; this is a quiet bitwise operation.*/
    3442             : /* See also decNumberMinus for a checking version of this.            */
    3443             : /* ------------------------------------------------------------------ */
    3444           0 : U_CAPI decNumber * U_EXPORT2 uprv_decNumberCopyNegate(decNumber *res, const decNumber *rhs) {
    3445             :   #if DECCHECK
    3446             :   if (decCheckOperands(res, DECUNUSED, rhs, DECUNCONT)) return res;
    3447             :   #endif
    3448           0 :   uprv_decNumberCopy(res, rhs);
    3449           0 :   res->bits^=DECNEG;                    /* invert the sign  */
    3450           0 :   return res;
    3451             :   } /* decNumberCopyNegate  */
    3452             : 
    3453             : /* ------------------------------------------------------------------ */
    3454             : /* decNumberCopySign -- quiet copy and set sign operator              */
    3455             : /*                                                                    */
    3456             : /*   This sets C = A with the sign of B                               */
    3457             : /*                                                                    */
    3458             : /*   res is C, the result.  C may be A                                */
    3459             : /*   lhs is A                                                         */
    3460             : /*   rhs is B                                                         */
    3461             : /*                                                                    */
    3462             : /* C must have space for set->digits digits.                          */
    3463             : /* No exception or error can occur; this is a quiet bitwise operation.*/
    3464             : /* ------------------------------------------------------------------ */
    3465           0 : U_CAPI decNumber * U_EXPORT2 uprv_decNumberCopySign(decNumber *res, const decNumber *lhs,
    3466             :                               const decNumber *rhs) {
    3467             :   uByte sign;                           /* rhs sign  */
    3468             :   #if DECCHECK
    3469             :   if (decCheckOperands(res, DECUNUSED, rhs, DECUNCONT)) return res;
    3470             :   #endif
    3471           0 :   sign=rhs->bits & DECNEG;              /* save sign bit  */
    3472           0 :   uprv_decNumberCopy(res, lhs);
    3473           0 :   res->bits&=~DECNEG;                   /* clear the sign  */
    3474           0 :   res->bits|=sign;                      /* set from rhs  */
    3475           0 :   return res;
    3476             :   } /* decNumberCopySign  */
    3477             : 
    3478             : /* ------------------------------------------------------------------ */
    3479             : /* decNumberGetBCD -- get the coefficient in BCD8                     */
    3480             : /*   dn is the source decNumber                                       */
    3481             : /*   bcd is the uInt array that will receive dn->digits BCD bytes,    */
    3482             : /*     most-significant at offset 0                                   */
    3483             : /*   returns bcd                                                      */
    3484             : /*                                                                    */
    3485             : /* bcd must have at least dn->digits bytes.  No error is possible; if */
    3486             : /* dn is a NaN or Infinite, digits must be 1 and the coefficient 0.   */
    3487             : /* ------------------------------------------------------------------ */
    3488           0 : U_CAPI uByte * U_EXPORT2 uprv_decNumberGetBCD(const decNumber *dn, uByte *bcd) {
    3489           0 :   uByte *ub=bcd+dn->digits-1;      /* -> lsd  */
    3490           0 :   const Unit *up=dn->lsu;          /* Unit pointer, -> lsu  */
    3491             : 
    3492             :   #if DECDPUN==1                   /* trivial simple copy  */
    3493           0 :     for (; ub>=bcd; ub--, up++) *ub=*up;
    3494             :   #else                            /* chopping needed  */
    3495             :     uInt u=*up;                    /* work  */
    3496             :     uInt cut=DECDPUN;              /* downcounter through unit  */
    3497             :     for (; ub>=bcd; ub--) {
    3498             :       *ub=(uByte)(u%10);           /* [*6554 trick inhibits, here]  */
    3499             :       u=u/10;
    3500             :       cut--;
    3501             :       if (cut>0) continue;         /* more in this unit  */
    3502             :       up++;
    3503             :       u=*up;
    3504             :       cut=DECDPUN;
    3505             :       }
    3506             :   #endif
    3507           0 :   return bcd;
    3508             :   } /* decNumberGetBCD  */
    3509             : 
    3510             : /* ------------------------------------------------------------------ */
    3511             : /* decNumberSetBCD -- set (replace) the coefficient from BCD8         */
    3512             : /*   dn is the target decNumber                                       */
    3513             : /*   bcd is the uInt array that will source n BCD bytes, most-        */
    3514             : /*     significant at offset 0                                        */
    3515             : /*   n is the number of digits in the source BCD array (bcd)          */
    3516             : /*   returns dn                                                       */
    3517             : /*                                                                    */
    3518             : /* dn must have space for at least n digits.  No error is possible;   */
    3519             : /* if dn is a NaN, or Infinite, or is to become a zero, n must be 1   */
    3520             : /* and bcd[0] zero.                                                   */
    3521             : /* ------------------------------------------------------------------ */
    3522           0 : U_CAPI decNumber * U_EXPORT2 uprv_decNumberSetBCD(decNumber *dn, const uByte *bcd, uInt n) {
    3523           0 :   Unit *up=dn->lsu+D2U(dn->digits)-1;   /* -> msu [target pointer]  */
    3524           0 :   const uByte *ub=bcd;                  /* -> source msd  */
    3525             : 
    3526             :   #if DECDPUN==1                        /* trivial simple copy  */
    3527           0 :     for (; ub<bcd+n; ub++, up--) *up=*ub;
    3528             :   #else                                 /* some assembly needed  */
    3529             :     /* calculate how many digits in msu, and hence first cut  */
    3530             :     Int cut=MSUDIGITS(n);               /* [faster than remainder]  */
    3531             :     for (;up>=dn->lsu; up--) {          /* each Unit from msu  */
    3532             :       *up=0;                            /* will take <=DECDPUN digits  */
    3533             :       for (; cut>0; ub++, cut--) *up=X10(*up)+*ub;
    3534             :       cut=DECDPUN;                      /* next Unit has all digits  */
    3535             :       }
    3536             :   #endif
    3537           0 :   dn->digits=n;                         /* set digit count  */
    3538           0 :   return dn;
    3539             :   } /* decNumberSetBCD  */
    3540             : 
    3541             : /* ------------------------------------------------------------------ */
    3542             : /* decNumberIsNormal -- test normality of a decNumber                 */
    3543             : /*   dn is the decNumber to test                                      */
    3544             : /*   set is the context to use for Emin                               */
    3545             : /*   returns 1 if |dn| is finite and >=Nmin, 0 otherwise              */
    3546             : /* ------------------------------------------------------------------ */
    3547           0 : Int uprv_decNumberIsNormal(const decNumber *dn, decContext *set) {
    3548             :   Int ae;                               /* adjusted exponent  */
    3549             :   #if DECCHECK
    3550             :   if (decCheckOperands(DECUNRESU, DECUNUSED, dn, set)) return 0;
    3551             :   #endif
    3552             : 
    3553           0 :   if (decNumberIsSpecial(dn)) return 0; /* not finite  */
    3554           0 :   if (decNumberIsZero(dn)) return 0;    /* not non-zero  */
    3555             : 
    3556           0 :   ae=dn->exponent+dn->digits-1;         /* adjusted exponent  */
    3557           0 :   if (ae<set->emin) return 0;           /* is subnormal  */
    3558           0 :   return 1;
    3559             :   } /* decNumberIsNormal  */
    3560             : 
    3561             : /* ------------------------------------------------------------------ */
    3562             : /* decNumberIsSubnormal -- test subnormality of a decNumber           */
    3563             : /*   dn is the decNumber to test                                      */
    3564             : /*   set is the context to use for Emin                               */
    3565             : /*   returns 1 if |dn| is finite, non-zero, and <Nmin, 0 otherwise    */
    3566             : /* ------------------------------------------------------------------ */
    3567           0 : Int uprv_decNumberIsSubnormal(const decNumber *dn, decContext *set) {
    3568             :   Int ae;                               /* adjusted exponent  */
    3569             :   #if DECCHECK
    3570             :   if (decCheckOperands(DECUNRESU, DECUNUSED, dn, set)) return 0;
    3571             :   #endif
    3572             : 
    3573           0 :   if (decNumberIsSpecial(dn)) return 0; /* not finite  */
    3574           0 :   if (decNumberIsZero(dn)) return 0;    /* not non-zero  */
    3575             : 
    3576           0 :   ae=dn->exponent+dn->digits-1;         /* adjusted exponent  */
    3577           0 :   if (ae<set->emin) return 1;           /* is subnormal  */
    3578           0 :   return 0;
    3579             :   } /* decNumberIsSubnormal  */
    3580             : 
    3581             : /* ------------------------------------------------------------------ */
    3582             : /* decNumberTrim -- remove insignificant zeros                        */
    3583             : /*                                                                    */
    3584             : /*   dn is the number to trim                                         */
    3585             : /*   returns dn                                                       */
    3586             : /*                                                                    */
    3587             : /* All fields are updated as required.  This is a utility operation,  */
    3588             : /* so special values are unchanged and no error is possible.  The     */
    3589             : /* zeros are removed unconditionally.                                 */
    3590             : /* ------------------------------------------------------------------ */
    3591           0 : U_CAPI decNumber * U_EXPORT2 uprv_decNumberTrim(decNumber *dn) {
    3592             :   Int  dropped;                    /* work  */
    3593             :   decContext set;                  /* ..  */
    3594             :   #if DECCHECK
    3595             :   if (decCheckOperands(DECUNRESU, DECUNUSED, dn, DECUNCONT)) return dn;
    3596             :   #endif
    3597           0 :   uprv_decContextDefault(&set, DEC_INIT_BASE);    /* clamp=0  */
    3598           0 :   return decTrim(dn, &set, 0, 1, &dropped);
    3599             :   } /* decNumberTrim  */
    3600             : 
    3601             : /* ------------------------------------------------------------------ */
    3602             : /* decNumberVersion -- return the name and version of this module     */
    3603             : /*                                                                    */
    3604             : /* No error is possible.                                              */
    3605             : /* ------------------------------------------------------------------ */
    3606           0 : const char * uprv_decNumberVersion(void) {
    3607           0 :   return DECVERSION;
    3608             :   } /* decNumberVersion  */
    3609             : 
    3610             : /* ------------------------------------------------------------------ */
    3611             : /* decNumberZero -- set a number to 0                                 */
    3612             : /*                                                                    */
    3613             : /*   dn is the number to set, with space for one digit                */
    3614             : /*   returns dn                                                       */
    3615             : /*                                                                    */
    3616             : /* No error is possible.                                              */
    3617             : /* ------------------------------------------------------------------ */
    3618             : /* Memset is not used as it is much slower in some environments.  */
    3619           0 : U_CAPI decNumber * U_EXPORT2 uprv_decNumberZero(decNumber *dn) {
    3620             : 
    3621             :   #if DECCHECK
    3622             :   if (decCheckOperands(dn, DECUNUSED, DECUNUSED, DECUNCONT)) return dn;
    3623             :   #endif
    3624             : 
    3625           0 :   dn->bits=0;
    3626           0 :   dn->exponent=0;
    3627           0 :   dn->digits=1;
    3628           0 :   dn->lsu[0]=0;
    3629           0 :   return dn;
    3630             :   } /* decNumberZero  */
    3631             : 
    3632             : /* ================================================================== */
    3633             : /* Local routines                                                     */
    3634             : /* ================================================================== */
    3635             : 
    3636             : /* ------------------------------------------------------------------ */
    3637             : /* decToString -- lay out a number into a string                      */
    3638             : /*                                                                    */
    3639             : /*   dn     is the number to lay out                                  */
    3640             : /*   string is where to lay out the number                            */
    3641             : /*   eng    is 1 if Engineering, 0 if Scientific                      */
    3642             : /*                                                                    */
    3643             : /* string must be at least dn->digits+14 characters long              */
    3644             : /* No error is possible.                                              */
    3645             : /*                                                                    */
    3646             : /* Note that this routine can generate a -0 or 0.000.  These are      */
    3647             : /* never generated in subset to-number or arithmetic, but can occur   */
    3648             : /* in non-subset arithmetic (e.g., -1*0 or 1.234-1.234).              */
    3649             : /* ------------------------------------------------------------------ */
    3650             : /* If DECCHECK is enabled the string "?" is returned if a number is  */
    3651             : /* invalid.  */
    3652           0 : static void decToString(const decNumber *dn, char *string, Flag eng) {
    3653           0 :   Int exp=dn->exponent;       /* local copy  */
    3654             :   Int e;                      /* E-part value  */
    3655             :   Int pre;                    /* digits before the '.'  */
    3656             :   Int cut;                    /* for counting digits in a Unit  */
    3657           0 :   char *c=string;             /* work [output pointer]  */
    3658           0 :   const Unit *up=dn->lsu+D2U(dn->digits)-1; /* -> msu [input pointer]  */
    3659             :   uInt u, pow;                /* work  */
    3660             : 
    3661             :   #if DECCHECK
    3662             :   if (decCheckOperands(DECUNRESU, dn, DECUNUSED, DECUNCONT)) {
    3663             :     strcpy(string, "?");
    3664             :     return;}
    3665             :   #endif
    3666             : 
    3667           0 :   if (decNumberIsNegative(dn)) {   /* Negatives get a minus  */
    3668           0 :     *c='-';
    3669           0 :     c++;
    3670             :     }
    3671           0 :   if (dn->bits&DECSPECIAL) {       /* Is a special value  */
    3672           0 :     if (decNumberIsInfinite(dn)) {
    3673           0 :       strcpy(c,   "Inf");
    3674           0 :       strcpy(c+3, "inity");
    3675           0 :       return;}
    3676             :     /* a NaN  */
    3677           0 :     if (dn->bits&DECSNAN) {        /* signalling NaN  */
    3678           0 :       *c='s';
    3679           0 :       c++;
    3680             :       }
    3681           0 :     strcpy(c, "NaN");
    3682           0 :     c+=3;                          /* step past  */
    3683             :     /* if not a clean non-zero coefficient, that's all there is in a  */
    3684             :     /* NaN string  */
    3685           0 :     if (exp!=0 || (*dn->lsu==0 && dn->digits==1)) return;
    3686             :     /* [drop through to add integer]  */
    3687             :     }
    3688             : 
    3689             :   /* calculate how many digits in msu, and hence first cut  */
    3690           0 :   cut=MSUDIGITS(dn->digits);       /* [faster than remainder]  */
    3691           0 :   cut--;                           /* power of ten for digit  */
    3692             : 
    3693           0 :   if (exp==0) {                    /* simple integer [common fastpath]  */
    3694           0 :     for (;up>=dn->lsu; up--) {     /* each Unit from msu  */
    3695           0 :       u=*up;                       /* contains DECDPUN digits to lay out  */
    3696           0 :       for (; cut>=0; c++, cut--) TODIGIT(u, cut, c, pow);
    3697           0 :       cut=DECDPUN-1;               /* next Unit has all digits  */
    3698             :       }
    3699           0 :     *c='\0';                       /* terminate the string  */
    3700           0 :     return;}
    3701             : 
    3702             :   /* non-0 exponent -- assume plain form */
    3703           0 :   pre=dn->digits+exp;              /* digits before '.'  */
    3704           0 :   e=0;                             /* no E  */
    3705           0 :   if ((exp>0) || (pre<-5)) {       /* need exponential form  */
    3706           0 :     e=exp+dn->digits-1;            /* calculate E value  */
    3707           0 :     pre=1;                         /* assume one digit before '.'  */
    3708           0 :     if (eng && (e!=0)) {           /* engineering: may need to adjust  */
    3709             :       Int adj;                     /* adjustment  */
    3710             :       /* The C remainder operator is undefined for negative numbers, so  */
    3711             :       /* a positive remainder calculation must be used here  */
    3712           0 :       if (e<0) {
    3713           0 :         adj=(-e)%3;
    3714           0 :         if (adj!=0) adj=3-adj;
    3715             :         }
    3716             :        else { /* e>0  */
    3717           0 :         adj=e%3;
    3718             :         }
    3719           0 :       e=e-adj;
    3720             :       /* if dealing with zero still produce an exponent which is a  */
    3721             :       /* multiple of three, as expected, but there will only be the  */
    3722             :       /* one zero before the E, still.  Otherwise note the padding.  */
    3723           0 :       if (!ISZERO(dn)) pre+=adj;
    3724             :        else {  /* is zero  */
    3725           0 :         if (adj!=0) {              /* 0.00Esnn needed  */
    3726           0 :           e=e+3;
    3727           0 :           pre=-(2-adj);
    3728             :           }
    3729             :         } /* zero  */
    3730             :       } /* eng  */
    3731             :     } /* need exponent  */
    3732             : 
    3733             :   /* lay out the digits of the coefficient, adding 0s and . as needed */
    3734           0 :   u=*up;
    3735           0 :   if (pre>0) {                     /* xxx.xxx or xx00 (engineering) form  */
    3736           0 :     Int n=pre;
    3737           0 :     for (; pre>0; pre--, c++, cut--) {
    3738           0 :       if (cut<0) {                 /* need new Unit  */
    3739           0 :         if (up==dn->lsu) break;    /* out of input digits (pre>digits)  */
    3740           0 :         up--;
    3741           0 :         cut=DECDPUN-1;
    3742           0 :         u=*up;
    3743             :         }
    3744           0 :       TODIGIT(u, cut, c, pow);
    3745             :       }
    3746           0 :     if (n<dn->digits) {            /* more to come, after '.'  */
    3747           0 :       *c='.'; c++;
    3748           0 :       for (;; c++, cut--) {
    3749           0 :         if (cut<0) {               /* need new Unit  */
    3750           0 :           if (up==dn->lsu) break;  /* out of input digits  */
    3751           0 :           up--;
    3752           0 :           cut=DECDPUN-1;
    3753           0 :           u=*up;
    3754             :           }
    3755           0 :         TODIGIT(u, cut, c, pow);
    3756             :         }
    3757             :       }
    3758           0 :      else for (; pre>0; pre--, c++) *c='0'; /* 0 padding (for engineering) needed  */
    3759             :     }
    3760             :    else {                          /* 0.xxx or 0.000xxx form  */
    3761           0 :     *c='0'; c++;
    3762           0 :     *c='.'; c++;
    3763           0 :     for (; pre<0; pre++, c++) *c='0';   /* add any 0's after '.'  */
    3764           0 :     for (; ; c++, cut--) {
    3765           0 :       if (cut<0) {                 /* need new Unit  */
    3766           0 :         if (up==dn->lsu) break;    /* out of input digits  */
    3767           0 :         up--;
    3768           0 :         cut=DECDPUN-1;
    3769           0 :         u=*up;
    3770             :         }
    3771           0 :       TODIGIT(u, cut, c, pow);
    3772             :       }
    3773             :     }
    3774             : 
    3775             :   /* Finally add the E-part, if needed.  It will never be 0, has a
    3776             :      base maximum and minimum of +999999999 through -999999999, but
    3777             :      could range down to -1999999998 for anormal numbers */
    3778           0 :   if (e!=0) {
    3779           0 :     Flag had=0;               /* 1=had non-zero  */
    3780           0 :     *c='E'; c++;
    3781           0 :     *c='+'; c++;              /* assume positive  */
    3782           0 :     u=e;                      /* ..  */
    3783           0 :     if (e<0) {
    3784           0 :       *(c-1)='-';             /* oops, need -  */
    3785           0 :       u=-e;                   /* uInt, please  */
    3786             :       }
    3787             :     /* lay out the exponent [_itoa or equivalent is not ANSI C]  */
    3788           0 :     for (cut=9; cut>=0; cut--) {
    3789           0 :       TODIGIT(u, cut, c, pow);
    3790           0 :       if (*c=='0' && !had) continue;    /* skip leading zeros  */
    3791           0 :       had=1;                            /* had non-0  */
    3792           0 :       c++;                              /* step for next  */
    3793             :       } /* cut  */
    3794             :     }
    3795           0 :   *c='\0';          /* terminate the string (all paths)  */
    3796           0 :   return;
    3797             :   } /* decToString  */
    3798             : 
    3799             : /* ------------------------------------------------------------------ */
    3800             : /* decAddOp -- add/subtract operation                                 */
    3801             : /*                                                                    */
    3802             : /*   This computes C = A + B                                          */
    3803             : /*                                                                    */
    3804             : /*   res is C, the result.  C may be A and/or B (e.g., X=X+X)         */
    3805             : /*   lhs is A                                                         */
    3806             : /*   rhs is B                                                         */
    3807             : /*   set is the context                                               */
    3808             : /*   negate is DECNEG if rhs should be negated, or 0 otherwise        */
    3809             : /*   status accumulates status for the caller                         */
    3810             : /*                                                                    */
    3811             : /* C must have space for set->digits digits.                          */
    3812             : /* Inexact in status must be 0 for correct Exact zero sign in result  */
    3813             : /* ------------------------------------------------------------------ */
    3814             : /* If possible, the coefficient is calculated directly into C.        */
    3815             : /* However, if:                                                       */
    3816             : /*   -- a digits+1 calculation is needed because the numbers are      */
    3817             : /*      unaligned and span more than set->digits digits               */
    3818             : /*   -- a carry to digits+1 digits looks possible                     */
    3819             : /*   -- C is the same as A or B, and the result would destructively   */
    3820             : /*      overlap the A or B coefficient                                */
    3821             : /* then the result must be calculated into a temporary buffer.  In    */
    3822             : /* this case a local (stack) buffer is used if possible, and only if  */
    3823             : /* too long for that does malloc become the final resort.             */
    3824             : /*                                                                    */
    3825             : /* Misalignment is handled as follows:                                */
    3826             : /*   Apad: (AExp>BExp) Swap operands and proceed as for BExp>AExp.    */
    3827             : /*   BPad: Apply the padding by a combination of shifting (whole      */
    3828             : /*         units) and multiplication (part units).                    */
    3829             : /*                                                                    */
    3830             : /* Addition, especially x=x+1, is speed-critical.                     */
    3831             : /* The static buffer is larger than might be expected to allow for    */
    3832             : /* calls from higher-level funtions (notable exp).                    */
    3833             : /* ------------------------------------------------------------------ */
    3834           0 : static decNumber * decAddOp(decNumber *res, const decNumber *lhs,
    3835             :                             const decNumber *rhs, decContext *set,
    3836             :                             uByte negate, uInt *status) {
    3837             :   #if DECSUBSET
    3838             :   decNumber *alloclhs=NULL;        /* non-NULL if rounded lhs allocated  */
    3839             :   decNumber *allocrhs=NULL;        /* .., rhs  */
    3840             :   #endif
    3841             :   Int   rhsshift;                  /* working shift (in Units)  */
    3842             :   Int   maxdigits;                 /* longest logical length  */
    3843             :   Int   mult;                      /* multiplier  */
    3844             :   Int   residue;                   /* rounding accumulator  */
    3845             :   uByte bits;                      /* result bits  */
    3846             :   Flag  diffsign;                  /* non-0 if arguments have different sign  */
    3847             :   Unit  *acc;                      /* accumulator for result  */
    3848             :   Unit  accbuff[SD2U(DECBUFFER*2+20)]; /* local buffer [*2+20 reduces many  */
    3849             :                                    /* allocations when called from  */
    3850             :                                    /* other operations, notable exp]  */
    3851           0 :   Unit  *allocacc=NULL;            /* -> allocated acc buffer, iff allocated  */
    3852           0 :   Int   reqdigits=set->digits;     /* local copy; requested DIGITS  */
    3853             :   Int   padding;                   /* work  */
    3854             : 
    3855             :   #if DECCHECK
    3856             :   if (decCheckOperands(res, lhs, rhs, set)) return res;
    3857             :   #endif
    3858             : 
    3859             :   do {                             /* protect allocated storage  */
    3860             :     #if DECSUBSET
    3861             :     if (!set->extended) {
    3862             :       /* reduce operands and set lostDigits status, as needed  */
    3863             :       if (lhs->digits>reqdigits) {
    3864             :         alloclhs=decRoundOperand(lhs, set, status);
    3865             :         if (alloclhs==NULL) break;
    3866             :         lhs=alloclhs;
    3867             :         }
    3868             :       if (rhs->digits>reqdigits) {
    3869             :         allocrhs=decRoundOperand(rhs, set, status);
    3870             :         if (allocrhs==NULL) break;
    3871             :         rhs=allocrhs;
    3872             :         }
    3873             :       }
    3874             :     #endif
    3875             :     /* [following code does not require input rounding]  */
    3876             : 
    3877             :     /* note whether signs differ [used all paths]  */
    3878           0 :     diffsign=(Flag)((lhs->bits^rhs->bits^negate)&DECNEG);
    3879             : 
    3880             :     /* handle infinities and NaNs  */
    3881           0 :     if (SPECIALARGS) {                  /* a special bit set  */
    3882           0 :       if (SPECIALARGS & (DECSNAN | DECNAN))  /* a NaN  */
    3883           0 :         decNaNs(res, lhs, rhs, set, status);
    3884             :        else { /* one or two infinities  */
    3885           0 :         if (decNumberIsInfinite(lhs)) { /* LHS is infinity  */
    3886             :           /* two infinities with different signs is invalid  */
    3887           0 :           if (decNumberIsInfinite(rhs) && diffsign) {
    3888           0 :             *status|=DEC_Invalid_operation;
    3889           0 :             break;
    3890             :             }
    3891           0 :           bits=lhs->bits & DECNEG;      /* get sign from LHS  */
    3892             :           }
    3893           0 :          else bits=(rhs->bits^negate) & DECNEG;/* RHS must be Infinity  */
    3894           0 :         bits|=DECINF;
    3895           0 :         uprv_decNumberZero(res);
    3896           0 :         res->bits=bits;                 /* set +/- infinity  */
    3897             :         } /* an infinity  */
    3898           0 :       break;
    3899             :       }
    3900             : 
    3901             :     /* Quick exit for add 0s; return the non-0, modified as need be  */
    3902           0 :     if (ISZERO(lhs)) {
    3903             :       Int adjust;                       /* work  */
    3904           0 :       Int lexp=lhs->exponent;           /* save in case LHS==RES  */
    3905           0 :       bits=lhs->bits;                   /* ..  */
    3906           0 :       residue=0;                        /* clear accumulator  */
    3907           0 :       decCopyFit(res, rhs, set, &residue, status); /* copy (as needed)  */
    3908           0 :       res->bits^=negate;                /* flip if rhs was negated  */
    3909             :       #if DECSUBSET
    3910             :       if (set->extended) {              /* exponents on zeros count  */
    3911             :       #endif
    3912             :         /* exponent will be the lower of the two  */
    3913           0 :         adjust=lexp-res->exponent;      /* adjustment needed [if -ve]  */
    3914           0 :         if (ISZERO(res)) {              /* both 0: special IEEE 754 rules  */
    3915           0 :           if (adjust<0) res->exponent=lexp;  /* set exponent  */
    3916             :           /* 0-0 gives +0 unless rounding to -infinity, and -0-0 gives -0  */
    3917           0 :           if (diffsign) {
    3918           0 :             if (set->round!=DEC_ROUND_FLOOR) res->bits=0;
    3919           0 :              else res->bits=DECNEG;     /* preserve 0 sign  */
    3920             :             }
    3921             :           }
    3922             :          else { /* non-0 res  */
    3923           0 :           if (adjust<0) {     /* 0-padding needed  */
    3924           0 :             if ((res->digits-adjust)>set->digits) {
    3925           0 :               adjust=res->digits-set->digits;     /* to fit exactly  */
    3926           0 :               *status|=DEC_Rounded;               /* [but exact]  */
    3927             :               }
    3928           0 :             res->digits=decShiftToMost(res->lsu, res->digits, -adjust);
    3929           0 :             res->exponent+=adjust;                /* set the exponent.  */
    3930             :             }
    3931             :           } /* non-0 res  */
    3932             :       #if DECSUBSET
    3933             :         } /* extended  */
    3934             :       #endif
    3935           0 :       decFinish(res, set, &residue, status);      /* clean and finalize  */
    3936           0 :       break;}
    3937             : 
    3938           0 :     if (ISZERO(rhs)) {                  /* [lhs is non-zero]  */
    3939             :       Int adjust;                       /* work  */
    3940           0 :       Int rexp=rhs->exponent;           /* save in case RHS==RES  */
    3941           0 :       bits=rhs->bits;                   /* be clean  */
    3942           0 :       residue=0;                        /* clear accumulator  */
    3943           0 :       decCopyFit(res, lhs, set, &residue, status); /* copy (as needed)  */
    3944             :       #if DECSUBSET
    3945             :       if (set->extended) {              /* exponents on zeros count  */
    3946             :       #endif
    3947             :         /* exponent will be the lower of the two  */
    3948             :         /* [0-0 case handled above]  */
    3949           0 :         adjust=rexp-res->exponent;      /* adjustment needed [if -ve]  */
    3950           0 :         if (adjust<0) {     /* 0-padding needed  */
    3951           0 :           if ((res->digits-adjust)>set->digits) {
    3952           0 :             adjust=res->digits-set->digits;     /* to fit exactly  */
    3953           0 :             *status|=DEC_Rounded;               /* [but exact]  */
    3954             :             }
    3955           0 :           res->digits=decShiftToMost(res->lsu, res->digits, -adjust);
    3956           0 :           res->exponent+=adjust;                /* set the exponent.  */
    3957             :           }
    3958             :       #if DECSUBSET
    3959             :         } /* extended  */
    3960             :       #endif
    3961           0 :       decFinish(res, set, &residue, status);      /* clean and finalize  */
    3962           0 :       break;}
    3963             : 
    3964             :     /* [NB: both fastpath and mainpath code below assume these cases  */
    3965             :     /* (notably 0-0) have already been handled]  */
    3966             : 
    3967             :     /* calculate the padding needed to align the operands  */
    3968           0 :     padding=rhs->exponent-lhs->exponent;
    3969             : 
    3970             :     /* Fastpath cases where the numbers are aligned and normal, the RHS  */
    3971             :     /* is all in one unit, no operand rounding is needed, and no carry,  */
    3972             :     /* lengthening, or borrow is needed  */
    3973           0 :     if (padding==0
    3974           0 :         && rhs->digits<=DECDPUN
    3975           0 :         && rhs->exponent>=set->emin     /* [some normals drop through]  */
    3976           0 :         && rhs->exponent<=set->emax-set->digits+1 /* [could clamp]  */
    3977           0 :         && rhs->digits<=reqdigits
    3978           0 :         && lhs->digits<=reqdigits) {
    3979           0 :       Int partial=*lhs->lsu;
    3980           0 :       if (!diffsign) {                  /* adding  */
    3981           0 :         partial+=*rhs->lsu;
    3982           0 :         if ((partial<=DECDPUNMAX)       /* result fits in unit  */
    3983           0 :          && (lhs->digits>=DECDPUN ||    /* .. and no digits-count change  */
    3984           0 :              partial<(Int)powers[lhs->digits])) { /* ..  */
    3985           0 :           if (res!=lhs) uprv_decNumberCopy(res, lhs);  /* not in place  */
    3986           0 :           *res->lsu=(Unit)partial;      /* [copy could have overwritten RHS]  */
    3987           0 :           break;
    3988             :           }
    3989             :         /* else drop out for careful add  */
    3990             :         }
    3991             :        else {                           /* signs differ  */
    3992           0 :         partial-=*rhs->lsu;
    3993           0 :         if (partial>0) { /* no borrow needed, and non-0 result  */
    3994           0 :           if (res!=lhs) uprv_decNumberCopy(res, lhs);  /* not in place  */
    3995           0 :           *res->lsu=(Unit)partial;
    3996             :           /* this could have reduced digits [but result>0]  */
    3997           0 :           res->digits=decGetDigits(res->lsu, D2U(res->digits));
    3998           0 :           break;
    3999             :           }
    4000             :         /* else drop out for careful subtract  */
    4001             :         }
    4002             :       }
    4003             : 
    4004             :     /* Now align (pad) the lhs or rhs so they can be added or  */
    4005             :     /* subtracted, as necessary.  If one number is much larger than  */
    4006             :     /* the other (that is, if in plain form there is a least one  */
    4007             :     /* digit between the lowest digit of one and the highest of the  */
    4008             :     /* other) padding with up to DIGITS-1 trailing zeros may be  */
    4009             :     /* needed; then apply rounding (as exotic rounding modes may be  */
    4010             :     /* affected by the residue).  */
    4011           0 :     rhsshift=0;               /* rhs shift to left (padding) in Units  */
    4012           0 :     bits=lhs->bits;           /* assume sign is that of LHS  */
    4013           0 :     mult=1;                   /* likely multiplier  */
    4014             : 
    4015             :     /* [if padding==0 the operands are aligned; no padding is needed]  */
    4016           0 :     if (padding!=0) {
    4017             :       /* some padding needed; always pad the RHS, as any required  */
    4018             :       /* padding can then be effected by a simple combination of  */
    4019             :       /* shifts and a multiply  */
    4020           0 :       Flag swapped=0;
    4021           0 :       if (padding<0) {                  /* LHS needs the padding  */
    4022             :         const decNumber *t;
    4023           0 :         padding=-padding;               /* will be +ve  */
    4024           0 :         bits=(uByte)(rhs->bits^negate); /* assumed sign is now that of RHS  */
    4025           0 :         t=lhs; lhs=rhs; rhs=t;
    4026           0 :         swapped=1;
    4027             :         }
    4028             : 
    4029             :       /* If, after pad, rhs would be longer than lhs by digits+1 or  */
    4030             :       /* more then lhs cannot affect the answer, except as a residue,  */
    4031             :       /* so only need to pad up to a length of DIGITS+1.  */
    4032           0 :       if (rhs->digits+padding > lhs->digits+reqdigits+1) {
    4033             :         /* The RHS is sufficient  */
    4034             :         /* for residue use the relative sign indication...  */
    4035           0 :         Int shift=reqdigits-rhs->digits;     /* left shift needed  */
    4036           0 :         residue=1;                           /* residue for rounding  */
    4037           0 :         if (diffsign) residue=-residue;      /* signs differ  */
    4038             :         /* copy, shortening if necessary  */
    4039           0 :         decCopyFit(res, rhs, set, &residue, status);
    4040             :         /* if it was already shorter, then need to pad with zeros  */
    4041           0 :         if (shift>0) {
    4042           0 :           res->digits=decShiftToMost(res->lsu, res->digits, shift);
    4043           0 :           res->exponent-=shift;              /* adjust the exponent.  */
    4044             :           }
    4045             :         /* flip the result sign if unswapped and rhs was negated  */
    4046           0 :         if (!swapped) res->bits^=negate;
    4047           0 :         decFinish(res, set, &residue, status);    /* done  */
    4048           0 :         break;}
    4049             : 
    4050             :       /* LHS digits may affect result  */
    4051           0 :       rhsshift=D2U(padding+1)-1;        /* this much by Unit shift ..  */
    4052           0 :       mult=powers[padding-(rhsshift*DECDPUN)]; /* .. this by multiplication  */
    4053             :       } /* padding needed  */
    4054             : 
    4055           0 :     if (diffsign) mult=-mult;           /* signs differ  */
    4056             : 
    4057             :     /* determine the longer operand  */
    4058           0 :     maxdigits=rhs->digits+padding;      /* virtual length of RHS  */
    4059           0 :     if (lhs->digits>maxdigits) maxdigits=lhs->digits;
    4060             : 
    4061             :     /* Decide on the result buffer to use; if possible place directly  */
    4062             :     /* into result.  */
    4063           0 :     acc=res->lsu;                       /* assume add direct to result  */
    4064             :     /* If destructive overlap, or the number is too long, or a carry or  */
    4065             :     /* borrow to DIGITS+1 might be possible, a buffer must be used.  */
    4066             :     /* [Might be worth more sophisticated tests when maxdigits==reqdigits]  */
    4067           0 :     if ((maxdigits>=reqdigits)          /* is, or could be, too large  */
    4068           0 :      || (res==rhs && rhsshift>0)) {     /* destructive overlap  */
    4069             :       /* buffer needed, choose it; units for maxdigits digits will be  */
    4070             :       /* needed, +1 Unit for carry or borrow  */
    4071           0 :       Int need=D2U(maxdigits)+1;
    4072           0 :       acc=accbuff;                      /* assume use local buffer  */
    4073           0 :       if (need*sizeof(Unit)>sizeof(accbuff)) {
    4074             :         /* printf("malloc add %ld %ld\n", need, sizeof(accbuff));  */
    4075           0 :         allocacc=(Unit *)malloc(need*sizeof(Unit));
    4076           0 :         if (allocacc==NULL) {           /* hopeless -- abandon  */
    4077           0 :           *status|=DEC_Insufficient_storage;
    4078           0 :           break;}
    4079           0 :         acc=allocacc;
    4080             :         }
    4081             :       }
    4082             : 
    4083           0 :     res->bits=(uByte)(bits&DECNEG);     /* it's now safe to overwrite..  */
    4084           0 :     res->exponent=lhs->exponent;        /* .. operands (even if aliased)  */
    4085             : 
    4086             :     #if DECTRACE
    4087             :       decDumpAr('A', lhs->lsu, D2U(lhs->digits));
    4088             :       decDumpAr('B', rhs->lsu, D2U(rhs->digits));
    4089             :       printf("  :h: %ld %ld\n", rhsshift, mult);
    4090             :     #endif
    4091             : 
    4092             :     /* add [A+B*m] or subtract [A+B*(-m)]  */
    4093           0 :     U_ASSERT(rhs->digits > 0);
    4094           0 :     U_ASSERT(lhs->digits > 0);
    4095           0 :     res->digits=decUnitAddSub(lhs->lsu, D2U(lhs->digits),
    4096           0 :                               rhs->lsu, D2U(rhs->digits),
    4097             :                               rhsshift, acc, mult)
    4098             :                *DECDPUN;           /* [units -> digits]  */
    4099           0 :     if (res->digits<0) {           /* borrowed...  */
    4100           0 :       res->digits=-res->digits;
    4101           0 :       res->bits^=DECNEG;           /* flip the sign  */
    4102             :       }
    4103             :     #if DECTRACE
    4104             :       decDumpAr('+', acc, D2U(res->digits));
    4105             :     #endif
    4106             : 
    4107             :     /* If a buffer was used the result must be copied back, possibly  */
    4108             :     /* shortening.  (If no buffer was used then the result must have  */
    4109             :     /* fit, so can't need rounding and residue must be 0.)  */
    4110           0 :     residue=0;                     /* clear accumulator  */
    4111           0 :     if (acc!=res->lsu) {
    4112             :       #if DECSUBSET
    4113             :       if (set->extended) {         /* round from first significant digit  */
    4114             :       #endif
    4115             :         /* remove leading zeros that were added due to rounding up to  */
    4116             :         /* integral Units -- before the test for rounding.  */
    4117           0 :         if (res->digits>reqdigits)
    4118           0 :           res->digits=decGetDigits(acc, D2U(res->digits));
    4119           0 :         decSetCoeff(res, set, acc, res->digits, &residue, status);
    4120             :       #if DECSUBSET
    4121             :         }
    4122             :        else { /* subset arithmetic rounds from original significant digit  */
    4123             :         /* May have an underestimate.  This only occurs when both  */
    4124             :         /* numbers fit in DECDPUN digits and are padding with a  */
    4125             :         /* negative multiple (-10, -100...) and the top digit(s) become  */
    4126             :         /* 0.  (This only matters when using X3.274 rules where the  */
    4127             :         /* leading zero could be included in the rounding.)  */
    4128             :         if (res->digits<maxdigits) {
    4129             :           *(acc+D2U(res->digits))=0; /* ensure leading 0 is there  */
    4130             :           res->digits=maxdigits;
    4131             :           }
    4132             :          else {
    4133             :           /* remove leading zeros that added due to rounding up to  */
    4134             :           /* integral Units (but only those in excess of the original  */
    4135             :           /* maxdigits length, unless extended) before test for rounding.  */
    4136             :           if (res->digits>reqdigits) {
    4137             :             res->digits=decGetDigits(acc, D2U(res->digits));
    4138             :             if (res->digits<maxdigits) res->digits=maxdigits;
    4139             :             }
    4140             :           }
    4141             :         decSetCoeff(res, set, acc, res->digits, &residue, status);
    4142             :         /* Now apply rounding if needed before removing leading zeros.  */
    4143             :         /* This is safe because subnormals are not a possibility  */
    4144             :         if (residue!=0) {
    4145             :           decApplyRound(res, set, residue, status);
    4146             :           residue=0;                 /* did what needed to be done  */
    4147             :           }
    4148             :         } /* subset  */
    4149             :       #endif
    4150             :       } /* used buffer  */
    4151             : 
    4152             :     /* strip leading zeros [these were left on in case of subset subtract]  */
    4153           0 :     res->digits=decGetDigits(res->lsu, D2U(res->digits));
    4154             : 
    4155             :     /* apply checks and rounding  */
    4156           0 :     decFinish(res, set, &residue, status);
    4157             : 
    4158             :     /* "When the sum of two operands with opposite signs is exactly  */
    4159             :     /* zero, the sign of that sum shall be '+' in all rounding modes  */
    4160             :     /* except round toward -Infinity, in which mode that sign shall be  */
    4161             :     /* '-'."  [Subset zeros also never have '-', set by decFinish.]  */
    4162           0 :     if (ISZERO(res) && diffsign
    4163             :      #if DECSUBSET
    4164             :      && set->extended
    4165             :      #endif
    4166           0 :      && (*status&DEC_Inexact)==0) {
    4167           0 :       if (set->round==DEC_ROUND_FLOOR) res->bits|=DECNEG;   /* sign -  */
    4168           0 :                                   else res->bits&=~DECNEG;  /* sign +  */
    4169             :       }
    4170             :     } while(0);                              /* end protected  */
    4171             : 
    4172           0 :   if (allocacc!=NULL) free(allocacc);        /* drop any storage used  */
    4173             :   #if DECSUBSET
    4174             :   if (allocrhs!=NULL) free(allocrhs);        /* ..  */
    4175             :   if (alloclhs!=NULL) free(alloclhs);        /* ..  */
    4176             :   #endif
    4177           0 :   return res;
    4178             :   } /* decAddOp  */
    4179             : 
    4180             : /* ------------------------------------------------------------------ */
    4181             : /* decDivideOp -- division operation                                  */
    4182             : /*                                                                    */
    4183             : /*  This routine performs the calculations for all four division      */
    4184             : /*  operators (divide, divideInteger, remainder, remainderNear).      */
    4185             : /*                                                                    */
    4186             : /*  C=A op B                                                          */
    4187             : /*                                                                    */
    4188             : /*   res is C, the result.  C may be A and/or B (e.g., X=X/X)         */
    4189             : /*   lhs is A                                                         */
    4190             : /*   rhs is B                                                         */
    4191             : /*   set is the context                                               */
    4192             : /*   op  is DIVIDE, DIVIDEINT, REMAINDER, or REMNEAR respectively.    */
    4193             : /*   status is the usual accumulator                                  */
    4194             : /*                                                                    */
    4195             : /* C must have space for set->digits digits.                          */
    4196             : /*                                                                    */
    4197             : /* ------------------------------------------------------------------ */
    4198             : /*   The underlying algorithm of this routine is the same as in the   */
    4199             : /*   1981 S/370 implementation, that is, non-restoring long division  */
    4200             : /*   with bi-unit (rather than bi-digit) estimation for each unit     */
    4201             : /*   multiplier.  In this pseudocode overview, complications for the  */
    4202             : /*   Remainder operators and division residues for exact rounding are */
    4203             : /*   omitted for clarity.                                             */
    4204             : /*                                                                    */
    4205             : /*     Prepare operands and handle special values                     */
    4206             : /*     Test for x/0 and then 0/x                                      */
    4207             : /*     Exp =Exp1 - Exp2                                               */
    4208             : /*     Exp =Exp +len(var1) -len(var2)                                 */
    4209             : /*     Sign=Sign1 * Sign2                                             */
    4210             : /*     Pad accumulator (Var1) to double-length with 0's (pad1)        */
    4211             : /*     Pad Var2 to same length as Var1                                */
    4212             : /*     msu2pair/plus=1st 2 or 1 units of var2, +1 to allow for round  */
    4213             : /*     have=0                                                         */
    4214             : /*     Do until (have=digits+1 OR residue=0)                          */
    4215             : /*       if exp<0 then if integer divide/residue then leave           */
    4216             : /*       this_unit=0                                                  */
    4217             : /*       Do forever                                                   */
    4218             : /*          compare numbers                                           */
    4219             : /*          if <0 then leave inner_loop                               */
    4220             : /*          if =0 then (* quick exit without subtract *) do           */
    4221             : /*             this_unit=this_unit+1; output this_unit                */
    4222             : /*             leave outer_loop; end                                  */
    4223             : /*          Compare lengths of numbers (mantissae):                   */
    4224             : /*          If same then tops2=msu2pair -- {units 1&2 of var2}        */
    4225             : /*                  else tops2=msu2plus -- {0, unit 1 of var2}        */
    4226             : /*          tops1=first_unit_of_Var1*10**DECDPUN +second_unit_of_var1 */
    4227             : /*          mult=tops1/tops2  -- Good and safe guess at divisor       */
    4228             : /*          if mult=0 then mult=1                                     */
    4229             : /*          this_unit=this_unit+mult                                  */
    4230             : /*          subtract                                                  */
    4231             : /*          end inner_loop                                            */
    4232             : /*        if have\=0 | this_unit\=0 then do                           */
    4233             : /*          output this_unit                                          */
    4234             : /*          have=have+1; end                                          */
    4235             : /*        var2=var2/10                                                */
    4236             : /*        exp=exp-1                                                   */
    4237             : /*        end outer_loop                                              */
    4238             : /*     exp=exp+1   -- set the proper exponent                         */
    4239             : /*     if have=0 then generate answer=0                               */
    4240             : /*     Return (Result is defined by Var1)                             */
    4241             : /*                                                                    */
    4242             : /* ------------------------------------------------------------------ */
    4243             : /* Two working buffers are needed during the division; one (digits+   */
    4244             : /* 1) to accumulate the result, and the other (up to 2*digits+1) for  */
    4245             : /* long subtractions.  These are acc and var1 respectively.           */
    4246             : /* var1 is a copy of the lhs coefficient, var2 is the rhs coefficient.*/
    4247             : /* The static buffers may be larger than might be expected to allow   */
    4248             : /* for calls from higher-level funtions (notable exp).                */
    4249             : /* ------------------------------------------------------------------ */
    4250           0 : static decNumber * decDivideOp(decNumber *res,
    4251             :                                const decNumber *lhs, const decNumber *rhs,
    4252             :                                decContext *set, Flag op, uInt *status) {
    4253             :   #if DECSUBSET
    4254             :   decNumber *alloclhs=NULL;        /* non-NULL if rounded lhs allocated  */
    4255             :   decNumber *allocrhs=NULL;        /* .., rhs  */
    4256             :   #endif
    4257             :   Unit  accbuff[SD2U(DECBUFFER+DECDPUN+10)]; /* local buffer  */
    4258           0 :   Unit  *acc=accbuff;              /* -> accumulator array for result  */
    4259           0 :   Unit  *allocacc=NULL;            /* -> allocated buffer, iff allocated  */
    4260             :   Unit  *accnext;                  /* -> where next digit will go  */
    4261             :   Int   acclength;                 /* length of acc needed [Units]  */
    4262             :   Int   accunits;                  /* count of units accumulated  */
    4263             :   Int   accdigits;                 /* count of digits accumulated  */
    4264             : 
    4265             :   Unit  varbuff[SD2U(DECBUFFER*2+DECDPUN)];  /* buffer for var1  */
    4266           0 :   Unit  *var1=varbuff;             /* -> var1 array for long subtraction  */
    4267           0 :   Unit  *varalloc=NULL;            /* -> allocated buffer, iff used  */
    4268             :   Unit  *msu1;                     /* -> msu of var1  */
    4269             : 
    4270             :   const Unit *var2;                /* -> var2 array  */
    4271             :   const Unit *msu2;                /* -> msu of var2  */
    4272             :   Int   msu2plus;                  /* msu2 plus one [does not vary]  */
    4273             :   eInt  msu2pair;                  /* msu2 pair plus one [does not vary]  */
    4274             : 
    4275             :   Int   var1units, var2units;      /* actual lengths  */
    4276             :   Int   var2ulen;                  /* logical length (units)  */
    4277           0 :   Int   var1initpad=0;             /* var1 initial padding (digits)  */
    4278             :   Int   maxdigits;                 /* longest LHS or required acc length  */
    4279             :   Int   mult;                      /* multiplier for subtraction  */
    4280             :   Unit  thisunit;                  /* current unit being accumulated  */
    4281             :   Int   residue;                   /* for rounding  */
    4282           0 :   Int   reqdigits=set->digits;     /* requested DIGITS  */
    4283             :   Int   exponent;                  /* working exponent  */
    4284           0 :   Int   maxexponent=0;             /* DIVIDE maximum exponent if unrounded  */
    4285             :   uByte bits;                      /* working sign  */
    4286             :   Unit  *target;                   /* work  */
    4287             :   const Unit *source;              /* ..  */
    4288             :   uInt  const *pow;                /* ..  */
    4289             :   Int   shift, cut;                /* ..  */
    4290             :   #if DECSUBSET
    4291             :   Int   dropped;                   /* work  */
    4292             :   #endif
    4293             : 
    4294             :   #if DECCHECK
    4295             :   if (decCheckOperands(res, lhs, rhs, set)) return res;
    4296             :   #endif
    4297             : 
    4298             :   do {                             /* protect allocated storage  */
    4299             :     #if DECSUBSET
    4300             :     if (!set->extended) {
    4301             :       /* reduce operands and set lostDigits status, as needed  */
    4302             :       if (lhs->digits>reqdigits) {
    4303             :         alloclhs=decRoundOperand(lhs, set, status);
    4304             :         if (alloclhs==NULL) break;
    4305             :         lhs=alloclhs;
    4306             :         }
    4307             :       if (rhs->digits>reqdigits) {
    4308             :         allocrhs=decRoundOperand(rhs, set, status);
    4309             :         if (allocrhs==NULL) break;
    4310             :         rhs=allocrhs;
    4311             :         }
    4312             :       }
    4313             :     #endif
    4314             :     /* [following code does not require input rounding]  */
    4315             : 
    4316           0 :     bits=(lhs->bits^rhs->bits)&DECNEG;  /* assumed sign for divisions  */
    4317             : 
    4318             :     /* handle infinities and NaNs  */
    4319           0 :     if (SPECIALARGS) {                  /* a special bit set  */
    4320           0 :       if (SPECIALARGS & (DECSNAN | DECNAN)) { /* one or two NaNs  */
    4321           0 :         decNaNs(res, lhs, rhs, set, status);
    4322           0 :         break;
    4323             :         }
    4324             :       /* one or two infinities  */
    4325           0 :       if (decNumberIsInfinite(lhs)) {   /* LHS (dividend) is infinite  */
    4326           0 :         if (decNumberIsInfinite(rhs) || /* two infinities are invalid ..  */
    4327           0 :             op & (REMAINDER | REMNEAR)) { /* as is remainder of infinity  */
    4328           0 :           *status|=DEC_Invalid_operation;
    4329           0 :           break;
    4330             :           }
    4331             :         /* [Note that infinity/0 raises no exceptions]  */
    4332           0 :         uprv_decNumberZero(res);
    4333           0 :         res->bits=bits|DECINF;          /* set +/- infinity  */
    4334           0 :         break;
    4335             :         }
    4336             :        else {                           /* RHS (divisor) is infinite  */
    4337           0 :         residue=0;
    4338           0 :         if (op&(REMAINDER|REMNEAR)) {
    4339             :           /* result is [finished clone of] lhs  */
    4340           0 :           decCopyFit(res, lhs, set, &residue, status);
    4341             :           }
    4342             :          else {  /* a division  */
    4343           0 :           uprv_decNumberZero(res);
    4344           0 :           res->bits=bits;               /* set +/- zero  */
    4345             :           /* for DIVIDEINT the exponent is always 0.  For DIVIDE, result  */
    4346             :           /* is a 0 with infinitely negative exponent, clamped to minimum  */
    4347           0 :           if (op&DIVIDE) {
    4348           0 :             res->exponent=set->emin-set->digits+1;
    4349           0 :             *status|=DEC_Clamped;
    4350             :             }
    4351             :           }
    4352           0 :         decFinish(res, set, &residue, status);
    4353           0 :         break;
    4354             :         }
    4355             :       }
    4356             : 
    4357             :     /* handle 0 rhs (x/0)  */
    4358           0 :     if (ISZERO(rhs)) {                  /* x/0 is always exceptional  */
    4359           0 :       if (ISZERO(lhs)) {
    4360           0 :         uprv_decNumberZero(res);             /* [after lhs test]  */
    4361           0 :         *status|=DEC_Division_undefined;/* 0/0 will become NaN  */
    4362             :         }
    4363             :        else {
    4364           0 :         uprv_decNumberZero(res);
    4365           0 :         if (op&(REMAINDER|REMNEAR)) *status|=DEC_Invalid_operation;
    4366             :          else {
    4367           0 :           *status|=DEC_Division_by_zero; /* x/0  */
    4368           0 :           res->bits=bits|DECINF;         /* .. is +/- Infinity  */
    4369             :           }
    4370             :         }
    4371           0 :       break;}
    4372             : 
    4373             :     /* handle 0 lhs (0/x)  */
    4374           0 :     if (ISZERO(lhs)) {                  /* 0/x [x!=0]  */
    4375             :       #if DECSUBSET
    4376             :       if (!set->extended) uprv_decNumberZero(res);
    4377             :        else {
    4378             :       #endif
    4379           0 :         if (op&DIVIDE) {
    4380           0 :           residue=0;
    4381           0 :           exponent=lhs->exponent-rhs->exponent; /* ideal exponent  */
    4382           0 :           uprv_decNumberCopy(res, lhs);      /* [zeros always fit]  */
    4383           0 :           res->bits=bits;               /* sign as computed  */
    4384           0 :           res->exponent=exponent;       /* exponent, too  */
    4385           0 :           decFinalize(res, set, &residue, status);   /* check exponent  */
    4386             :           }
    4387           0 :          else if (op&DIVIDEINT) {
    4388           0 :           uprv_decNumberZero(res);           /* integer 0  */
    4389           0 :           res->bits=bits;               /* sign as computed  */
    4390             :           }
    4391             :          else {                         /* a remainder  */
    4392           0 :           exponent=rhs->exponent;       /* [save in case overwrite]  */
    4393           0 :           uprv_decNumberCopy(res, lhs);      /* [zeros always fit]  */
    4394           0 :           if (exponent<res->exponent) res->exponent=exponent; /* use lower  */
    4395             :           }
    4396             :       #if DECSUBSET
    4397             :         }
    4398             :       #endif
    4399           0 :       break;}
    4400             : 
    4401             :     /* Precalculate exponent.  This starts off adjusted (and hence fits  */
    4402             :     /* in 31 bits) and becomes the usual unadjusted exponent as the  */
    4403             :     /* division proceeds.  The order of evaluation is important, here,  */
    4404             :     /* to avoid wrap.  */
    4405           0 :     exponent=(lhs->exponent+lhs->digits)-(rhs->exponent+rhs->digits);
    4406             : 
    4407             :     /* If the working exponent is -ve, then some quick exits are  */
    4408             :     /* possible because the quotient is known to be <1  */
    4409             :     /* [for REMNEAR, it needs to be < -1, as -0.5 could need work]  */
    4410           0 :     if (exponent<0 && !(op==DIVIDE)) {
    4411           0 :       if (op&DIVIDEINT) {
    4412           0 :         uprv_decNumberZero(res);                  /* integer part is 0  */
    4413             :         #if DECSUBSET
    4414             :         if (set->extended)
    4415             :         #endif
    4416           0 :           res->bits=bits;                    /* set +/- zero  */
    4417           0 :         break;}
    4418             :       /* fastpath remainders so long as the lhs has the smaller  */
    4419             :       /* (or equal) exponent  */
    4420           0 :       if (lhs->exponent<=rhs->exponent) {
    4421           0 :         if (op&REMAINDER || exponent<-1) {
    4422             :           /* It is REMAINDER or safe REMNEAR; result is [finished  */
    4423             :           /* clone of] lhs  (r = x - 0*y)  */
    4424           0 :           residue=0;
    4425           0 :           decCopyFit(res, lhs, set, &residue, status);
    4426           0 :           decFinish(res, set, &residue, status);
    4427           0 :           break;
    4428             :           }
    4429             :         /* [unsafe REMNEAR drops through]  */
    4430             :         }
    4431             :       } /* fastpaths  */
    4432             : 
    4433             :     /* Long (slow) division is needed; roll up the sleeves... */
    4434             : 
    4435             :     /* The accumulator will hold the quotient of the division.  */
    4436             :     /* If it needs to be too long for stack storage, then allocate.  */
    4437           0 :     acclength=D2U(reqdigits+DECDPUN);   /* in Units  */
    4438           0 :     if (acclength*sizeof(Unit)>sizeof(accbuff)) {
    4439             :       /* printf("malloc dvacc %ld units\n", acclength);  */
    4440           0 :       allocacc=(Unit *)malloc(acclength*sizeof(Unit));
    4441           0 :       if (allocacc==NULL) {             /* hopeless -- abandon  */
    4442           0 :         *status|=DEC_Insufficient_storage;
    4443           0 :         break;}
    4444           0 :       acc=allocacc;                     /* use the allocated space  */
    4445             :       }
    4446             : 
    4447             :     /* var1 is the padded LHS ready for subtractions.  */
    4448             :     /* If it needs to be too long for stack storage, then allocate.  */
    4449             :     /* The maximum units needed for var1 (long subtraction) is:  */
    4450             :     /* Enough for  */
    4451             :     /*     (rhs->digits+reqdigits-1) -- to allow full slide to right  */
    4452             :     /* or  (lhs->digits)             -- to allow for long lhs  */
    4453             :     /* whichever is larger  */
    4454             :     /*   +1                -- for rounding of slide to right  */
    4455             :     /*   +1                -- for leading 0s  */
    4456             :     /*   +1                -- for pre-adjust if a remainder or DIVIDEINT  */
    4457             :     /* [Note: unused units do not participate in decUnitAddSub data]  */
    4458           0 :     maxdigits=rhs->digits+reqdigits-1;
    4459           0 :     if (lhs->digits>maxdigits) maxdigits=lhs->digits;
    4460           0 :     var1units=D2U(maxdigits)+2;
    4461             :     /* allocate a guard unit above msu1 for REMAINDERNEAR  */
    4462           0 :     if (!(op&DIVIDE)) var1units++;
    4463           0 :     if ((var1units+1)*sizeof(Unit)>sizeof(varbuff)) {
    4464             :       /* printf("malloc dvvar %ld units\n", var1units+1);  */
    4465           0 :       varalloc=(Unit *)malloc((var1units+1)*sizeof(Unit));
    4466           0 :       if (varalloc==NULL) {             /* hopeless -- abandon  */
    4467           0 :         *status|=DEC_Insufficient_storage;
    4468           0 :         break;}
    4469           0 :       var1=varalloc;                    /* use the allocated space  */
    4470             :       }
    4471             : 
    4472             :     /* Extend the lhs and rhs to full long subtraction length.  The lhs  */
    4473             :     /* is truly extended into the var1 buffer, with 0 padding, so a  */
    4474             :     /* subtract in place is always possible.  The rhs (var2) has  */
    4475             :     /* virtual padding (implemented by decUnitAddSub).  */
    4476             :     /* One guard unit was allocated above msu1 for rem=rem+rem in  */
    4477             :     /* REMAINDERNEAR.  */
    4478           0 :     msu1=var1+var1units-1;              /* msu of var1  */
    4479           0 :     source=lhs->lsu+D2U(lhs->digits)-1; /* msu of input array  */
    4480           0 :     for (target=msu1; source>=lhs->lsu; source--, target--) *target=*source;
    4481           0 :     for (; target>=var1; target--) *target=0;
    4482             : 
    4483             :     /* rhs (var2) is left-aligned with var1 at the start  */
    4484           0 :     var2ulen=var1units;                 /* rhs logical length (units)  */
    4485           0 :     var2units=D2U(rhs->digits);         /* rhs actual length (units)  */
    4486           0 :     var2=rhs->lsu;                      /* -> rhs array  */
    4487           0 :     msu2=var2+var2units-1;              /* -> msu of var2 [never changes]  */
    4488             :     /* now set up the variables which will be used for estimating the  */
    4489             :     /* multiplication factor.  If these variables are not exact, add  */
    4490             :     /* 1 to make sure that the multiplier is never overestimated.  */
    4491           0 :     msu2plus=*msu2;                     /* it's value ..  */
    4492           0 :     if (var2units>1) msu2plus++;        /* .. +1 if any more  */
    4493           0 :     msu2pair=(eInt)*msu2*(DECDPUNMAX+1);/* top two pair ..  */
    4494           0 :     if (var2units>1) {                  /* .. [else treat 2nd as 0]  */
    4495           0 :       msu2pair+=*(msu2-1);              /* ..  */
    4496           0 :       if (var2units>2) msu2pair++;      /* .. +1 if any more  */
    4497             :       }
    4498             : 
    4499             :     /* The calculation is working in units, which may have leading zeros,  */
    4500             :     /* but the exponent was calculated on the assumption that they are  */
    4501             :     /* both left-aligned.  Adjust the exponent to compensate: add the  */
    4502             :     /* number of leading zeros in var1 msu and subtract those in var2 msu.  */
    4503             :     /* [This is actually done by counting the digits and negating, as  */
    4504             :     /* lead1=DECDPUN-digits1, and similarly for lead2.]  */
    4505           0 :     for (pow=&powers[1]; *msu1>=*pow; pow++) exponent--;
    4506           0 :     for (pow=&powers[1]; *msu2>=*pow; pow++) exponent++;
    4507             : 
    4508             :     /* Now, if doing an integer divide or remainder, ensure that  */
    4509             :     /* the result will be Unit-aligned.  To do this, shift the var1  */
    4510             :     /* accumulator towards least if need be.  (It's much easier to  */
    4511             :     /* do this now than to reassemble the residue afterwards, if  */
    4512             :     /* doing a remainder.)  Also ensure the exponent is not negative.  */
    4513           0 :     if (!(op&DIVIDE)) {
    4514             :       Unit *u;                          /* work  */
    4515             :       /* save the initial 'false' padding of var1, in digits  */
    4516           0 :       var1initpad=(var1units-D2U(lhs->digits))*DECDPUN;
    4517             :       /* Determine the shift to do.  */
    4518           0 :       if (exponent<0) cut=-exponent;
    4519           0 :        else cut=DECDPUN-exponent%DECDPUN;
    4520           0 :       decShiftToLeast(var1, var1units, cut);
    4521           0 :       exponent+=cut;                    /* maintain numerical value  */
    4522           0 :       var1initpad-=cut;                 /* .. and reduce padding  */
    4523             :       /* clean any most-significant units which were just emptied  */
    4524           0 :       for (u=msu1; cut>=DECDPUN; cut-=DECDPUN, u--) *u=0;
    4525             :       } /* align  */
    4526             :      else { /* is DIVIDE  */
    4527           0 :       maxexponent=lhs->exponent-rhs->exponent;    /* save  */
    4528             :       /* optimization: if the first iteration will just produce 0,  */
    4529             :       /* preadjust to skip it [valid for DIVIDE only]  */
    4530           0 :       if (*msu1<*msu2) {
    4531           0 :         var2ulen--;                     /* shift down  */
    4532           0 :         exponent-=DECDPUN;              /* update the exponent  */
    4533             :         }
    4534             :       }
    4535             : 
    4536             :     /* ---- start the long-division loops ------------------------------  */
    4537           0 :     accunits=0;                         /* no units accumulated yet  */
    4538           0 :     accdigits=0;                        /* .. or digits  */
    4539           0 :     accnext=acc+acclength-1;            /* -> msu of acc [NB: allows digits+1]  */
    4540             :     for (;;) {                          /* outer forever loop  */
    4541           0 :       thisunit=0;                       /* current unit assumed 0  */
    4542             :       /* find the next unit  */
    4543             :       for (;;) {                        /* inner forever loop  */
    4544             :         /* strip leading zero units [from either pre-adjust or from  */
    4545             :         /* subtract last time around].  Leave at least one unit.  */
    4546           0 :         for (; *msu1==0 && msu1>var1; msu1--) var1units--;
    4547             : 
    4548           0 :         if (var1units<var2ulen) break;       /* var1 too low for subtract  */
    4549           0 :         if (var1units==var2ulen) {           /* unit-by-unit compare needed  */
    4550             :           /* compare the two numbers, from msu  */
    4551             :           const Unit *pv1, *pv2;
    4552             :           Unit v2;                           /* units to compare  */
    4553           0 :           pv2=msu2;                          /* -> msu  */
    4554           0 :           for (pv1=msu1; ; pv1--, pv2--) {
    4555             :             /* v1=*pv1 -- always OK  */
    4556           0 :             v2=0;                            /* assume in padding  */
    4557           0 :             if (pv2>=var2) v2=*pv2;          /* in range  */
    4558           0 :             if (*pv1!=v2) break;             /* no longer the same  */
    4559           0 :             if (pv1==var1) break;            /* done; leave pv1 as is  */
    4560             :             }
    4561             :           /* here when all inspected or a difference seen  */
    4562           0 :           if (*pv1<v2) break;                /* var1 too low to subtract  */
    4563           0 :           if (*pv1==v2) {                    /* var1 == var2  */
    4564             :             /* reach here if var1 and var2 are identical; subtraction  */
    4565             :             /* would increase digit by one, and the residue will be 0 so  */
    4566             :             /* the calculation is done; leave the loop with residue=0.  */
    4567           0 :             thisunit++;                      /* as though subtracted  */
    4568           0 :             *var1=0;                         /* set var1 to 0  */
    4569           0 :             var1units=1;                     /* ..  */
    4570           0 :             break;  /* from inner  */
    4571             :             } /* var1 == var2  */
    4572             :           /* *pv1>v2.  Prepare for real subtraction; the lengths are equal  */
    4573             :           /* Estimate the multiplier (there's always a msu1-1)...  */
    4574             :           /* Bring in two units of var2 to provide a good estimate.  */
    4575           0 :           mult=(Int)(((eInt)*msu1*(DECDPUNMAX+1)+*(msu1-1))/msu2pair);
    4576             :           } /* lengths the same  */
    4577             :          else { /* var1units > var2ulen, so subtraction is safe  */
    4578             :           /* The var2 msu is one unit towards the lsu of the var1 msu,  */
    4579             :           /* so only one unit for var2 can be used.  */
    4580           0 :           mult=(Int)(((eInt)*msu1*(DECDPUNMAX+1)+*(msu1-1))/msu2plus);
    4581             :           }
    4582           0 :         if (mult==0) mult=1;                 /* must always be at least 1  */
    4583             :         /* subtraction needed; var1 is > var2  */
    4584           0 :         thisunit=(Unit)(thisunit+mult);      /* accumulate  */
    4585             :         /* subtract var1-var2, into var1; only the overlap needs  */
    4586             :         /* processing, as this is an in-place calculation  */
    4587           0 :         shift=var2ulen-var2units;
    4588             :         #if DECTRACE
    4589             :           decDumpAr('1', &var1[shift], var1units-shift);
    4590             :           decDumpAr('2', var2, var2units);
    4591             :           printf("m=%ld\n", -mult);
    4592             :         #endif
    4593           0 :         decUnitAddSub(&var1[shift], var1units-shift,
    4594             :                       var2, var2units, 0,
    4595           0 :                       &var1[shift], -mult);
    4596             :         #if DECTRACE
    4597             :           decDumpAr('#', &var1[shift], var1units-shift);
    4598             :         #endif
    4599             :         /* var1 now probably has leading zeros; these are removed at the  */
    4600             :         /* top of the inner loop.  */
    4601           0 :         } /* inner loop  */
    4602             : 
    4603             :       /* The next unit has been calculated in full; unless it's a  */
    4604             :       /* leading zero, add to acc  */
    4605           0 :       if (accunits!=0 || thisunit!=0) {      /* is first or non-zero  */
    4606           0 :         *accnext=thisunit;                   /* store in accumulator  */
    4607             :         /* account exactly for the new digits  */
    4608           0 :         if (accunits==0) {
    4609           0 :           accdigits++;                       /* at least one  */
    4610           0 :           for (pow=&powers[1]; thisunit>=*pow; pow++) accdigits++;
    4611             :           }
    4612           0 :          else accdigits+=DECDPUN;
    4613           0 :         accunits++;                          /* update count  */
    4614           0 :         accnext--;                           /* ready for next  */
    4615           0 :         if (accdigits>reqdigits) break;      /* have enough digits  */
    4616             :         }
    4617             : 
    4618             :       /* if the residue is zero, the operation is done (unless divide  */
    4619             :       /* or divideInteger and still not enough digits yet)  */
    4620           0 :       if (*var1==0 && var1units==1) {        /* residue is 0  */
    4621           0 :         if (op&(REMAINDER|REMNEAR)) break;
    4622           0 :         if ((op&DIVIDE) && (exponent<=maxexponent)) break;
    4623             :         /* [drop through if divideInteger]  */
    4624             :         }
    4625             :       /* also done enough if calculating remainder or integer  */
    4626             :       /* divide and just did the last ('units') unit  */
    4627           0 :       if (exponent==0 && !(op&DIVIDE)) break;
    4628             : 
    4629             :       /* to get here, var1 is less than var2, so divide var2 by the per-  */
    4630             :       /* Unit power of ten and go for the next digit  */
    4631           0 :       var2ulen--;                            /* shift down  */
    4632           0 :       exponent-=DECDPUN;                     /* update the exponent  */
    4633           0 :       } /* outer loop  */
    4634             : 
    4635             :     /* ---- division is complete ---------------------------------------  */
    4636             :     /* here: acc      has at least reqdigits+1 of good results (or fewer  */
    4637             :     /*                if early stop), starting at accnext+1 (its lsu)  */
    4638             :     /*       var1     has any residue at the stopping point  */
    4639             :     /*       accunits is the number of digits collected in acc  */
    4640           0 :     if (accunits==0) {             /* acc is 0  */
    4641           0 :       accunits=1;                  /* show have a unit ..  */
    4642           0 :       accdigits=1;                 /* ..  */
    4643           0 :       *accnext=0;                  /* .. whose value is 0  */
    4644             :       }
    4645           0 :      else accnext++;               /* back to last placed  */
    4646             :     /* accnext now -> lowest unit of result  */
    4647             : 
    4648           0 :     residue=0;                     /* assume no residue  */
    4649           0 :     if (op&DIVIDE) {
    4650             :       /* record the presence of any residue, for rounding  */
    4651           0 :       if (*var1!=0 || var1units>1) residue=1;
    4652             :        else { /* no residue  */
    4653             :         /* Had an exact division; clean up spurious trailing 0s.  */
    4654             :         /* There will be at most DECDPUN-1, from the final multiply,  */
    4655             :         /* and then only if the result is non-0 (and even) and the  */
    4656             :         /* exponent is 'loose'.  */
    4657             :         #if DECDPUN>1
    4658             :         Unit lsu=*accnext;
    4659             :         if (!(lsu&0x01) && (lsu!=0)) {
    4660             :           /* count the trailing zeros  */
    4661             :           Int drop=0;
    4662             :           for (;; drop++) {    /* [will terminate because lsu!=0]  */
    4663             :             if (exponent>=maxexponent) break;     /* don't chop real 0s  */
    4664             :             #if DECDPUN<=4
    4665             :               if ((lsu-QUOT10(lsu, drop+1)
    4666             :                   *powers[drop+1])!=0) break;     /* found non-0 digit  */
    4667             :             #else
    4668             :               if (lsu%powers[drop+1]!=0) break;   /* found non-0 digit  */
    4669             :             #endif
    4670             :             exponent++;
    4671             :             }
    4672             :           if (drop>0) {
    4673             :             accunits=decShiftToLeast(accnext, accunits, drop);
    4674             :             accdigits=decGetDigits(accnext, accunits);
    4675             :             accunits=D2U(accdigits);
    4676             :             /* [exponent was adjusted in the loop]  */
    4677             :             }
    4678             :           } /* neither odd nor 0  */
    4679             :         #endif
    4680             :         } /* exact divide  */
    4681             :       } /* divide  */
    4682             :      else /* op!=DIVIDE */ {
    4683             :       /* check for coefficient overflow  */
    4684           0 :       if (accdigits+exponent>reqdigits) {
    4685           0 :         *status|=DEC_Division_impossible;
    4686           0 :         break;
    4687             :         }
    4688           0 :       if (op & (REMAINDER|REMNEAR)) {
    4689             :         /* [Here, the exponent will be 0, because var1 was adjusted  */
    4690             :         /* appropriately.]  */
    4691             :         Int postshift;                       /* work  */
    4692           0 :         Flag wasodd=0;                       /* integer was odd  */
    4693             :         Unit *quotlsu;                       /* for save  */
    4694             :         Int  quotdigits;                     /* ..  */
    4695             : 
    4696           0 :         bits=lhs->bits;                      /* remainder sign is always as lhs  */
    4697             : 
    4698             :         /* Fastpath when residue is truly 0 is worthwhile [and  */
    4699             :         /* simplifies the code below]  */
    4700           0 :         if (*var1==0 && var1units==1) {      /* residue is 0  */
    4701           0 :           Int exp=lhs->exponent;             /* save min(exponents)  */
    4702           0 :           if (rhs->exponent<exp) exp=rhs->exponent;
    4703           0 :           uprv_decNumberZero(res);                /* 0 coefficient  */
    4704             :           #if DECSUBSET
    4705             :           if (set->extended)
    4706             :           #endif
    4707           0 :           res->exponent=exp;                 /* .. with proper exponent  */
    4708           0 :           res->bits=(uByte)(bits&DECNEG);          /* [cleaned]  */
    4709           0 :           decFinish(res, set, &residue, status);   /* might clamp  */
    4710           0 :           break;
    4711             :           }
    4712             :         /* note if the quotient was odd  */
    4713           0 :         if (*accnext & 0x01) wasodd=1;       /* acc is odd  */
    4714           0 :         quotlsu=accnext;                     /* save in case need to reinspect  */
    4715           0 :         quotdigits=accdigits;                /* ..  */
    4716             : 
    4717             :         /* treat the residue, in var1, as the value to return, via acc  */
    4718             :         /* calculate the unused zero digits.  This is the smaller of:  */
    4719             :         /*   var1 initial padding (saved above)  */
    4720             :         /*   var2 residual padding, which happens to be given by:  */
    4721           0 :         postshift=var1initpad+exponent-lhs->exponent+rhs->exponent;
    4722             :         /* [the 'exponent' term accounts for the shifts during divide]  */
    4723           0 :         if (var1initpad<postshift) postshift=var1initpad;
    4724             : 
    4725             :         /* shift var1 the requested amount, and adjust its digits  */
    4726           0 :         var1units=decShiftToLeast(var1, var1units, postshift);
    4727           0 :         accnext=var1;
    4728           0 :         accdigits=decGetDigits(var1, var1units);
    4729           0 :         accunits=D2U(accdigits);
    4730             : 
    4731           0 :         exponent=lhs->exponent;         /* exponent is smaller of lhs & rhs  */
    4732           0 :         if (rhs->exponent<exponent) exponent=rhs->exponent;
    4733             : 
    4734             :         /* Now correct the result if doing remainderNear; if it  */
    4735             :         /* (looking just at coefficients) is > rhs/2, or == rhs/2 and  */
    4736             :         /* the integer was odd then the result should be rem-rhs.  */
    4737           0 :         if (op&REMNEAR) {
    4738             :           Int compare, tarunits;        /* work  */
    4739             :           Unit *up;                     /* ..  */
    4740             :           /* calculate remainder*2 into the var1 buffer (which has  */
    4741             :           /* 'headroom' of an extra unit and hence enough space)  */
    4742             :           /* [a dedicated 'double' loop would be faster, here]  */
    4743             :           tarunits=decUnitAddSub(accnext, accunits, accnext, accunits,
    4744           0 :                                  0, accnext, 1);
    4745             :           /* decDumpAr('r', accnext, tarunits);  */
    4746             : 
    4747             :           /* Here, accnext (var1) holds tarunits Units with twice the  */
    4748             :           /* remainder's coefficient, which must now be compared to the  */
    4749             :           /* RHS.  The remainder's exponent may be smaller than the RHS's.  */
    4750           0 :           compare=decUnitCompare(accnext, tarunits, rhs->lsu, D2U(rhs->digits),
    4751           0 :                                  rhs->exponent-exponent);
    4752           0 :           if (compare==BADINT) {             /* deep trouble  */
    4753           0 :             *status|=DEC_Insufficient_storage;
    4754           0 :             break;}
    4755             : 
    4756             :           /* now restore the remainder by dividing by two; the lsu  */
    4757             :           /* is known to be even.  */
    4758           0 :           for (up=accnext; up<accnext+tarunits; up++) {
    4759             :             Int half;              /* half to add to lower unit  */
    4760           0 :             half=*up & 0x01;
    4761           0 :             *up/=2;                /* [shift]  */
    4762           0 :             if (!half) continue;
    4763           0 :             *(up-1)+=(DECDPUNMAX+1)/2;
    4764             :             }
    4765             :           /* [accunits still describes the original remainder length]  */
    4766             : 
    4767           0 :           if (compare>0 || (compare==0 && wasodd)) { /* adjustment needed  */
    4768             :             Int exp, expunits, exprem;       /* work  */
    4769             :             /* This is effectively causing round-up of the quotient,  */
    4770             :             /* so if it was the rare case where it was full and all  */
    4771             :             /* nines, it would overflow and hence division-impossible  */
    4772             :             /* should be raised  */
    4773           0 :             Flag allnines=0;                 /* 1 if quotient all nines  */
    4774           0 :             if (quotdigits==reqdigits) {     /* could be borderline  */
    4775           0 :               for (up=quotlsu; ; up++) {
    4776           0 :                 if (quotdigits>DECDPUN) {
    4777           0 :                   if (*up!=DECDPUNMAX) break;/* non-nines  */
    4778             :                   }
    4779             :                  else {                      /* this is the last Unit  */
    4780           0 :                   if (*up==powers[quotdigits]-1) allnines=1;
    4781           0 :                   break;
    4782             :                   }
    4783           0 :                 quotdigits-=DECDPUN;         /* checked those digits  */
    4784             :                 } /* up  */
    4785             :               } /* borderline check  */
    4786           0 :             if (allnines) {
    4787           0 :               *status|=DEC_Division_impossible;
    4788           0 :               break;}
    4789             : 
    4790             :             /* rem-rhs is needed; the sign will invert.  Again, var1  */
    4791             :             /* can safely be used for the working Units array.  */
    4792           0 :             exp=rhs->exponent-exponent;      /* RHS padding needed  */
    4793             :             /* Calculate units and remainder from exponent.  */
    4794           0 :             expunits=exp/DECDPUN;
    4795           0 :             exprem=exp%DECDPUN;
    4796             :             /* subtract [A+B*(-m)]; the result will always be negative  */
    4797           0 :             accunits=-decUnitAddSub(accnext, accunits,
    4798           0 :                                     rhs->lsu, D2U(rhs->digits),
    4799           0 :                                     expunits, accnext, -(Int)powers[exprem]);
    4800           0 :             accdigits=decGetDigits(accnext, accunits); /* count digits exactly  */
    4801           0 :             accunits=D2U(accdigits);    /* and recalculate the units for copy  */
    4802             :             /* [exponent is as for original remainder]  */
    4803           0 :             bits^=DECNEG;               /* flip the sign  */
    4804             :             }
    4805             :           } /* REMNEAR  */
    4806             :         } /* REMAINDER or REMNEAR  */
    4807             :       } /* not DIVIDE  */
    4808             : 
    4809             :     /* Set exponent and bits  */
    4810           0 :     res->exponent=exponent;
    4811           0 :     res->bits=(uByte)(bits&DECNEG);          /* [cleaned]  */
    4812             : 
    4813             :     /* Now the coefficient.  */
    4814           0 :     decSetCoeff(res, set, accnext, accdigits, &residue, status);
    4815             : 
    4816           0 :     decFinish(res, set, &residue, status);   /* final cleanup  */
    4817             : 
    4818             :     #if DECSUBSET
    4819             :     /* If a divide then strip trailing zeros if subset [after round]  */
    4820             :     if (!set->extended && (op==DIVIDE)) decTrim(res, set, 0, 1, &dropped);
    4821             :     #endif
    4822             :     } while(0);                              /* end protected  */
    4823             : 
    4824           0 :   if (varalloc!=NULL) free(varalloc);   /* drop any storage used  */
    4825           0 :   if (allocacc!=NULL) free(allocacc);   /* ..  */
    4826             :   #if DECSUBSET
    4827             :   if (allocrhs!=NULL) free(allocrhs);   /* ..  */
    4828             :   if (alloclhs!=NULL) free(alloclhs);   /* ..  */
    4829             :   #endif
    4830           0 :   return res;
    4831             :   } /* decDivideOp  */
    4832             : 
    4833             : /* ------------------------------------------------------------------ */
    4834             : /* decMultiplyOp -- multiplication operation                          */
    4835             : /*                                                                    */
    4836             : /*  This routine performs the multiplication C=A x B.                 */
    4837             : /*                                                                    */
    4838             : /*   res is C, the result.  C may be A and/or B (e.g., X=X*X)         */
    4839             : /*   lhs is A                                                         */
    4840             : /*   rhs is B                                                         */
    4841             : /*   set is the context                                               */
    4842             : /*   status is the usual accumulator                                  */
    4843             : /*                                                                    */
    4844             : /* C must have space for set->digits digits.                          */
    4845             : /*                                                                    */
    4846             : /* ------------------------------------------------------------------ */
    4847             : /* 'Classic' multiplication is used rather than Karatsuba, as the     */
    4848             : /* latter would give only a minor improvement for the short numbers   */
    4849             : /* expected to be handled most (and uses much more memory).           */
    4850             : /*                                                                    */
    4851             : /* There are two major paths here: the general-purpose ('old code')   */
    4852             : /* path which handles all DECDPUN values, and a fastpath version      */
    4853             : /* which is used if 64-bit ints are available, DECDPUN<=4, and more   */
    4854             : /* than two calls to decUnitAddSub would be made.                     */
    4855             : /*                                                                    */
    4856             : /* The fastpath version lumps units together into 8-digit or 9-digit  */
    4857             : /* chunks, and also uses a lazy carry strategy to minimise expensive  */
    4858             : /* 64-bit divisions.  The chunks are then broken apart again into     */
    4859             : /* units for continuing processing.  Despite this overhead, the       */
    4860             : /* fastpath can speed up some 16-digit operations by 10x (and much    */
    4861             : /* more for higher-precision calculations).                           */
    4862             : /*                                                                    */
    4863             : /* A buffer always has to be used for the accumulator; in the         */
    4864             : /* fastpath, buffers are also always needed for the chunked copies of */
    4865             : /* of the operand coefficients.                                       */
    4866             : /* Static buffers are larger than needed just for multiply, to allow  */
    4867             : /* for calls from other operations (notably exp).                     */
    4868             : /* ------------------------------------------------------------------ */
    4869             : #define FASTMUL (DECUSE64 && DECDPUN<5)
    4870           0 : static decNumber * decMultiplyOp(decNumber *res, const decNumber *lhs,
    4871             :                                  const decNumber *rhs, decContext *set,
    4872             :                                  uInt *status) {
    4873             :   Int    accunits;                 /* Units of accumulator in use  */
    4874             :   Int    exponent;                 /* work  */
    4875           0 :   Int    residue=0;                /* rounding residue  */
    4876             :   uByte  bits;                     /* result sign  */
    4877             :   Unit  *acc;                      /* -> accumulator Unit array  */
    4878             :   Int    needbytes;                /* size calculator  */
    4879           0 :   void  *allocacc=NULL;            /* -> allocated accumulator, iff allocated  */
    4880             :   Unit  accbuff[SD2U(DECBUFFER*4+1)]; /* buffer (+1 for DECBUFFER==0,  */
    4881             :                                    /* *4 for calls from other operations)  */
    4882             :   const Unit *mer, *mermsup;       /* work  */
    4883             :   Int   madlength;                 /* Units in multiplicand  */
    4884             :   Int   shift;                     /* Units to shift multiplicand by  */
    4885             : 
    4886             :   #if FASTMUL
    4887             :     /* if DECDPUN is 1 or 3 work in base 10**9, otherwise  */
    4888             :     /* (DECDPUN is 2 or 4) then work in base 10**8  */
    4889             :     #if DECDPUN & 1                /* odd  */
    4890             :       #define FASTBASE 1000000000  /* base  */
    4891             :       #define FASTDIGS          9  /* digits in base  */
    4892             :       #define FASTLAZY         18  /* carry resolution point [1->18]  */
    4893             :     #else
    4894             :       #define FASTBASE  100000000
    4895             :       #define FASTDIGS          8
    4896             :       #define FASTLAZY       1844  /* carry resolution point [1->1844]  */
    4897             :     #endif
    4898             :     /* three buffers are used, two for chunked copies of the operands  */
    4899             :     /* (base 10**8 or base 10**9) and one base 2**64 accumulator with  */
    4900             :     /* lazy carry evaluation  */
    4901             :     uInt   zlhibuff[(DECBUFFER*2+1)/8+1]; /* buffer (+1 for DECBUFFER==0)  */
    4902           0 :     uInt  *zlhi=zlhibuff;                 /* -> lhs array  */
    4903           0 :     uInt  *alloclhi=NULL;                 /* -> allocated buffer, iff allocated  */
    4904             :     uInt   zrhibuff[(DECBUFFER*2+1)/8+1]; /* buffer (+1 for DECBUFFER==0)  */
    4905           0 :     uInt  *zrhi=zrhibuff;                 /* -> rhs array  */
    4906           0 :     uInt  *allocrhi=NULL;                 /* -> allocated buffer, iff allocated  */
    4907             :     uLong  zaccbuff[(DECBUFFER*2+1)/4+2]; /* buffer (+1 for DECBUFFER==0)  */
    4908             :     /* [allocacc is shared for both paths, as only one will run]  */
    4909           0 :     uLong *zacc=zaccbuff;          /* -> accumulator array for exact result  */
    4910             :     #if DECDPUN==1
    4911             :     Int    zoff;                   /* accumulator offset  */
    4912             :     #endif
    4913             :     uInt  *lip, *rip;              /* item pointers  */
    4914             :     uInt  *lmsi, *rmsi;            /* most significant items  */
    4915             :     Int    ilhs, irhs, iacc;       /* item counts in the arrays  */
    4916             :     Int    lazy;                   /* lazy carry counter  */
    4917             :     uLong  lcarry;                 /* uLong carry  */
    4918             :     uInt   carry;                  /* carry (NB not uLong)  */
    4919             :     Int    count;                  /* work  */
    4920             :     const  Unit *cup;              /* ..  */
    4921             :     Unit  *up;                     /* ..  */
    4922             :     uLong *lp;                     /* ..  */
    4923             :     Int    p;                      /* ..  */
    4924             :   #endif
    4925             : 
    4926             :   #if DECSUBSET
    4927             :     decNumber *alloclhs=NULL;      /* -> allocated buffer, iff allocated  */
    4928             :     decNumber *allocrhs=NULL;      /* -> allocated buffer, iff allocated  */
    4929             :   #endif
    4930             : 
    4931             :   #if DECCHECK
    4932             :   if (decCheckOperands(res, lhs, rhs, set)) return res;
    4933             :   #endif
    4934             : 
    4935             :   /* precalculate result sign  */
    4936           0 :   bits=(uByte)((lhs->bits^rhs->bits)&DECNEG);
    4937             : 
    4938             :   /* handle infinities and NaNs  */
    4939           0 :   if (SPECIALARGS) {               /* a special bit set  */
    4940           0 :     if (SPECIALARGS & (DECSNAN | DECNAN)) { /* one or two NaNs  */
    4941           0 :       decNaNs(res, lhs, rhs, set, status);
    4942           0 :       return res;}
    4943             :     /* one or two infinities; Infinity * 0 is invalid  */
    4944           0 :     if (((lhs->bits & DECINF)==0 && ISZERO(lhs))
    4945           0 :       ||((rhs->bits & DECINF)==0 && ISZERO(rhs))) {
    4946           0 :       *status|=DEC_Invalid_operation;
    4947           0 :       return res;}
    4948           0 :     uprv_decNumberZero(res);
    4949           0 :     res->bits=bits|DECINF;         /* infinity  */
    4950           0 :     return res;}
    4951             : 
    4952             :   /* For best speed, as in DMSRCN [the original Rexx numerics  */
    4953             :   /* module], use the shorter number as the multiplier (rhs) and  */
    4954             :   /* the longer as the multiplicand (lhs) to minimise the number of  */
    4955             :   /* adds (partial products)  */
    4956           0 :   if (lhs->digits<rhs->digits) {   /* swap...  */
    4957           0 :     const decNumber *hold=lhs;
    4958           0 :     lhs=rhs;
    4959           0 :     rhs=hold;
    4960             :     }
    4961             : 
    4962             :   do {                             /* protect allocated storage  */
    4963             :     #if DECSUBSET
    4964             :     if (!set->extended) {
    4965             :       /* reduce operands and set lostDigits status, as needed  */
    4966             :       if (lhs->digits>set->digits) {
    4967             :         alloclhs=decRoundOperand(lhs, set, status);
    4968             :         if (alloclhs==NULL) break;
    4969             :         lhs=alloclhs;
    4970             :         }
    4971             :       if (rhs->digits>set->digits) {
    4972             :         allocrhs=decRoundOperand(rhs, set, status);
    4973             :         if (allocrhs==NULL) break;
    4974             :         rhs=allocrhs;
    4975             :         }
    4976             :       }
    4977             :     #endif
    4978             :     /* [following code does not require input rounding]  */
    4979             : 
    4980             :     #if FASTMUL                    /* fastpath can be used  */
    4981             :     /* use the fast path if there are enough digits in the shorter  */
    4982             :     /* operand to make the setup and takedown worthwhile  */
    4983             :     #define NEEDTWO (DECDPUN*2)    /* within two decUnitAddSub calls  */
    4984           0 :     if (rhs->digits>NEEDTWO) {     /* use fastpath...  */
    4985             :       /* calculate the number of elements in each array  */
    4986           0 :       ilhs=(lhs->digits+FASTDIGS-1)/FASTDIGS; /* [ceiling]  */
    4987           0 :       irhs=(rhs->digits+FASTDIGS-1)/FASTDIGS; /* ..  */
    4988           0 :       iacc=ilhs+irhs;
    4989             : 
    4990             :       /* allocate buffers if required, as usual  */
    4991           0 :       needbytes=ilhs*sizeof(uInt);
    4992           0 :       if (needbytes>(Int)sizeof(zlhibuff)) {
    4993           0 :         alloclhi=(uInt *)malloc(needbytes);
    4994           0 :         zlhi=alloclhi;}
    4995           0 :       needbytes=irhs*sizeof(uInt);
    4996           0 :       if (needbytes>(Int)sizeof(zrhibuff)) {
    4997           0 :         allocrhi=(uInt *)malloc(needbytes);
    4998           0 :         zrhi=allocrhi;}
    4999             : 
    5000             :       /* Allocating the accumulator space needs a special case when  */
    5001             :       /* DECDPUN=1 because when converting the accumulator to Units  */
    5002             :       /* after the multiplication each 8-byte item becomes 9 1-byte  */
    5003             :       /* units.  Therefore iacc extra bytes are needed at the front  */
    5004             :       /* (rounded up to a multiple of 8 bytes), and the uLong  */
    5005             :       /* accumulator starts offset the appropriate number of units  */
    5006             :       /* to the right to avoid overwrite during the unchunking.  */
    5007             : 
    5008             :       /* Make sure no signed int overflow below. This is always true */
    5009             :       /* if the given numbers have less digits than DEC_MAX_DIGITS. */
    5010           0 :       U_ASSERT((uint32_t)iacc <= INT32_MAX/sizeof(uLong));
    5011           0 :       needbytes=iacc*sizeof(uLong);
    5012             :       #if DECDPUN==1
    5013           0 :       zoff=(iacc+7)/8;        /* items to offset by  */
    5014           0 :       needbytes+=zoff*8;
    5015             :       #endif
    5016           0 :       if (needbytes>(Int)sizeof(zaccbuff)) {
    5017           0 :         allocacc=(uLong *)malloc(needbytes);
    5018           0 :         zacc=(uLong *)allocacc;}
    5019           0 :       if (zlhi==NULL||zrhi==NULL||zacc==NULL) {
    5020           0 :         *status|=DEC_Insufficient_storage;
    5021           0 :         break;}
    5022             : 
    5023           0 :       acc=(Unit *)zacc;       /* -> target Unit array  */
    5024             :       #if DECDPUN==1
    5025           0 :       zacc+=zoff;             /* start uLong accumulator to right  */
    5026             :       #endif
    5027             : 
    5028             :       /* assemble the chunked copies of the left and right sides  */
    5029           0 :       for (count=lhs->digits, cup=lhs->lsu, lip=zlhi; count>0; lip++)
    5030           0 :         for (p=0, *lip=0; p<FASTDIGS && count>0;
    5031           0 :              p+=DECDPUN, cup++, count-=DECDPUN)
    5032           0 :           *lip+=*cup*powers[p];
    5033           0 :       lmsi=lip-1;     /* save -> msi  */
    5034           0 :       for (count=rhs->digits, cup=rhs->lsu, rip=zrhi; count>0; rip++)
    5035           0 :         for (p=0, *rip=0; p<FASTDIGS && count>0;
    5036           0 :              p+=DECDPUN, cup++, count-=DECDPUN)
    5037           0 :           *rip+=*cup*powers[p];
    5038           0 :       rmsi=rip-1;     /* save -> msi  */
    5039             : 
    5040             :       /* zero the accumulator  */
    5041           0 :       for (lp=zacc; lp<zacc+iacc; lp++) *lp=0;
    5042             : 
    5043             :       /* Start the multiplication */
    5044             :       /* Resolving carries can dominate the cost of accumulating the  */
    5045             :       /* partial products, so this is only done when necessary.  */
    5046             :       /* Each uLong item in the accumulator can hold values up to  */
    5047             :       /* 2**64-1, and each partial product can be as large as  */
    5048             :       /* (10**FASTDIGS-1)**2.  When FASTDIGS=9, this can be added to  */
    5049             :       /* itself 18.4 times in a uLong without overflowing, so during  */
    5050             :       /* the main calculation resolution is carried out every 18th  */
    5051             :       /* add -- every 162 digits.  Similarly, when FASTDIGS=8, the  */
    5052             :       /* partial products can be added to themselves 1844.6 times in  */
    5053             :       /* a uLong without overflowing, so intermediate carry  */
    5054             :       /* resolution occurs only every 14752 digits.  Hence for common  */
    5055             :       /* short numbers usually only the one final carry resolution  */
    5056             :       /* occurs.  */
    5057             :       /* (The count is set via FASTLAZY to simplify experiments to  */
    5058             :       /* measure the value of this approach: a 35% improvement on a  */
    5059             :       /* [34x34] multiply.)  */
    5060           0 :       lazy=FASTLAZY;                         /* carry delay count  */
    5061           0 :       for (rip=zrhi; rip<=rmsi; rip++) {     /* over each item in rhs  */
    5062           0 :         lp=zacc+(rip-zrhi);                  /* where to add the lhs  */
    5063           0 :         for (lip=zlhi; lip<=lmsi; lip++, lp++) { /* over each item in lhs  */
    5064           0 :           *lp+=(uLong)(*lip)*(*rip);         /* [this should in-line]  */
    5065             :           } /* lip loop  */
    5066           0 :         lazy--;
    5067           0 :         if (lazy>0 && rip!=rmsi) continue;
    5068           0 :         lazy=FASTLAZY;                       /* reset delay count  */
    5069             :         /* spin up the accumulator resolving overflows  */
    5070           0 :         for (lp=zacc; lp<zacc+iacc; lp++) {
    5071           0 :           if (*lp<FASTBASE) continue;        /* it fits  */
    5072           0 :           lcarry=*lp/FASTBASE;               /* top part [slow divide]  */
    5073             :           /* lcarry can exceed 2**32-1, so check again; this check  */
    5074             :           /* and occasional extra divide (slow) is well worth it, as  */
    5075             :           /* it allows FASTLAZY to be increased to 18 rather than 4  */
    5076             :           /* in the FASTDIGS=9 case  */
    5077           0 :           if (lcarry<FASTBASE) carry=(uInt)lcarry;  /* [usual]  */
    5078             :            else { /* two-place carry [fairly rare]  */
    5079           0 :             uInt carry2=(uInt)(lcarry/FASTBASE);    /* top top part  */
    5080           0 :             *(lp+2)+=carry2;                        /* add to item+2  */
    5081           0 :             *lp-=((uLong)FASTBASE*FASTBASE*carry2); /* [slow]  */
    5082           0 :             carry=(uInt)(lcarry-((uLong)FASTBASE*carry2)); /* [inline]  */
    5083             :             }
    5084           0 :           *(lp+1)+=carry;                    /* add to item above [inline]  */
    5085           0 :           *lp-=((uLong)FASTBASE*carry);      /* [inline]  */
    5086             :           } /* carry resolution  */
    5087             :         } /* rip loop  */
    5088             : 
    5089             :       /* The multiplication is complete; time to convert back into  */
    5090             :       /* units.  This can be done in-place in the accumulator and in  */
    5091             :       /* 32-bit operations, because carries were resolved after the  */
    5092             :       /* final add.  This needs N-1 divides and multiplies for  */
    5093             :       /* each item in the accumulator (which will become up to N  */
    5094             :       /* units, where 2<=N<=9).  */
    5095           0 :       for (lp=zacc, up=acc; lp<zacc+iacc; lp++) {
    5096           0 :         uInt item=(uInt)*lp;                 /* decapitate to uInt  */
    5097           0 :         for (p=0; p<FASTDIGS-DECDPUN; p+=DECDPUN, up++) {
    5098           0 :           uInt part=item/(DECDPUNMAX+1);
    5099           0 :           *up=(Unit)(item-(part*(DECDPUNMAX+1)));
    5100           0 :           item=part;
    5101             :           } /* p  */
    5102           0 :         *up=(Unit)item; up++;                /* [final needs no division]  */
    5103             :         } /* lp  */
    5104           0 :       accunits=up-acc;                       /* count of units  */
    5105             :       }
    5106             :      else { /* here to use units directly, without chunking ['old code']  */
    5107             :     #endif
    5108             : 
    5109             :       /* if accumulator will be too long for local storage, then allocate  */
    5110           0 :       acc=accbuff;                 /* -> assume buffer for accumulator  */
    5111           0 :       needbytes=(D2U(lhs->digits)+D2U(rhs->digits))*sizeof(Unit);
    5112           0 :       if (needbytes>(Int)sizeof(accbuff)) {
    5113           0 :         allocacc=(Unit *)malloc(needbytes);
    5114           0 :         if (allocacc==NULL) {*status|=DEC_Insufficient_storage; break;}
    5115           0 :         acc=(Unit *)allocacc;                /* use the allocated space  */
    5116             :         }
    5117             : 
    5118             :       /* Now the main long multiplication loop */
    5119             :       /* Unlike the equivalent in the IBM Java implementation, there  */
    5120             :       /* is no advantage in calculating from msu to lsu.  So, do it  */
    5121             :       /* by the book, as it were.  */
    5122             :       /* Each iteration calculates ACC=ACC+MULTAND*MULT  */
    5123           0 :       accunits=1;                  /* accumulator starts at '0'  */
    5124           0 :       *acc=0;                      /* .. (lsu=0)  */
    5125           0 :       shift=0;                     /* no multiplicand shift at first  */
    5126           0 :       madlength=D2U(lhs->digits);  /* this won't change  */
    5127           0 :       mermsup=rhs->lsu+D2U(rhs->digits); /* -> msu+1 of multiplier  */
    5128             : 
    5129           0 :       for (mer=rhs->lsu; mer<mermsup; mer++) {
    5130             :         /* Here, *mer is the next Unit in the multiplier to use  */
    5131             :         /* If non-zero [optimization] add it...  */
    5132           0 :         if (*mer!=0) accunits=decUnitAddSub(&acc[shift], accunits-shift,
    5133             :                                             lhs->lsu, madlength, 0,
    5134           0 :                                             &acc[shift], *mer)
    5135             :                                             + shift;
    5136             :          else { /* extend acc with a 0; it will be used shortly  */
    5137           0 :           *(acc+accunits)=0;       /* [this avoids length of <=0 later]  */
    5138           0 :           accunits++;
    5139             :           }
    5140             :         /* multiply multiplicand by 10**DECDPUN for next Unit to left  */
    5141           0 :         shift++;                   /* add this for 'logical length'  */
    5142             :         } /* n  */
    5143             :     #if FASTMUL
    5144             :       } /* unchunked units  */
    5145             :     #endif
    5146             :     /* common end-path  */
    5147             :     #if DECTRACE
    5148             :       decDumpAr('*', acc, accunits);         /* Show exact result  */
    5149             :     #endif
    5150             : 
    5151             :     /* acc now contains the exact result of the multiplication,  */
    5152             :     /* possibly with a leading zero unit; build the decNumber from  */
    5153             :     /* it, noting if any residue  */
    5154           0 :     res->bits=bits;                          /* set sign  */
    5155           0 :     res->digits=decGetDigits(acc, accunits); /* count digits exactly  */
    5156             : 
    5157             :     /* There can be a 31-bit wrap in calculating the exponent.  */
    5158             :     /* This can only happen if both input exponents are negative and  */
    5159             :     /* both their magnitudes are large.  If there was a wrap, set a  */
    5160             :     /* safe very negative exponent, from which decFinalize() will  */
    5161             :     /* raise a hard underflow shortly.  */
    5162           0 :     exponent=lhs->exponent+rhs->exponent;    /* calculate exponent  */
    5163           0 :     if (lhs->exponent<0 && rhs->exponent<0 && exponent>0)
    5164           0 :       exponent=-2*DECNUMMAXE;                /* force underflow  */
    5165           0 :     res->exponent=exponent;                  /* OK to overwrite now  */
    5166             : 
    5167             : 
    5168             :     /* Set the coefficient.  If any rounding, residue records  */
    5169           0 :     decSetCoeff(res, set, acc, res->digits, &residue, status);
    5170           0 :     decFinish(res, set, &residue, status);   /* final cleanup  */
    5171             :     } while(0);                         /* end protected  */
    5172             : 
    5173           0 :   if (allocacc!=NULL) free(allocacc);   /* drop any storage used  */
    5174             :   #if DECSUBSET
    5175             :   if (allocrhs!=NULL) free(allocrhs);   /* ..  */
    5176             :   if (alloclhs!=NULL) free(alloclhs);   /* ..  */
    5177             :   #endif
    5178             :   #if FASTMUL
    5179           0 :   if (allocrhi!=NULL) free(allocrhi);   /* ..  */
    5180           0 :   if (alloclhi!=NULL) free(alloclhi);   /* ..  */
    5181             :   #endif
    5182           0 :   return res;
    5183             :   } /* decMultiplyOp  */
    5184             : 
    5185             : /* ------------------------------------------------------------------ */
    5186             : /* decExpOp -- effect exponentiation                                  */
    5187             : /*                                                                    */
    5188             : /*   This computes C = exp(A)                                         */
    5189             : /*                                                                    */
    5190             : /*   res is C, the result.  C may be A                                */
    5191             : /*   rhs is A                                                         */
    5192             : /*   set is the context; note that rounding mode has no effect        */
    5193             : /*                                                                    */
    5194             : /* C must have space for set->digits digits. status is updated but    */
    5195             : /* not set.                                                           */
    5196             : /*                                                                    */
    5197             : /* Restrictions:                                                      */
    5198             : /*                                                                    */
    5199             : /*   digits, emax, and -emin in the context must be less than         */
    5200             : /*   2*DEC_MAX_MATH (1999998), and the rhs must be within these       */
    5201             : /*   bounds or a zero.  This is an internal routine, so these         */
    5202             : /*   restrictions are contractual and not enforced.                   */
    5203             : /*                                                                    */
    5204             : /* A finite result is rounded using DEC_ROUND_HALF_EVEN; it will      */
    5205             : /* almost always be correctly rounded, but may be up to 1 ulp in      */
    5206             : /* error in rare cases.                                               */
    5207             : /*                                                                    */
    5208             : /* Finite results will always be full precision and Inexact, except   */
    5209             : /* when A is a zero or -Infinity (giving 1 or 0 respectively).        */
    5210             : /* ------------------------------------------------------------------ */
    5211             : /* This approach used here is similar to the algorithm described in   */
    5212             : /*                                                                    */
    5213             : /*   Variable Precision Exponential Function, T. E. Hull and          */
    5214             : /*   A. Abrham, ACM Transactions on Mathematical Software, Vol 12 #2, */
    5215             : /*   pp79-91, ACM, June 1986.                                         */
    5216             : /*                                                                    */
    5217             : /* with the main difference being that the iterations in the series   */
    5218             : /* evaluation are terminated dynamically (which does not require the  */
    5219             : /* extra variable-precision variables which are expensive in this     */
    5220             : /* context).                                                          */
    5221             : /*                                                                    */
    5222             : /* The error analysis in Hull & Abrham's paper applies except for the */
    5223             : /* round-off error accumulation during the series evaluation.  This   */
    5224             : /* code does not precalculate the number of iterations and so cannot  */
    5225             : /* use Horner's scheme.  Instead, the accumulation is done at double- */
    5226             : /* precision, which ensures that the additions of the terms are exact */
    5227             : /* and do not accumulate round-off (and any round-off errors in the   */
    5228             : /* terms themselves move 'to the right' faster than they can          */
    5229             : /* accumulate).  This code also extends the calculation by allowing,  */
    5230             : /* in the spirit of other decNumber operators, the input to be more   */
    5231             : /* precise than the result (the precision used is based on the more   */
    5232             : /* precise of the input or requested result).                         */
    5233             : /*                                                                    */
    5234             : /* Implementation notes:                                              */
    5235             : /*                                                                    */
    5236             : /* 1. This is separated out as decExpOp so it can be called from      */
    5237             : /*    other Mathematical functions (notably Ln) with a wider range    */
    5238             : /*    than normal.  In particular, it can handle the slightly wider   */
    5239             : /*    (double) range needed by Ln (which has to be able to calculate  */
    5240             : /*    exp(-x) where x can be the tiniest number (Ntiny).              */
    5241             : /*                                                                    */
    5242             : /* 2. Normalizing x to be <=0.1 (instead of <=1) reduces loop         */
    5243             : /*    iterations by appoximately a third with additional (although    */
    5244             : /*    diminishing) returns as the range is reduced to even smaller    */
    5245             : /*    fractions.  However, h (the power of 10 used to correct the     */
    5246             : /*    result at the end, see below) must be kept <=8 as otherwise     */
    5247             : /*    the final result cannot be computed.  Hence the leverage is a   */
    5248             : /*    sliding value (8-h), where potentially the range is reduced     */
    5249             : /*    more for smaller values.                                        */
    5250             : /*                                                                    */
    5251             : /*    The leverage that can be applied in this way is severely        */
    5252             : /*    limited by the cost of the raise-to-the power at the end,       */
    5253             : /*    which dominates when the number of iterations is small (less    */
    5254             : /*    than ten) or when rhs is short.  As an example, the adjustment  */
    5255             : /*    x**10,000,000 needs 31 multiplications, all but one full-width. */
    5256             : /*                                                                    */
    5257             : /* 3. The restrictions (especially precision) could be raised with    */
    5258             : /*    care, but the full decNumber range seems very hard within the   */
    5259             : /*    32-bit limits.                                                  */
    5260             : /*                                                                    */
    5261             : /* 4. The working precisions for the static buffers are twice the     */
    5262             : /*    obvious size to allow for calls from decNumberPower.            */
    5263             : /* ------------------------------------------------------------------ */
    5264           0 : decNumber * decExpOp(decNumber *res, const decNumber *rhs,
    5265             :                          decContext *set, uInt *status) {
    5266           0 :   uInt ignore=0;                   /* working status  */
    5267             :   Int h;                           /* adjusted exponent for 0.xxxx  */
    5268             :   Int p;                           /* working precision  */
    5269             :   Int residue;                     /* rounding residue  */
    5270             :   uInt needbytes;                  /* for space calculations  */
    5271           0 :   const decNumber *x=rhs;          /* (may point to safe copy later)  */
    5272             :   decContext aset, tset, dset;     /* working contexts  */
    5273             :   Int comp;                        /* work  */
    5274             : 
    5275             :   /* the argument is often copied to normalize it, so (unusually) it  */
    5276             :   /* is treated like other buffers, using DECBUFFER, +1 in case  */
    5277             :   /* DECBUFFER is 0  */
    5278             :   decNumber bufr[D2N(DECBUFFER*2+1)];
    5279           0 :   decNumber *allocrhs=NULL;        /* non-NULL if rhs buffer allocated  */
    5280             : 
    5281             :   /* the working precision will be no more than set->digits+8+1  */
    5282             :   /* so for on-stack buffers DECBUFFER+9 is used, +1 in case DECBUFFER  */
    5283             :   /* is 0 (and twice that for the accumulator)  */
    5284             : 
    5285             :   /* buffer for t, term (working precision plus)  */
    5286             :   decNumber buft[D2N(DECBUFFER*2+9+1)];
    5287           0 :   decNumber *allocbuft=NULL;       /* -> allocated buft, iff allocated  */
    5288           0 :   decNumber *t=buft;               /* term  */
    5289             :   /* buffer for a, accumulator (working precision * 2), at least 9  */
    5290             :   decNumber bufa[D2N(DECBUFFER*4+18+1)];
    5291           0 :   decNumber *allocbufa=NULL;       /* -> allocated bufa, iff allocated  */
    5292           0 :   decNumber *a=bufa;               /* accumulator  */
    5293             :   /* decNumber for the divisor term; this needs at most 9 digits  */
    5294             :   /* and so can be fixed size [16 so can use standard context]  */
    5295             :   decNumber bufd[D2N(16)];
    5296           0 :   decNumber *d=bufd;               /* divisor  */
    5297             :   decNumber numone;                /* constant 1  */
    5298             : 
    5299             :   #if DECCHECK
    5300             :   Int iterations=0;                /* for later sanity check  */
    5301             :   if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
    5302             :   #endif
    5303             : 
    5304             :   do {                                  /* protect allocated storage  */
    5305           0 :     if (SPECIALARG) {                   /* handle infinities and NaNs  */
    5306           0 :       if (decNumberIsInfinite(rhs)) {   /* an infinity  */
    5307           0 :         if (decNumberIsNegative(rhs))   /* -Infinity -> +0  */
    5308           0 :           uprv_decNumberZero(res);
    5309           0 :          else uprv_decNumberCopy(res, rhs);  /* +Infinity -> self  */
    5310             :         }
    5311           0 :        else decNaNs(res, rhs, NULL, set, status); /* a NaN  */
    5312           0 :       break;}
    5313             : 
    5314           0 :     if (ISZERO(rhs)) {                  /* zeros -> exact 1  */
    5315           0 :       uprv_decNumberZero(res);               /* make clean 1  */
    5316           0 :       *res->lsu=1;                      /* ..  */
    5317           0 :       break;}                           /* [no status to set]  */
    5318             : 
    5319             :     /* e**x when 0 < x < 0.66 is < 1+3x/2, hence can fast-path  */
    5320             :     /* positive and negative tiny cases which will result in inexact  */
    5321             :     /* 1.  This also allows the later add-accumulate to always be  */
    5322             :     /* exact (because its length will never be more than twice the  */
    5323             :     /* working precision).  */
    5324             :     /* The comparator (tiny) needs just one digit, so use the  */
    5325             :     /* decNumber d for it (reused as the divisor, etc., below); its  */
    5326             :     /* exponent is such that if x is positive it will have  */
    5327             :     /* set->digits-1 zeros between the decimal point and the digit,  */
    5328             :     /* which is 4, and if x is negative one more zero there as the  */
    5329             :     /* more precise result will be of the form 0.9999999 rather than  */
    5330             :     /* 1.0000001.  Hence, tiny will be 0.0000004  if digits=7 and x>0  */
    5331             :     /* or 0.00000004 if digits=7 and x<0.  If RHS not larger than  */
    5332             :     /* this then the result will be 1.000000  */
    5333           0 :     uprv_decNumberZero(d);                   /* clean  */
    5334           0 :     *d->lsu=4;                          /* set 4 ..  */
    5335           0 :     d->exponent=-set->digits;           /* * 10**(-d)  */
    5336           0 :     if (decNumberIsNegative(rhs)) d->exponent--;  /* negative case  */
    5337           0 :     comp=decCompare(d, rhs, 1);         /* signless compare  */
    5338           0 :     if (comp==BADINT) {
    5339           0 :       *status|=DEC_Insufficient_storage;
    5340           0 :       break;}
    5341           0 :     if (comp>=0) {                      /* rhs < d  */
    5342           0 :       Int shift=set->digits-1;
    5343           0 :       uprv_decNumberZero(res);               /* set 1  */
    5344           0 :       *res->lsu=1;                      /* ..  */
    5345           0 :       res->digits=decShiftToMost(res->lsu, 1, shift);
    5346           0 :       res->exponent=-shift;                  /* make 1.0000...  */
    5347           0 :       *status|=DEC_Inexact | DEC_Rounded;    /* .. inexactly  */
    5348           0 :       break;} /* tiny  */
    5349             : 
    5350             :     /* set up the context to be used for calculating a, as this is  */
    5351             :     /* used on both paths below  */
    5352           0 :     uprv_decContextDefault(&aset, DEC_INIT_DECIMAL64);
    5353             :     /* accumulator bounds are as requested (could underflow)  */
    5354           0 :     aset.emax=set->emax;                /* usual bounds  */
    5355           0 :     aset.emin=set->emin;                /* ..  */
    5356           0 :     aset.clamp=0;                       /* and no concrete format  */
    5357             : 
    5358             :     /* calculate the adjusted (Hull & Abrham) exponent (where the  */
    5359             :     /* decimal point is just to the left of the coefficient msd)  */
    5360           0 :     h=rhs->exponent+rhs->digits;
    5361             :     /* if h>8 then 10**h cannot be calculated safely; however, when  */
    5362             :     /* h=8 then exp(|rhs|) will be at least exp(1E+7) which is at  */
    5363             :     /* least 6.59E+4342944, so (due to the restriction on Emax/Emin)  */
    5364             :     /* overflow (or underflow to 0) is guaranteed -- so this case can  */
    5365             :     /* be handled by simply forcing the appropriate excess  */
    5366           0 :     if (h>8) {                          /* overflow/underflow  */
    5367             :       /* set up here so Power call below will over or underflow to  */
    5368             :       /* zero; set accumulator to either 2 or 0.02  */
    5369             :       /* [stack buffer for a is always big enough for this]  */
    5370           0 :       uprv_decNumberZero(a);
    5371           0 :       *a->lsu=2;                        /* not 1 but < exp(1)  */
    5372           0 :       if (decNumberIsNegative(rhs)) a->exponent=-2; /* make 0.02  */
    5373           0 :       h=8;                              /* clamp so 10**h computable  */
    5374           0 :       p=9;                              /* set a working precision  */
    5375             :       }
    5376             :      else {                             /* h<=8  */
    5377           0 :       Int maxlever=(rhs->digits>8?1:0);
    5378             :       /* [could/should increase this for precisions >40 or so, too]  */
    5379             : 
    5380             :       /* if h is 8, cannot normalize to a lower upper limit because  */
    5381             :       /* the final result will not be computable (see notes above),  */
    5382             :       /* but leverage can be applied whenever h is less than 8.  */
    5383             :       /* Apply as much as possible, up to a MAXLEVER digits, which  */
    5384             :       /* sets the tradeoff against the cost of the later a**(10**h).  */
    5385             :       /* As h is increased, the working precision below also  */
    5386             :       /* increases to compensate for the "constant digits at the  */
    5387             :       /* front" effect.  */
    5388           0 :       Int lever=MINI(8-h, maxlever);    /* leverage attainable  */
    5389           0 :       Int use=-rhs->digits-lever;       /* exponent to use for RHS  */
    5390           0 :       h+=lever;                         /* apply leverage selected  */
    5391           0 :       if (h<0) {                        /* clamp  */
    5392           0 :         use+=h;                         /* [may end up subnormal]  */
    5393           0 :         h=0;
    5394             :         }
    5395             :       /* Take a copy of RHS if it needs normalization (true whenever x>=1)  */
    5396           0 :       if (rhs->exponent!=use) {
    5397           0 :         decNumber *newrhs=bufr;         /* assume will fit on stack  */
    5398           0 :         needbytes=sizeof(decNumber)+(D2U(rhs->digits)-1)*sizeof(Unit);
    5399           0 :         if (needbytes>sizeof(bufr)) {   /* need malloc space  */
    5400           0 :           allocrhs=(decNumber *)malloc(needbytes);
    5401           0 :           if (allocrhs==NULL) {         /* hopeless -- abandon  */
    5402           0 :             *status|=DEC_Insufficient_storage;
    5403           0 :             break;}
    5404           0 :           newrhs=allocrhs;              /* use the allocated space  */
    5405             :           }
    5406           0 :         uprv_decNumberCopy(newrhs, rhs);     /* copy to safe space  */
    5407           0 :         newrhs->exponent=use;           /* normalize; now <1  */
    5408           0 :         x=newrhs;                       /* ready for use  */
    5409             :         /* decNumberShow(x);  */
    5410             :         }
    5411             : 
    5412             :       /* Now use the usual power series to evaluate exp(x).  The  */
    5413             :       /* series starts as 1 + x + x^2/2 ... so prime ready for the  */
    5414             :       /* third term by setting the term variable t=x, the accumulator  */
    5415             :       /* a=1, and the divisor d=2.  */
    5416             : 
    5417             :       /* First determine the working precision.  From Hull & Abrham  */
    5418             :       /* this is set->digits+h+2.  However, if x is 'over-precise' we  */
    5419             :       /* need to allow for all its digits to potentially participate  */
    5420             :       /* (consider an x where all the excess digits are 9s) so in  */
    5421             :       /* this case use x->digits+h+2  */
    5422           0 :       p=MAXI(x->digits, set->digits)+h+2;    /* [h<=8]  */
    5423             : 
    5424             :       /* a and t are variable precision, and depend on p, so space  */
    5425             :       /* must be allocated for them if necessary  */
    5426             : 
    5427             :       /* the accumulator needs to be able to hold 2p digits so that  */
    5428             :       /* the additions on the second and subsequent iterations are  */
    5429             :       /* sufficiently exact.  */
    5430           0 :       needbytes=sizeof(decNumber)+(D2U(p*2)-1)*sizeof(Unit);
    5431           0 :       if (needbytes>sizeof(bufa)) {     /* need malloc space  */
    5432           0 :         allocbufa=(decNumber *)malloc(needbytes);
    5433           0 :         if (allocbufa==NULL) {          /* hopeless -- abandon  */
    5434           0 :           *status|=DEC_Insufficient_storage;
    5435           0 :           break;}
    5436           0 :         a=allocbufa;                    /* use the allocated space  */
    5437             :         }
    5438             :       /* the term needs to be able to hold p digits (which is  */
    5439             :       /* guaranteed to be larger than x->digits, so the initial copy  */
    5440             :       /* is safe); it may also be used for the raise-to-power  */
    5441             :       /* calculation below, which needs an extra two digits  */
    5442           0 :       needbytes=sizeof(decNumber)+(D2U(p+2)-1)*sizeof(Unit);
    5443           0 :       if (needbytes>sizeof(buft)) {     /* need malloc space  */
    5444           0 :         allocbuft=(decNumber *)malloc(needbytes);
    5445           0 :         if (allocbuft==NULL) {          /* hopeless -- abandon  */
    5446           0 :           *status|=DEC_Insufficient_storage;
    5447           0 :           break;}
    5448           0 :         t=allocbuft;                    /* use the allocated space  */
    5449             :         }
    5450             : 
    5451           0 :       uprv_decNumberCopy(t, x);              /* term=x  */
    5452           0 :       uprv_decNumberZero(a); *a->lsu=1;      /* accumulator=1  */
    5453           0 :       uprv_decNumberZero(d); *d->lsu=2;      /* divisor=2  */
    5454           0 :       uprv_decNumberZero(&numone); *numone.lsu=1; /* constant 1 for increment  */
    5455             : 
    5456             :       /* set up the contexts for calculating a, t, and d  */
    5457           0 :       uprv_decContextDefault(&tset, DEC_INIT_DECIMAL64);
    5458           0 :       dset=tset;
    5459             :       /* accumulator bounds are set above, set precision now  */
    5460           0 :       aset.digits=p*2;                  /* double  */
    5461             :       /* term bounds avoid any underflow or overflow  */
    5462           0 :       tset.digits=p;
    5463           0 :       tset.emin=DEC_MIN_EMIN;           /* [emax is plenty]  */
    5464             :       /* [dset.digits=16, etc., are sufficient]  */
    5465             : 
    5466             :       /* finally ready to roll  */
    5467             :       for (;;) {
    5468             :         #if DECCHECK
    5469             :         iterations++;
    5470             :         #endif
    5471             :         /* only the status from the accumulation is interesting  */
    5472             :         /* [but it should remain unchanged after first add]  */
    5473           0 :         decAddOp(a, a, t, &aset, 0, status);           /* a=a+t  */
    5474           0 :         decMultiplyOp(t, t, x, &tset, &ignore);        /* t=t*x  */
    5475           0 :         decDivideOp(t, t, d, &tset, DIVIDE, &ignore);  /* t=t/d  */
    5476             :         /* the iteration ends when the term cannot affect the result,  */
    5477             :         /* if rounded to p digits, which is when its value is smaller  */
    5478             :         /* than the accumulator by p+1 digits.  There must also be  */
    5479             :         /* full precision in a.  */
    5480           0 :         if (((a->digits+a->exponent)>=(t->digits+t->exponent+p+1))
    5481           0 :             && (a->digits>=p)) break;
    5482           0 :         decAddOp(d, d, &numone, &dset, 0, &ignore);    /* d=d+1  */
    5483             :         } /* iterate  */
    5484             : 
    5485             :       #if DECCHECK
    5486             :       /* just a sanity check; comment out test to show always  */
    5487             :       if (iterations>p+3)
    5488             :         printf("Exp iterations=%ld, status=%08lx, p=%ld, d=%ld\n",
    5489             :                (LI)iterations, (LI)*status, (LI)p, (LI)x->digits);
    5490             :       #endif
    5491             :       } /* h<=8  */
    5492             : 
    5493             :     /* apply postconditioning: a=a**(10**h) -- this is calculated  */
    5494             :     /* at a slightly higher precision than Hull & Abrham suggest  */
    5495           0 :     if (h>0) {
    5496           0 :       Int seenbit=0;               /* set once a 1-bit is seen  */
    5497             :       Int i;                       /* counter  */
    5498           0 :       Int n=powers[h];             /* always positive  */
    5499           0 :       aset.digits=p+2;             /* sufficient precision  */
    5500             :       /* avoid the overhead and many extra digits of decNumberPower  */
    5501             :       /* as all that is needed is the short 'multipliers' loop; here  */
    5502             :       /* accumulate the answer into t  */
    5503           0 :       uprv_decNumberZero(t); *t->lsu=1; /* acc=1  */
    5504           0 :       for (i=1;;i++){              /* for each bit [top bit ignored]  */
    5505             :         /* abandon if have had overflow or terminal underflow  */
    5506           0 :         if (*status & (DEC_Overflow|DEC_Underflow)) { /* interesting?  */
    5507           0 :           if (*status&DEC_Overflow || ISZERO(t)) break;}
    5508           0 :         n=n<<1;                    /* move next bit to testable position  */
    5509           0 :         if (n<0) {                 /* top bit is set  */
    5510           0 :           seenbit=1;               /* OK, have a significant bit  */
    5511           0 :           decMultiplyOp(t, t, a, &aset, status); /* acc=acc*x  */
    5512             :           }
    5513           0 :         if (i==31) break;          /* that was the last bit  */
    5514           0 :         if (!seenbit) continue;    /* no need to square 1  */
    5515           0 :         decMultiplyOp(t, t, t, &aset, status); /* acc=acc*acc [square]  */
    5516             :         } /*i*/ /* 32 bits  */
    5517             :       /* decNumberShow(t);  */
    5518           0 :       a=t;                         /* and carry on using t instead of a  */
    5519             :       }
    5520             : 
    5521             :     /* Copy and round the result to res  */
    5522           0 :     residue=1;                          /* indicate dirt to right ..  */
    5523           0 :     if (ISZERO(a)) residue=0;           /* .. unless underflowed to 0  */
    5524           0 :     aset.digits=set->digits;            /* [use default rounding]  */
    5525           0 :     decCopyFit(res, a, &aset, &residue, status); /* copy & shorten  */
    5526           0 :     decFinish(res, set, &residue, status);       /* cleanup/set flags  */
    5527             :     } while(0);                         /* end protected  */
    5528             : 
    5529           0 :   if (allocrhs !=NULL) free(allocrhs);  /* drop any storage used  */
    5530           0 :   if (allocbufa!=NULL) free(allocbufa); /* ..  */
    5531           0 :   if (allocbuft!=NULL) free(allocbuft); /* ..  */
    5532             :   /* [status is handled by caller]  */
    5533           0 :   return res;
    5534             :   } /* decExpOp  */
    5535             : 
    5536             : /* ------------------------------------------------------------------ */
    5537             : /* Initial-estimate natural logarithm table                           */
    5538             : /*                                                                    */
    5539             : /*   LNnn -- 90-entry 16-bit table for values from .10 through .99.   */
    5540             : /*           The result is a 4-digit encode of the coefficient (c=the */
    5541             : /*           top 14 bits encoding 0-9999) and a 2-digit encode of the */
    5542             : /*           exponent (e=the bottom 2 bits encoding 0-3)              */
    5543             : /*                                                                    */
    5544             : /*           The resulting value is given by:                         */
    5545             : /*                                                                    */
    5546             : /*             v = -c * 10**(-e-3)                                    */
    5547             : /*                                                                    */
    5548             : /*           where e and c are extracted from entry k = LNnn[x-10]    */
    5549             : /*           where x is truncated (NB) into the range 10 through 99,  */
    5550             : /*           and then c = k>>2 and e = k&3.                           */
    5551             : /* ------------------------------------------------------------------ */
    5552             : static const uShort LNnn[90]={9016,  8652,  8316,  8008,  7724,  7456,  7208,
    5553             :   6972,  6748,  6540,  6340,  6148,  5968,  5792,  5628,  5464,  5312,
    5554             :   5164,  5020,  4884,  4748,  4620,  4496,  4376,  4256,  4144,  4032,
    5555             :  39233, 38181, 37157, 36157, 35181, 34229, 33297, 32389, 31501, 30629,
    5556             :  29777, 28945, 28129, 27329, 26545, 25777, 25021, 24281, 23553, 22837,
    5557             :  22137, 21445, 20769, 20101, 19445, 18801, 18165, 17541, 16925, 16321,
    5558             :  15721, 15133, 14553, 13985, 13421, 12865, 12317, 11777, 11241, 10717,
    5559             :  10197,  9685,  9177,  8677,  8185,  7697,  7213,  6737,  6269,  5801,
    5560             :   5341,  4889,  4437, 39930, 35534, 31186, 26886, 22630, 18418, 14254,
    5561             :  10130,  6046, 20055};
    5562             : 
    5563             : /* ------------------------------------------------------------------ */
    5564             : /* decLnOp -- effect natural logarithm                                */
    5565             : /*                                                                    */
    5566             : /*   This computes C = ln(A)                                          */
    5567             : /*                                                                    */
    5568             : /*   res is C, the result.  C may be A                                */
    5569             : /*   rhs is A                                                         */
    5570             : /*   set is the context; note that rounding mode has no effect        */
    5571             : /*                                                                    */
    5572             : /* C must have space for set->digits digits.                          */
    5573             : /*                                                                    */
    5574             : /* Notable cases:                                                     */
    5575             : /*   A<0 -> Invalid                                                   */
    5576             : /*   A=0 -> -Infinity (Exact)                                         */
    5577             : /*   A=+Infinity -> +Infinity (Exact)                                 */
    5578             : /*   A=1 exactly -> 0 (Exact)                                         */
    5579             : /*                                                                    */
    5580             : /* Restrictions (as for Exp):                                         */
    5581             : /*                                                                    */
    5582             : /*   digits, emax, and -emin in the context must be less than         */
    5583             : /*   DEC_MAX_MATH+11 (1000010), and the rhs must be within these      */
    5584             : /*   bounds or a zero.  This is an internal routine, so these         */
    5585             : /*   restrictions are contractual and not enforced.                   */
    5586             : /*                                                                    */
    5587             : /* A finite result is rounded using DEC_ROUND_HALF_EVEN; it will      */
    5588             : /* almost always be correctly rounded, but may be up to 1 ulp in      */
    5589             : /* error in rare cases.                                               */
    5590             : /* ------------------------------------------------------------------ */
    5591             : /* The result is calculated using Newton's method, with each          */
    5592             : /* iteration calculating a' = a + x * exp(-a) - 1.  See, for example, */
    5593             : /* Epperson 1989.                                                     */
    5594             : /*                                                                    */
    5595             : /* The iteration ends when the adjustment x*exp(-a)-1 is tiny enough. */
    5596             : /* This has to be calculated at the sum of the precision of x and the */
    5597             : /* working precision.                                                 */
    5598             : /*                                                                    */
    5599             : /* Implementation notes:                                              */
    5600             : /*                                                                    */
    5601             : /* 1. This is separated out as decLnOp so it can be called from       */
    5602             : /*    other Mathematical functions (e.g., Log 10) with a wider range  */
    5603             : /*    than normal.  In particular, it can handle the slightly wider   */
    5604             : /*    (+9+2) range needed by a power function.                        */
    5605             : /*                                                                    */
    5606             : /* 2. The speed of this function is about 10x slower than exp, as     */
    5607             : /*    it typically needs 4-6 iterations for short numbers, and the    */
    5608             : /*    extra precision needed adds a squaring effect, twice.           */
    5609             : /*                                                                    */
    5610             : /* 3. Fastpaths are included for ln(10) and ln(2), up to length 40,   */
    5611             : /*    as these are common requests.  ln(10) is used by log10(x).      */
    5612             : /*                                                                    */
    5613             : /* 4. An iteration might be saved by widening the LNnn table, and     */
    5614             : /*    would certainly save at least one if it were made ten times     */
    5615             : /*    bigger, too (for truncated fractions 0.100 through 0.999).      */
    5616             : /*    However, for most practical evaluations, at least four or five  */
    5617             : /*    iterations will be neede -- so this would only speed up by      */
    5618             : /*    20-25% and that probably does not justify increasing the table  */
    5619             : /*    size.                                                           */
    5620             : /*                                                                    */
    5621             : /* 5. The static buffers are larger than might be expected to allow   */
    5622             : /*    for calls from decNumberPower.                                  */
    5623             : /* ------------------------------------------------------------------ */
    5624             : #if defined(__clang__) || U_GCC_MAJOR_MINOR >= 406
    5625             : #pragma GCC diagnostic push
    5626             : #pragma GCC diagnostic ignored "-Warray-bounds"
    5627             : #endif
    5628           0 : decNumber * decLnOp(decNumber *res, const decNumber *rhs,
    5629             :                     decContext *set, uInt *status) {
    5630           0 :   uInt ignore=0;                   /* working status accumulator  */
    5631             :   uInt needbytes;                  /* for space calculations  */
    5632             :   Int residue;                     /* rounding residue  */
    5633             :   Int r;                           /* rhs=f*10**r [see below]  */
    5634             :   Int p;                           /* working precision  */
    5635             :   Int pp;                          /* precision for iteration  */
    5636             :   Int t;                           /* work  */
    5637             : 
    5638             :   /* buffers for a (accumulator, typically precision+2) and b  */
    5639             :   /* (adjustment calculator, same size)  */
    5640             :   decNumber bufa[D2N(DECBUFFER+12)];
    5641           0 :   decNumber *allocbufa=NULL;       /* -> allocated bufa, iff allocated  */
    5642           0 :   decNumber *a=bufa;               /* accumulator/work  */
    5643             :   decNumber bufb[D2N(DECBUFFER*2+2)];
    5644           0 :   decNumber *allocbufb=NULL;       /* -> allocated bufa, iff allocated  */
    5645           0 :   decNumber *b=bufb;               /* adjustment/work  */
    5646             : 
    5647             :   decNumber  numone;               /* constant 1  */
    5648             :   decNumber  cmp;                  /* work  */
    5649             :   decContext aset, bset;           /* working contexts  */
    5650             : 
    5651             :   #if DECCHECK
    5652             :   Int iterations=0;                /* for later sanity check  */
    5653             :   if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
    5654             :   #endif
    5655             : 
    5656             :   do {                                  /* protect allocated storage  */
    5657           0 :     if (SPECIALARG) {                   /* handle infinities and NaNs  */
    5658           0 :       if (decNumberIsInfinite(rhs)) {   /* an infinity  */
    5659           0 :         if (decNumberIsNegative(rhs))   /* -Infinity -> error  */
    5660           0 :           *status|=DEC_Invalid_operation;
    5661           0 :          else uprv_decNumberCopy(res, rhs);  /* +Infinity -> self  */
    5662             :         }
    5663           0 :        else decNaNs(res, rhs, NULL, set, status); /* a NaN  */
    5664           0 :       break;}
    5665             : 
    5666           0 :     if (ISZERO(rhs)) {                  /* +/- zeros -> -Infinity  */
    5667           0 :       uprv_decNumberZero(res);               /* make clean  */
    5668           0 :       res->bits=DECINF|DECNEG;          /* set - infinity  */
    5669           0 :       break;}                           /* [no status to set]  */
    5670             : 
    5671             :     /* Non-zero negatives are bad...  */
    5672           0 :     if (decNumberIsNegative(rhs)) {     /* -x -> error  */
    5673           0 :       *status|=DEC_Invalid_operation;
    5674           0 :       break;}
    5675             : 
    5676             :     /* Here, rhs is positive, finite, and in range  */
    5677             : 
    5678             :     /* lookaside fastpath code for ln(2) and ln(10) at common lengths  */
    5679           0 :     if (rhs->exponent==0 && set->digits<=40) {
    5680             :       #if DECDPUN==1
    5681           0 :       if (rhs->lsu[0]==0 && rhs->lsu[1]==1 && rhs->digits==2) { /* ln(10)  */
    5682             :       #else
    5683             :       if (rhs->lsu[0]==10 && rhs->digits==2) {                  /* ln(10)  */
    5684             :       #endif
    5685           0 :         aset=*set; aset.round=DEC_ROUND_HALF_EVEN;
    5686             :         #define LN10 "2.302585092994045684017991454684364207601"
    5687           0 :         uprv_decNumberFromString(res, LN10, &aset);
    5688           0 :         *status|=(DEC_Inexact | DEC_Rounded); /* is inexact  */
    5689           0 :         break;}
    5690           0 :       if (rhs->lsu[0]==2 && rhs->digits==1) { /* ln(2)  */
    5691           0 :         aset=*set; aset.round=DEC_ROUND_HALF_EVEN;
    5692             :         #define LN2 "0.6931471805599453094172321214581765680755"
    5693           0 :         uprv_decNumberFromString(res, LN2, &aset);
    5694           0 :         *status|=(DEC_Inexact | DEC_Rounded);
    5695           0 :         break;}
    5696             :       } /* integer and short  */
    5697             : 
    5698             :     /* Determine the working precision.  This is normally the  */
    5699             :     /* requested precision + 2, with a minimum of 9.  However, if  */
    5700             :     /* the rhs is 'over-precise' then allow for all its digits to  */
    5701             :     /* potentially participate (consider an rhs where all the excess  */
    5702             :     /* digits are 9s) so in this case use rhs->digits+2.  */
    5703           0 :     p=MAXI(rhs->digits, MAXI(set->digits, 7))+2;
    5704             : 
    5705             :     /* Allocate space for the accumulator and the high-precision  */
    5706             :     /* adjustment calculator, if necessary.  The accumulator must  */
    5707             :     /* be able to hold p digits, and the adjustment up to  */
    5708             :     /* rhs->digits+p digits.  They are also made big enough for 16  */
    5709             :     /* digits so that they can be used for calculating the initial  */
    5710             :     /* estimate.  */
    5711           0 :     needbytes=sizeof(decNumber)+(D2U(MAXI(p,16))-1)*sizeof(Unit);
    5712           0 :     if (needbytes>sizeof(bufa)) {     /* need malloc space  */
    5713           0 :       allocbufa=(decNumber *)malloc(needbytes);
    5714           0 :       if (allocbufa==NULL) {          /* hopeless -- abandon  */
    5715           0 :         *status|=DEC_Insufficient_storage;
    5716           0 :         break;}
    5717           0 :       a=allocbufa;                    /* use the allocated space  */
    5718             :       }
    5719           0 :     pp=p+rhs->digits;
    5720           0 :     needbytes=sizeof(decNumber)+(D2U(MAXI(pp,16))-1)*sizeof(Unit);
    5721           0 :     if (needbytes>sizeof(bufb)) {     /* need malloc space  */
    5722           0 :       allocbufb=(decNumber *)malloc(needbytes);
    5723           0 :       if (allocbufb==NULL) {          /* hopeless -- abandon  */
    5724           0 :         *status|=DEC_Insufficient_storage;
    5725           0 :         break;}
    5726           0 :       b=allocbufb;                    /* use the allocated space  */
    5727             :       }
    5728             : 
    5729             :     /* Prepare an initial estimate in acc. Calculate this by  */
    5730             :     /* considering the coefficient of x to be a normalized fraction,  */
    5731             :     /* f, with the decimal point at far left and multiplied by  */
    5732             :     /* 10**r.  Then, rhs=f*10**r and 0.1<=f<1, and  */
    5733             :     /*   ln(x) = ln(f) + ln(10)*r  */
    5734             :     /* Get the initial estimate for ln(f) from a small lookup  */
    5735             :     /* table (see above) indexed by the first two digits of f,  */
    5736             :     /* truncated.  */
    5737             : 
    5738           0 :     uprv_decContextDefault(&aset, DEC_INIT_DECIMAL64); /* 16-digit extended  */
    5739           0 :     r=rhs->exponent+rhs->digits;        /* 'normalised' exponent  */
    5740           0 :     uprv_decNumberFromInt32(a, r);           /* a=r  */
    5741           0 :     uprv_decNumberFromInt32(b, 2302585);     /* b=ln(10) (2.302585)  */
    5742           0 :     b->exponent=-6;                     /*  ..  */
    5743           0 :     decMultiplyOp(a, a, b, &aset, &ignore);  /* a=a*b  */
    5744             :     /* now get top two digits of rhs into b by simple truncate and  */
    5745             :     /* force to integer  */
    5746           0 :     residue=0;                          /* (no residue)  */
    5747           0 :     aset.digits=2; aset.round=DEC_ROUND_DOWN;
    5748           0 :     decCopyFit(b, rhs, &aset, &residue, &ignore); /* copy & shorten  */
    5749           0 :     b->exponent=0;                      /* make integer  */
    5750           0 :     t=decGetInt(b);                     /* [cannot fail]  */
    5751           0 :     if (t<10) t=X10(t);                 /* adjust single-digit b  */
    5752           0 :     t=LNnn[t-10];                       /* look up ln(b)  */
    5753           0 :     uprv_decNumberFromInt32(b, t>>2);        /* b=ln(b) coefficient  */
    5754           0 :     b->exponent=-(t&3)-3;               /* set exponent  */
    5755           0 :     b->bits=DECNEG;                     /* ln(0.10)->ln(0.99) always -ve  */
    5756           0 :     aset.digits=16; aset.round=DEC_ROUND_HALF_EVEN; /* restore  */
    5757           0 :     decAddOp(a, a, b, &aset, 0, &ignore); /* acc=a+b  */
    5758             :     /* the initial estimate is now in a, with up to 4 digits correct.  */
    5759             :     /* When rhs is at or near Nmax the estimate will be low, so we  */
    5760             :     /* will approach it from below, avoiding overflow when calling exp.  */
    5761             : 
    5762           0 :     uprv_decNumberZero(&numone); *numone.lsu=1;   /* constant 1 for adjustment  */
    5763             : 
    5764             :     /* accumulator bounds are as requested (could underflow, but  */
    5765             :     /* cannot overflow)  */
    5766           0 :     aset.emax=set->emax;
    5767           0 :     aset.emin=set->emin;
    5768           0 :     aset.clamp=0;                       /* no concrete format  */
    5769             :     /* set up a context to be used for the multiply and subtract  */
    5770           0 :     bset=aset;
    5771           0 :     bset.emax=DEC_MAX_MATH*2;           /* use double bounds for the  */
    5772           0 :     bset.emin=-DEC_MAX_MATH*2;          /* adjustment calculation  */
    5773             :                                         /* [see decExpOp call below]  */
    5774             :     /* for each iteration double the number of digits to calculate,  */
    5775             :     /* up to a maximum of p  */
    5776           0 :     pp=9;                               /* initial precision  */
    5777             :     /* [initially 9 as then the sequence starts 7+2, 16+2, and  */
    5778             :     /* 34+2, which is ideal for standard-sized numbers]  */
    5779           0 :     aset.digits=pp;                     /* working context  */
    5780           0 :     bset.digits=pp+rhs->digits;         /* wider context  */
    5781             :     for (;;) {                          /* iterate  */
    5782             :       #if DECCHECK
    5783             :       iterations++;
    5784             :       if (iterations>24) break;         /* consider 9 * 2**24  */
    5785             :       #endif
    5786             :       /* calculate the adjustment (exp(-a)*x-1) into b.  This is a  */
    5787             :       /* catastrophic subtraction but it really is the difference  */
    5788             :       /* from 1 that is of interest.  */
    5789             :       /* Use the internal entry point to Exp as it allows the double  */
    5790             :       /* range for calculating exp(-a) when a is the tiniest subnormal.  */
    5791           0 :       a->bits^=DECNEG;                  /* make -a  */
    5792           0 :       decExpOp(b, a, &bset, &ignore);   /* b=exp(-a)  */
    5793           0 :       a->bits^=DECNEG;                  /* restore sign of a  */
    5794             :       /* now multiply by rhs and subtract 1, at the wider precision  */
    5795           0 :       decMultiplyOp(b, b, rhs, &bset, &ignore);        /* b=b*rhs  */
    5796           0 :       decAddOp(b, b, &numone, &bset, DECNEG, &ignore); /* b=b-1  */
    5797             : 
    5798             :       /* the iteration ends when the adjustment cannot affect the  */
    5799             :       /* result by >=0.5 ulp (at the requested digits), which  */
    5800             :       /* is when its value is smaller than the accumulator by  */
    5801             :       /* set->digits+1 digits (or it is zero) -- this is a looser  */
    5802             :       /* requirement than for Exp because all that happens to the  */
    5803             :       /* accumulator after this is the final rounding (but note that  */
    5804             :       /* there must also be full precision in a, or a=0).  */
    5805             : 
    5806           0 :       if (decNumberIsZero(b) ||
    5807           0 :           (a->digits+a->exponent)>=(b->digits+b->exponent+set->digits+1)) {
    5808           0 :         if (a->digits==p) break;
    5809           0 :         if (decNumberIsZero(a)) {
    5810           0 :           decCompareOp(&cmp, rhs, &numone, &aset, COMPARE, &ignore); /* rhs=1 ?  */
    5811           0 :           if (cmp.lsu[0]==0) a->exponent=0;            /* yes, exact 0  */
    5812           0 :            else *status|=(DEC_Inexact | DEC_Rounded);  /* no, inexact  */
    5813           0 :           break;
    5814             :           }
    5815             :         /* force padding if adjustment has gone to 0 before full length  */
    5816           0 :         if (decNumberIsZero(b)) b->exponent=a->exponent-p;
    5817             :         }
    5818             : 
    5819             :       /* not done yet ...  */
    5820           0 :       decAddOp(a, a, b, &aset, 0, &ignore);  /* a=a+b for next estimate  */
    5821           0 :       if (pp==p) continue;                   /* precision is at maximum  */
    5822             :       /* lengthen the next calculation  */
    5823           0 :       pp=pp*2;                               /* double precision  */
    5824           0 :       if (pp>p) pp=p;                        /* clamp to maximum  */
    5825           0 :       aset.digits=pp;                        /* working context  */
    5826           0 :       bset.digits=pp+rhs->digits;            /* wider context  */
    5827             :       } /* Newton's iteration  */
    5828             : 
    5829             :     #if DECCHECK
    5830             :     /* just a sanity check; remove the test to show always  */
    5831             :     if (iterations>24)
    5832             :       printf("Ln iterations=%ld, status=%08lx, p=%ld, d=%ld\n",
    5833             :             (LI)iterations, (LI)*status, (LI)p, (LI)rhs->digits);
    5834             :     #endif
    5835             : 
    5836             :     /* Copy and round the result to res  */
    5837           0 :     residue=1;                          /* indicate dirt to right  */
    5838           0 :     if (ISZERO(a)) residue=0;           /* .. unless underflowed to 0  */
    5839           0 :     aset.digits=set->digits;            /* [use default rounding]  */
    5840           0 :     decCopyFit(res, a, &aset, &residue, status); /* copy & shorten  */
    5841           0 :     decFinish(res, set, &residue, status);       /* cleanup/set flags  */
    5842             :     } while(0);                         /* end protected  */
    5843             : 
    5844           0 :   if (allocbufa!=NULL) free(allocbufa); /* drop any storage used  */
    5845           0 :   if (allocbufb!=NULL) free(allocbufb); /* ..  */
    5846             :   /* [status is handled by caller]  */
    5847           0 :   return res;
    5848             :   } /* decLnOp  */
    5849             : #if defined(__clang__) || U_GCC_MAJOR_MINOR >= 406
    5850             : #pragma GCC diagnostic pop
    5851             : #endif
    5852             : 
    5853             : /* ------------------------------------------------------------------ */
    5854             : /* decQuantizeOp  -- force exponent to requested value                */
    5855             : /*                                                                    */
    5856             : /*   This computes C = op(A, B), where op adjusts the coefficient     */
    5857             : /*   of C (by rounding or shifting) such that the exponent (-scale)   */
    5858             : /*   of C has the value B or matches the exponent of B.               */
    5859             : /*   The numerical value of C will equal A, except for the effects of */
    5860             : /*   any rounding that occurred.                                      */
    5861             : /*                                                                    */
    5862             : /*   res is C, the result.  C may be A or B                           */
    5863             : /*   lhs is A, the number to adjust                                   */
    5864             : /*   rhs is B, the requested exponent                                 */
    5865             : /*   set is the context                                               */
    5866             : /*   quant is 1 for quantize or 0 for rescale                         */
    5867             : /*   status is the status accumulator (this can be called without     */
    5868             : /*          risk of control loss)                                     */
    5869             : /*                                                                    */
    5870             : /* C must have space for set->digits digits.                          */
    5871             : /*                                                                    */
    5872             : /* Unless there is an error or the result is infinite, the exponent   */
    5873             : /* after the operation is guaranteed to be that requested.            */
    5874             : /* ------------------------------------------------------------------ */
    5875           0 : static decNumber * decQuantizeOp(decNumber *res, const decNumber *lhs,
    5876             :                                  const decNumber *rhs, decContext *set,
    5877             :                                  Flag quant, uInt *status) {
    5878             :   #if DECSUBSET
    5879             :   decNumber *alloclhs=NULL;        /* non-NULL if rounded lhs allocated  */
    5880             :   decNumber *allocrhs=NULL;        /* .., rhs  */
    5881             :   #endif
    5882           0 :   const decNumber *inrhs=rhs;      /* save original rhs  */
    5883           0 :   Int   reqdigits=set->digits;     /* requested DIGITS  */
    5884             :   Int   reqexp;                    /* requested exponent [-scale]  */
    5885           0 :   Int   residue=0;                 /* rounding residue  */
    5886           0 :   Int   etiny=set->emin-(reqdigits-1);
    5887             : 
    5888             :   #if DECCHECK
    5889             :   if (decCheckOperands(res, lhs, rhs, set)) return res;
    5890             :   #endif
    5891             : 
    5892             :   do {                             /* protect allocated storage  */
    5893             :     #if DECSUBSET
    5894             :     if (!set->extended) {
    5895             :       /* reduce operands and set lostDigits status, as needed  */
    5896             :       if (lhs->digits>reqdigits) {
    5897             :         alloclhs=decRoundOperand(lhs, set, status);
    5898             :         if (alloclhs==NULL) break;
    5899             :         lhs=alloclhs;
    5900             :         }
    5901             :       if (rhs->digits>reqdigits) { /* [this only checks lostDigits]  */
    5902             :         allocrhs=decRoundOperand(rhs, set, status);
    5903             :         if (allocrhs==NULL) break;
    5904             :         rhs=allocrhs;
    5905             :         }
    5906             :       }
    5907             :     #endif
    5908             :     /* [following code does not require input rounding]  */
    5909             : 
    5910             :     /* Handle special values  */
    5911           0 :     if (SPECIALARGS) {
    5912             :       /* NaNs get usual processing  */
    5913           0 :       if (SPECIALARGS & (DECSNAN | DECNAN))
    5914           0 :         decNaNs(res, lhs, rhs, set, status);
    5915             :       /* one infinity but not both is bad  */
    5916           0 :       else if ((lhs->bits ^ rhs->bits) & DECINF)
    5917           0 :         *status|=DEC_Invalid_operation;
    5918             :       /* both infinity: return lhs  */
    5919           0 :       else uprv_decNumberCopy(res, lhs);          /* [nop if in place]  */
    5920           0 :       break;
    5921             :       }
    5922             : 
    5923             :     /* set requested exponent  */
    5924           0 :     if (quant) reqexp=inrhs->exponent;  /* quantize -- match exponents  */
    5925             :      else {                             /* rescale -- use value of rhs  */
    5926             :       /* Original rhs must be an integer that fits and is in range,  */
    5927             :       /* which could be from -1999999997 to +999999999, thanks to  */
    5928             :       /* subnormals  */
    5929           0 :       reqexp=decGetInt(inrhs);               /* [cannot fail]  */
    5930             :       }
    5931             : 
    5932             :     #if DECSUBSET
    5933             :     if (!set->extended) etiny=set->emin;     /* no subnormals  */
    5934             :     #endif
    5935             : 
    5936           0 :     if (reqexp==BADINT                       /* bad (rescale only) or ..  */
    5937           0 :      || reqexp==BIGODD || reqexp==BIGEVEN    /* very big (ditto) or ..  */
    5938           0 :      || (reqexp<etiny)                       /* < lowest  */
    5939           0 :      || (reqexp>set->emax)) {                /* > emax  */
    5940           0 :       *status|=DEC_Invalid_operation;
    5941           0 :       break;}
    5942             : 
    5943             :     /* the RHS has been processed, so it can be overwritten now if necessary  */
    5944           0 :     if (ISZERO(lhs)) {                       /* zero coefficient unchanged  */
    5945           0 :       uprv_decNumberCopy(res, lhs);               /* [nop if in place]  */
    5946           0 :       res->exponent=reqexp;                  /* .. just set exponent  */
    5947             :       #if DECSUBSET
    5948             :       if (!set->extended) res->bits=0;       /* subset specification; no -0  */
    5949             :       #endif
    5950             :       }
    5951             :      else {                                  /* non-zero lhs  */
    5952           0 :       Int adjust=reqexp-lhs->exponent;       /* digit adjustment needed  */
    5953             :       /* if adjusted coefficient will definitely not fit, give up now  */
    5954           0 :       if ((lhs->digits-adjust)>reqdigits) {
    5955           0 :         *status|=DEC_Invalid_operation;
    5956           0 :         break;
    5957             :         }
    5958             : 
    5959           0 :       if (adjust>0) {                        /* increasing exponent  */
    5960             :         /* this will decrease the length of the coefficient by adjust  */
    5961             :         /* digits, and must round as it does so  */
    5962             :         decContext workset;                  /* work  */
    5963           0 :         workset=*set;                        /* clone rounding, etc.  */
    5964           0 :         workset.digits=lhs->digits-adjust;   /* set requested length  */
    5965             :         /* [note that the latter can be <1, here]  */
    5966           0 :         decCopyFit(res, lhs, &workset, &residue, status); /* fit to result  */
    5967           0 :         decApplyRound(res, &workset, residue, status);    /* .. and round  */
    5968           0 :         residue=0;                                        /* [used]  */
    5969             :         /* If just rounded a 999s case, exponent will be off by one;  */
    5970             :         /* adjust back (after checking space), if so.  */
    5971           0 :         if (res->exponent>reqexp) {
    5972             :           /* re-check needed, e.g., for quantize(0.9999, 0.001) under  */
    5973             :           /* set->digits==3  */
    5974           0 :           if (res->digits==reqdigits) {      /* cannot shift by 1  */
    5975           0 :             *status&=~(DEC_Inexact | DEC_Rounded); /* [clean these]  */
    5976           0 :             *status|=DEC_Invalid_operation;
    5977           0 :             break;
    5978             :             }
    5979           0 :           res->digits=decShiftToMost(res->lsu, res->digits, 1); /* shift  */
    5980           0 :           res->exponent--;                   /* (re)adjust the exponent.  */
    5981             :           }
    5982             :         #if DECSUBSET
    5983             :         if (ISZERO(res) && !set->extended) res->bits=0; /* subset; no -0  */
    5984             :         #endif
    5985             :         } /* increase  */
    5986             :        else /* adjust<=0 */ {                /* decreasing or = exponent  */
    5987             :         /* this will increase the length of the coefficient by -adjust  */
    5988             :         /* digits, by adding zero or more trailing zeros; this is  */
    5989             :         /* already checked for fit, above  */
    5990           0 :         uprv_decNumberCopy(res, lhs);             /* [it will fit]  */
    5991             :         /* if padding needed (adjust<0), add it now...  */
    5992           0 :         if (adjust<0) {
    5993           0 :           res->digits=decShiftToMost(res->lsu, res->digits, -adjust);
    5994           0 :           res->exponent+=adjust;             /* adjust the exponent  */
    5995             :           }
    5996             :         } /* decrease  */
    5997             :       } /* non-zero  */
    5998             : 
    5999             :     /* Check for overflow [do not use Finalize in this case, as an  */
    6000             :     /* overflow here is a "don't fit" situation]  */
    6001           0 :     if (res->exponent>set->emax-res->digits+1) {  /* too big  */
    6002           0 :       *status|=DEC_Invalid_operation;
    6003           0 :       break;
    6004             :       }
    6005             :      else {
    6006           0 :       decFinalize(res, set, &residue, status);    /* set subnormal flags  */
    6007           0 :       *status&=~DEC_Underflow;          /* suppress Underflow [as per 754]  */
    6008             :       }
    6009             :     } while(0);                         /* end protected  */
    6010             : 
    6011             :   #if DECSUBSET
    6012             :   if (allocrhs!=NULL) free(allocrhs);   /* drop any storage used  */
    6013             :   if (alloclhs!=NULL) free(alloclhs);   /* ..  */
    6014             :   #endif
    6015           0 :   return res;
    6016             :   } /* decQuantizeOp  */
    6017             : 
    6018             : /* ------------------------------------------------------------------ */
    6019             : /* decCompareOp -- compare, min, or max two Numbers                   */
    6020             : /*                                                                    */
    6021             : /*   This computes C = A ? B and carries out one of four operations:  */
    6022             : /*     COMPARE    -- returns the signum (as a number) giving the      */
    6023             : /*                   result of a comparison unless one or both        */
    6024             : /*                   operands is a NaN (in which case a NaN results)  */
    6025             : /*     COMPSIG    -- as COMPARE except that a quiet NaN raises        */
    6026             : /*                   Invalid operation.                               */
    6027             : /*     COMPMAX    -- returns the larger of the operands, using the    */
    6028             : /*                   754 maxnum operation                             */
    6029             : /*     COMPMAXMAG -- ditto, comparing absolute values                 */
    6030             : /*     COMPMIN    -- the 754 minnum operation                         */
    6031             : /*     COMPMINMAG -- ditto, comparing absolute values                 */
    6032             : /*     COMTOTAL   -- returns the signum (as a number) giving the      */
    6033             : /*                   result of a comparison using 754 total ordering  */
    6034             : /*                                                                    */
    6035             : /*   res is C, the result.  C may be A and/or B (e.g., X=X?X)         */
    6036             : /*   lhs is A                                                         */
    6037             : /*   rhs is B                                                         */
    6038             : /*   set is the context                                               */
    6039             : /*   op  is the operation flag                                        */
    6040             : /*   status is the usual accumulator                                  */
    6041             : /*                                                                    */
    6042             : /* C must have space for one digit for COMPARE or set->digits for     */
    6043             : /* COMPMAX, COMPMIN, COMPMAXMAG, or COMPMINMAG.                       */
    6044             : /* ------------------------------------------------------------------ */
    6045             : /* The emphasis here is on speed for common cases, and avoiding       */
    6046             : /* coefficient comparison if possible.                                */
    6047             : /* ------------------------------------------------------------------ */
    6048           0 : static decNumber * decCompareOp(decNumber *res, const decNumber *lhs,
    6049             :                          const decNumber *rhs, decContext *set,
    6050             :                          Flag op, uInt *status) {
    6051             :   #if DECSUBSET
    6052             :   decNumber *alloclhs=NULL;        /* non-NULL if rounded lhs allocated  */
    6053             :   decNumber *allocrhs=NULL;        /* .., rhs  */
    6054             :   #endif
    6055           0 :   Int   result=0;                  /* default result value  */
    6056             :   uByte merged;                    /* work  */
    6057             : 
    6058             :   #if DECCHECK
    6059             :   if (decCheckOperands(res, lhs, rhs, set)) return res;
    6060             :   #endif
    6061             : 
    6062             :   do {                             /* protect allocated storage  */
    6063             :     #if DECSUBSET
    6064             :     if (!set->extended) {
    6065             :       /* reduce operands and set lostDigits status, as needed  */
    6066             :       if (lhs->digits>set->digits) {
    6067             :         alloclhs=decRoundOperand(lhs, set, status);
    6068             :         if (alloclhs==NULL) {result=BADINT; break;}
    6069             :         lhs=alloclhs;
    6070             :         }
    6071             :       if (rhs->digits>set->digits) {
    6072             :         allocrhs=decRoundOperand(rhs, set, status);
    6073             :         if (allocrhs==NULL) {result=BADINT; break;}
    6074             :         rhs=allocrhs;
    6075             :         }
    6076             :       }
    6077             :     #endif
    6078             :     /* [following code does not require input rounding]  */
    6079             : 
    6080             :     /* If total ordering then handle differing signs 'up front'  */
    6081           0 :     if (op==COMPTOTAL) {                /* total ordering  */
    6082           0 :       if (decNumberIsNegative(lhs) && !decNumberIsNegative(rhs)) {
    6083           0 :         result=-1;
    6084           0 :         break;
    6085             :         }
    6086           0 :       if (!decNumberIsNegative(lhs) && decNumberIsNegative(rhs)) {
    6087           0 :         result=+1;
    6088           0 :         break;
    6089             :         }
    6090             :       }
    6091             : 
    6092             :     /* handle NaNs specially; let infinities drop through  */
    6093             :     /* This assumes sNaN (even just one) leads to NaN.  */
    6094           0 :     merged=(lhs->bits | rhs->bits) & (DECSNAN | DECNAN);
    6095           0 :     if (merged) {                       /* a NaN bit set  */
    6096           0 :       if (op==COMPARE);                 /* result will be NaN  */
    6097           0 :        else if (op==COMPSIG)            /* treat qNaN as sNaN  */
    6098           0 :         *status|=DEC_Invalid_operation | DEC_sNaN;
    6099           0 :        else if (op==COMPTOTAL) {        /* total ordering, always finite  */
    6100             :         /* signs are known to be the same; compute the ordering here  */
    6101             :         /* as if the signs are both positive, then invert for negatives  */
    6102           0 :         if (!decNumberIsNaN(lhs)) result=-1;
    6103           0 :          else if (!decNumberIsNaN(rhs)) result=+1;
    6104             :          /* here if both NaNs  */
    6105           0 :          else if (decNumberIsSNaN(lhs) && decNumberIsQNaN(rhs)) result=-1;
    6106           0 :          else if (decNumberIsQNaN(lhs) && decNumberIsSNaN(rhs)) result=+1;
    6107             :          else { /* both NaN or both sNaN  */
    6108             :           /* now it just depends on the payload  */
    6109           0 :           result=decUnitCompare(lhs->lsu, D2U(lhs->digits),
    6110           0 :                                 rhs->lsu, D2U(rhs->digits), 0);
    6111             :           /* [Error not possible, as these are 'aligned']  */
    6112             :           } /* both same NaNs  */
    6113           0 :         if (decNumberIsNegative(lhs)) result=-result;
    6114           0 :         break;
    6115             :         } /* total order  */
    6116             : 
    6117           0 :        else if (merged & DECSNAN);           /* sNaN -> qNaN  */
    6118             :        else { /* here if MIN or MAX and one or two quiet NaNs  */
    6119             :         /* min or max -- 754 rules ignore single NaN  */
    6120           0 :         if (!decNumberIsNaN(lhs) || !decNumberIsNaN(rhs)) {
    6121             :           /* just one NaN; force choice to be the non-NaN operand  */
    6122           0 :           op=COMPMAX;
    6123           0 :           if (lhs->bits & DECNAN) result=-1; /* pick rhs  */
    6124           0 :                              else result=+1; /* pick lhs  */
    6125           0 :           break;
    6126             :           }
    6127             :         } /* max or min  */
    6128           0 :       op=COMPNAN;                            /* use special path  */
    6129           0 :       decNaNs(res, lhs, rhs, set, status);   /* propagate NaN  */
    6130           0 :       break;
    6131             :       }
    6132             :     /* have numbers  */
    6133           0 :     if (op==COMPMAXMAG || op==COMPMINMAG) result=decCompare(lhs, rhs, 1);
    6134           0 :      else result=decCompare(lhs, rhs, 0);    /* sign matters  */
    6135             :     } while(0);                              /* end protected  */
    6136             : 
    6137           0 :   if (result==BADINT) *status|=DEC_Insufficient_storage; /* rare  */
    6138             :    else {
    6139           0 :     if (op==COMPARE || op==COMPSIG ||op==COMPTOTAL) { /* returning signum  */
    6140           0 :       if (op==COMPTOTAL && result==0) {
    6141             :         /* operands are numerically equal or same NaN (and same sign,  */
    6142             :         /* tested first); if identical, leave result 0  */
    6143           0 :         if (lhs->exponent!=rhs->exponent) {
    6144           0 :           if (lhs->exponent<rhs->exponent) result=-1;
    6145           0 :            else result=+1;
    6146           0 :           if (decNumberIsNegative(lhs)) result=-result;
    6147             :           } /* lexp!=rexp  */
    6148             :         } /* total-order by exponent  */
    6149           0 :       uprv_decNumberZero(res);               /* [always a valid result]  */
    6150           0 :       if (result!=0) {                  /* must be -1 or +1  */
    6151           0 :         *res->lsu=1;
    6152           0 :         if (result<0) res->bits=DECNEG;
    6153             :         }
    6154             :       }
    6155           0 :      else if (op==COMPNAN);             /* special, drop through  */
    6156             :      else {                             /* MAX or MIN, non-NaN result  */
    6157           0 :       Int residue=0;                    /* rounding accumulator  */
    6158             :       /* choose the operand for the result  */
    6159             :       const decNumber *choice;
    6160           0 :       if (result==0) { /* operands are numerically equal  */
    6161             :         /* choose according to sign then exponent (see 754)  */
    6162           0 :         uByte slhs=(lhs->bits & DECNEG);
    6163           0 :         uByte srhs=(rhs->bits & DECNEG);
    6164             :         #if DECSUBSET
    6165             :         if (!set->extended) {           /* subset: force left-hand  */
    6166             :           op=COMPMAX;
    6167             :           result=+1;
    6168             :           }
    6169             :         else
    6170             :         #endif
    6171           0 :         if (slhs!=srhs) {          /* signs differ  */
    6172           0 :           if (slhs) result=-1;     /* rhs is max  */
    6173           0 :                else result=+1;     /* lhs is max  */
    6174             :           }
    6175           0 :          else if (slhs && srhs) {  /* both negative  */
    6176           0 :           if (lhs->exponent<rhs->exponent) result=+1;
    6177           0 :                                       else result=-1;
    6178             :           /* [if equal, use lhs, technically identical]  */
    6179             :           }
    6180             :          else {                    /* both positive  */
    6181           0 :           if (lhs->exponent>rhs->exponent) result=+1;
    6182           0 :                                       else result=-1;
    6183             :           /* [ditto]  */
    6184             :           }
    6185             :         } /* numerically equal  */
    6186             :       /* here result will be non-0; reverse if looking for MIN  */
    6187           0 :       if (op==COMPMIN || op==COMPMINMAG) result=-result;
    6188           0 :       choice=(result>0 ? lhs : rhs);    /* choose  */
    6189             :       /* copy chosen to result, rounding if need be  */
    6190           0 :       decCopyFit(res, choice, set, &residue, status);
    6191           0 :       decFinish(res, set, &residue, status);
    6192             :       }
    6193             :     }
    6194             :   #if DECSUBSET
    6195             :   if (allocrhs!=NULL) free(allocrhs);   /* free any storage used  */
    6196             :   if (alloclhs!=NULL) free(alloclhs);   /* ..  */
    6197             :   #endif
    6198           0 :   return res;
    6199             :   } /* decCompareOp  */
    6200             : 
    6201             : /* ------------------------------------------------------------------ */
    6202             : /* decCompare -- compare two decNumbers by numerical value            */
    6203             : /*                                                                    */
    6204             : /*  This routine compares A ? B without altering them.                */
    6205             : /*                                                                    */
    6206             : /*  Arg1 is A, a decNumber which is not a NaN                         */
    6207             : /*  Arg2 is B, a decNumber which is not a NaN                         */
    6208             : /*  Arg3 is 1 for a sign-independent compare, 0 otherwise             */
    6209             : /*                                                                    */
    6210             : /*  returns -1, 0, or 1 for A<B, A==B, or A>B, or BADINT if failure   */
    6211             : /*  (the only possible failure is an allocation error)                */
    6212             : /* ------------------------------------------------------------------ */
    6213           0 : static Int decCompare(const decNumber *lhs, const decNumber *rhs,
    6214             :                       Flag abs_c) {
    6215             :   Int   result;                    /* result value  */
    6216             :   Int   sigr;                      /* rhs signum  */
    6217             :   Int   compare;                   /* work  */
    6218             : 
    6219           0 :   result=1;                                  /* assume signum(lhs)  */
    6220           0 :   if (ISZERO(lhs)) result=0;
    6221           0 :   if (abs_c) {
    6222           0 :     if (ISZERO(rhs)) return result;          /* LHS wins or both 0  */
    6223             :     /* RHS is non-zero  */
    6224           0 :     if (result==0) return -1;                /* LHS is 0; RHS wins  */
    6225             :     /* [here, both non-zero, result=1]  */
    6226             :     }
    6227             :    else {                                    /* signs matter  */
    6228           0 :     if (result && decNumberIsNegative(lhs)) result=-1;
    6229           0 :     sigr=1;                                  /* compute signum(rhs)  */
    6230           0 :     if (ISZERO(rhs)) sigr=0;
    6231           0 :      else if (decNumberIsNegative(rhs)) sigr=-1;
    6232           0 :     if (result > sigr) return +1;            /* L > R, return 1  */
    6233           0 :     if (result < sigr) return -1;            /* L < R, return -1  */
    6234           0 :     if (result==0) return 0;                   /* both 0  */
    6235             :     }
    6236             : 
    6237             :   /* signums are the same; both are non-zero  */
    6238           0 :   if ((lhs->bits | rhs->bits) & DECINF) {    /* one or more infinities  */
    6239           0 :     if (decNumberIsInfinite(rhs)) {
    6240           0 :       if (decNumberIsInfinite(lhs)) result=0;/* both infinite  */
    6241           0 :        else result=-result;                  /* only rhs infinite  */
    6242             :       }
    6243           0 :     return result;
    6244             :     }
    6245             :   /* must compare the coefficients, allowing for exponents  */
    6246           0 :   if (lhs->exponent>rhs->exponent) {         /* LHS exponent larger  */
    6247             :     /* swap sides, and sign  */
    6248           0 :     const decNumber *temp=lhs;
    6249           0 :     lhs=rhs;
    6250           0 :     rhs=temp;
    6251           0 :     result=-result;
    6252             :     }
    6253           0 :   compare=decUnitCompare(lhs->lsu, D2U(lhs->digits),
    6254           0 :                          rhs->lsu, D2U(rhs->digits),
    6255           0 :                          rhs->exponent-lhs->exponent);
    6256           0 :   if (compare!=BADINT) compare*=result;      /* comparison succeeded  */
    6257           0 :   return compare;
    6258             :   } /* decCompare  */
    6259             : 
    6260             : /* ------------------------------------------------------------------ */
    6261             : /* decUnitCompare -- compare two >=0 integers in Unit arrays          */
    6262             : /*                                                                    */
    6263             : /*  This routine compares A ? B*10**E where A and B are unit arrays   */
    6264             : /*  A is a plain integer                                              */
    6265             : /*  B has an exponent of E (which must be non-negative)               */
    6266             : /*                                                                    */
    6267             : /*  Arg1 is A first Unit (lsu)                                        */
    6268             : /*  Arg2 is A length in Units                                         */
    6269             : /*  Arg3 is B first Unit (lsu)                                        */
    6270             : /*  Arg4 is B length in Units                                         */
    6271             : /*  Arg5 is E (0 if the units are aligned)                            */
    6272             : /*                                                                    */
    6273             : /*  returns -1, 0, or 1 for A<B, A==B, or A>B, or BADINT if failure   */
    6274             : /*  (the only possible failure is an allocation error, which can      */
    6275             : /*  only occur if E!=0)                                               */
    6276             : /* ------------------------------------------------------------------ */
    6277           0 : static Int decUnitCompare(const Unit *a, Int alength,
    6278             :                           const Unit *b, Int blength, Int exp) {
    6279             :   Unit  *acc;                      /* accumulator for result  */
    6280             :   Unit  accbuff[SD2U(DECBUFFER*2+1)]; /* local buffer  */
    6281           0 :   Unit  *allocacc=NULL;            /* -> allocated acc buffer, iff allocated  */
    6282             :   Int   accunits, need;            /* units in use or needed for acc  */
    6283             :   const Unit *l, *r, *u;           /* work  */
    6284             :   Int   expunits, exprem, result;  /* ..  */
    6285             : 
    6286           0 :   if (exp==0) {                    /* aligned; fastpath  */
    6287           0 :     if (alength>blength) return 1;
    6288           0 :     if (alength<blength) return -1;
    6289             :     /* same number of units in both -- need unit-by-unit compare  */
    6290           0 :     l=a+alength-1;
    6291           0 :     r=b+alength-1;
    6292           0 :     for (;l>=a; l--, r--) {
    6293           0 :       if (*l>*r) return 1;
    6294           0 :       if (*l<*r) return -1;
    6295             :       }
    6296           0 :     return 0;                      /* all units match  */
    6297             :     } /* aligned  */
    6298             : 
    6299             :   /* Unaligned.  If one is >1 unit longer than the other, padded  */
    6300             :   /* approximately, then can return easily  */
    6301           0 :   if (alength>blength+(Int)D2U(exp)) return 1;
    6302           0 :   if (alength+1<blength+(Int)D2U(exp)) return -1;
    6303             : 
    6304             :   /* Need to do a real subtract.  For this, a result buffer is needed  */
    6305             :   /* even though only the sign is of interest.  Its length needs  */
    6306             :   /* to be the larger of alength and padded blength, +2  */
    6307           0 :   need=blength+D2U(exp);                /* maximum real length of B  */
    6308           0 :   if (need<alength) need=alength;
    6309           0 :   need+=2;
    6310           0 :   acc=accbuff;                          /* assume use local buffer  */
    6311           0 :   if (need*sizeof(Unit)>sizeof(accbuff)) {
    6312           0 :     allocacc=(Unit *)malloc(need*sizeof(Unit));
    6313           0 :     if (allocacc==NULL) return BADINT;  /* hopeless -- abandon  */
    6314           0 :     acc=allocacc;
    6315             :     }
    6316             :   /* Calculate units and remainder from exponent.  */
    6317           0 :   expunits=exp/DECDPUN;
    6318           0 :   exprem=exp%DECDPUN;
    6319             :   /* subtract [A+B*(-m)]  */
    6320           0 :   accunits=decUnitAddSub(a, alength, b, blength, expunits, acc,
    6321           0 :                          -(Int)powers[exprem]);
    6322             :   /* [UnitAddSub result may have leading zeros, even on zero]  */
    6323           0 :   if (accunits<0) result=-1;            /* negative result  */
    6324             :    else {                               /* non-negative result  */
    6325             :     /* check units of the result before freeing any storage  */
    6326           0 :     for (u=acc; u<acc+accunits-1 && *u==0;) u++;
    6327           0 :     result=(*u==0 ? 0 : +1);
    6328             :     }
    6329             :   /* clean up and return the result  */
    6330           0 :   if (allocacc!=NULL) free(allocacc);   /* drop any storage used  */
    6331           0 :   return result;
    6332             :   } /* decUnitCompare  */
    6333             : 
    6334             : /* ------------------------------------------------------------------ */
    6335             : /* decUnitAddSub -- add or subtract two >=0 integers in Unit arrays   */
    6336             : /*                                                                    */
    6337             : /*  This routine performs the calculation:                            */
    6338             : /*                                                                    */
    6339             : /*  C=A+(B*M)                                                         */
    6340             : /*                                                                    */
    6341             : /*  Where M is in the range -DECDPUNMAX through +DECDPUNMAX.          */
    6342             : /*                                                                    */
    6343             : /*  A may be shorter or longer than B.                                */
    6344             : /*                                                                    */
    6345             : /*  Leading zeros are not removed after a calculation.  The result is */
    6346             : /*  either the same length as the longer of A and B (adding any       */
    6347             : /*  shift), or one Unit longer than that (if a Unit carry occurred).  */
    6348             : /*                                                                    */
    6349             : /*  A and B content are not altered unless C is also A or B.          */
    6350             : /*  C may be the same array as A or B, but only if no zero padding is */
    6351             : /*  requested (that is, C may be B only if bshift==0).                */
    6352             : /*  C is filled from the lsu; only those units necessary to complete  */
    6353             : /*  the calculation are referenced.                                   */
    6354             : /*                                                                    */
    6355             : /*  Arg1 is A first Unit (lsu)                                        */
    6356             : /*  Arg2 is A length in Units                                         */
    6357             : /*  Arg3 is B first Unit (lsu)                                        */
    6358             : /*  Arg4 is B length in Units                                         */
    6359             : /*  Arg5 is B shift in Units  (>=0; pads with 0 units if positive)    */
    6360             : /*  Arg6 is C first Unit (lsu)                                        */
    6361             : /*  Arg7 is M, the multiplier                                         */
    6362             : /*                                                                    */
    6363             : /*  returns the count of Units written to C, which will be non-zero   */
    6364             : /*  and negated if the result is negative.  That is, the sign of the  */
    6365             : /*  returned Int is the sign of the result (positive for zero) and    */
    6366             : /*  the absolute value of the Int is the count of Units.              */
    6367             : /*                                                                    */
    6368             : /*  It is the caller's responsibility to make sure that C size is     */
    6369             : /*  safe, allowing space if necessary for a one-Unit carry.           */
    6370             : /*                                                                    */
    6371             : /*  This routine is severely performance-critical; *any* change here  */
    6372             : /*  must be measured (timed) to assure no performance degradation.    */
    6373             : /*  In particular, trickery here tends to be counter-productive, as   */
    6374             : /*  increased complexity of code hurts register optimizations on      */
    6375             : /*  register-poor architectures.  Avoiding divisions is nearly        */
    6376             : /*  always a Good Idea, however.                                      */
    6377             : /*                                                                    */
    6378             : /* Special thanks to Rick McGuire (IBM Cambridge, MA) and Dave Clark  */
    6379             : /* (IBM Warwick, UK) for some of the ideas used in this routine.      */
    6380             : /* ------------------------------------------------------------------ */
    6381           0 : static Int decUnitAddSub(const Unit *a, Int alength,
    6382             :                          const Unit *b, Int blength, Int bshift,
    6383             :                          Unit *c, Int m) {
    6384           0 :   const Unit *alsu=a;              /* A lsu [need to remember it]  */
    6385           0 :   Unit *clsu=c;                    /* C ditto  */
    6386             :   Unit *minC;                      /* low water mark for C  */
    6387             :   Unit *maxC;                      /* high water mark for C  */
    6388           0 :   eInt carry=0;                    /* carry integer (could be Long)  */
    6389             :   Int  add;                        /* work  */
    6390             :   #if DECDPUN<=4                   /* myriadal, millenary, etc.  */
    6391             :   Int  est;                        /* estimated quotient  */
    6392             :   #endif
    6393             : 
    6394             :   #if DECTRACE
    6395             :   if (alength<1 || blength<1)
    6396             :     printf("decUnitAddSub: alen blen m %ld %ld [%ld]\n", alength, blength, m);
    6397             :   #endif
    6398             : 
    6399           0 :   maxC=c+alength;                  /* A is usually the longer  */
    6400           0 :   minC=c+blength;                  /* .. and B the shorter  */
    6401           0 :   if (bshift!=0) {                 /* B is shifted; low As copy across  */
    6402           0 :     minC+=bshift;
    6403             :     /* if in place [common], skip copy unless there's a gap [rare]  */
    6404           0 :     if (a==c && bshift<=alength) {
    6405           0 :       c+=bshift;
    6406           0 :       a+=bshift;
    6407             :       }
    6408           0 :      else for (; c<clsu+bshift; a++, c++) {  /* copy needed  */
    6409           0 :       if (a<alsu+alength) *c=*a;
    6410           0 :        else *c=0;
    6411             :       }
    6412             :     }
    6413           0 :   if (minC>maxC) { /* swap  */
    6414           0 :     Unit *hold=minC;
    6415           0 :     minC=maxC;
    6416           0 :     maxC=hold;
    6417             :     }
    6418             : 
    6419             :   /* For speed, do the addition as two loops; the first where both A  */
    6420             :   /* and B contribute, and the second (if necessary) where only one or  */
    6421             :   /* other of the numbers contribute.  */
    6422             :   /* Carry handling is the same (i.e., duplicated) in each case.  */
    6423           0 :   for (; c<minC; c++) {
    6424           0 :     carry+=*a;
    6425           0 :     a++;
    6426           0 :     carry+=((eInt)*b)*m;                /* [special-casing m=1/-1  */
    6427           0 :     b++;                                /* here is not a win]  */
    6428             :     /* here carry is new Unit of digits; it could be +ve or -ve  */
    6429           0 :     if ((ueInt)carry<=DECDPUNMAX) {     /* fastpath 0-DECDPUNMAX  */
    6430           0 :       *c=(Unit)carry;
    6431           0 :       carry=0;
    6432           0 :       continue;
    6433             :       }
    6434             :     #if DECDPUN==4                           /* use divide-by-multiply  */
    6435             :       if (carry>=0) {
    6436             :         est=(((ueInt)carry>>11)*53687)>>18;
    6437             :         *c=(Unit)(carry-est*(DECDPUNMAX+1)); /* remainder  */
    6438             :         carry=est;                           /* likely quotient [89%]  */
    6439             :         if (*c<DECDPUNMAX+1) continue;       /* estimate was correct  */
    6440             :         carry++;
    6441             :         *c-=DECDPUNMAX+1;
    6442             :         continue;
    6443             :         }
    6444             :       /* negative case  */
    6445             :       carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive  */
    6446             :       est=(((ueInt)carry>>11)*53687)>>18;
    6447             :       *c=(Unit)(carry-est*(DECDPUNMAX+1));
    6448             :       carry=est-(DECDPUNMAX+1);              /* correctly negative  */
    6449             :       if (*c<DECDPUNMAX+1) continue;         /* was OK  */
    6450             :       carry++;
    6451             :       *c-=DECDPUNMAX+1;
    6452             :     #elif DECDPUN==3
    6453             :       if (carry>=0) {
    6454             :         est=(((ueInt)carry>>3)*16777)>>21;
    6455             :         *c=(Unit)(carry-est*(DECDPUNMAX+1)); /* remainder  */
    6456             :         carry=est;                           /* likely quotient [99%]  */
    6457             :         if (*c<DECDPUNMAX+1) continue;       /* estimate was correct  */
    6458             :         carry++;
    6459             :         *c-=DECDPUNMAX+1;
    6460             :         continue;
    6461             :         }
    6462             :       /* negative case  */
    6463             :       carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive  */
    6464             :       est=(((ueInt)carry>>3)*16777)>>21;
    6465             :       *c=(Unit)(carry-est*(DECDPUNMAX+1));
    6466             :       carry=est-(DECDPUNMAX+1);              /* correctly negative  */
    6467             :       if (*c<DECDPUNMAX+1) continue;         /* was OK  */
    6468             :       carry++;
    6469             :       *c-=DECDPUNMAX+1;
    6470             :     #elif DECDPUN<=2
    6471             :       /* Can use QUOT10 as carry <= 4 digits  */
    6472           0 :       if (carry>=0) {
    6473           0 :         est=QUOT10(carry, DECDPUN);
    6474           0 :         *c=(Unit)(carry-est*(DECDPUNMAX+1)); /* remainder  */
    6475           0 :         carry=est;                           /* quotient  */
    6476           0 :         continue;
    6477             :         }
    6478             :       /* negative case  */
    6479           0 :       carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive  */
    6480           0 :       est=QUOT10(carry, DECDPUN);
    6481           0 :       *c=(Unit)(carry-est*(DECDPUNMAX+1));
    6482           0 :       carry=est-(DECDPUNMAX+1);              /* correctly negative  */
    6483             :     #else
    6484             :       /* remainder operator is undefined if negative, so must test  */
    6485             :       if ((ueInt)carry<(DECDPUNMAX+1)*2) {   /* fastpath carry +1  */
    6486             :         *c=(Unit)(carry-(DECDPUNMAX+1));     /* [helps additions]  */
    6487             :         carry=1;
    6488             :         continue;
    6489             :         }
    6490             :       if (carry>=0) {
    6491             :         *c=(Unit)(carry%(DECDPUNMAX+1));
    6492             :         carry=carry/(DECDPUNMAX+1);
    6493             :         continue;
    6494             :         }
    6495             :       /* negative case  */
    6496             :       carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive  */
    6497             :       *c=(Unit)(carry%(DECDPUNMAX+1));
    6498             :       carry=carry/(DECDPUNMAX+1)-(DECDPUNMAX+1);
    6499             :     #endif
    6500             :     } /* c  */
    6501             : 
    6502             :   /* now may have one or other to complete  */
    6503             :   /* [pretest to avoid loop setup/shutdown]  */
    6504           0 :   if (c<maxC) for (; c<maxC; c++) {
    6505           0 :     if (a<alsu+alength) {               /* still in A  */
    6506           0 :       carry+=*a;
    6507           0 :       a++;
    6508             :       }
    6509             :      else {                             /* inside B  */
    6510           0 :       carry+=((eInt)*b)*m;
    6511           0 :       b++;
    6512             :       }
    6513             :     /* here carry is new Unit of digits; it could be +ve or -ve and  */
    6514             :     /* magnitude up to DECDPUNMAX squared  */
    6515           0 :     if ((ueInt)carry<=DECDPUNMAX) {     /* fastpath 0-DECDPUNMAX  */
    6516           0 :       *c=(Unit)carry;
    6517           0 :       carry=0;
    6518           0 :       continue;
    6519             :       }
    6520             :     /* result for this unit is negative or >DECDPUNMAX  */
    6521             :     #if DECDPUN==4                           /* use divide-by-multiply  */
    6522             :       if (carry>=0) {
    6523             :         est=(((ueInt)carry>>11)*53687)>>18;
    6524             :         *c=(Unit)(carry-est*(DECDPUNMAX+1)); /* remainder  */
    6525             :         carry=est;                           /* likely quotient [79.7%]  */
    6526             :         if (*c<DECDPUNMAX+1) continue;       /* estimate was correct  */
    6527             :         carry++;
    6528             :         *c-=DECDPUNMAX+1;
    6529             :         continue;
    6530             :         }
    6531             :       /* negative case  */
    6532             :       carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive  */
    6533             :       est=(((ueInt)carry>>11)*53687)>>18;
    6534             :       *c=(Unit)(carry-est*(DECDPUNMAX+1));
    6535             :       carry=est-(DECDPUNMAX+1);              /* correctly negative  */
    6536             :       if (*c<DECDPUNMAX+1) continue;         /* was OK  */
    6537             :       carry++;
    6538             :       *c-=DECDPUNMAX+1;
    6539             :     #elif DECDPUN==3
    6540             :       if (carry>=0) {
    6541             :         est=(((ueInt)carry>>3)*16777)>>21;
    6542             :         *c=(Unit)(carry-est*(DECDPUNMAX+1)); /* remainder  */
    6543             :         carry=est;                           /* likely quotient [99%]  */
    6544             :         if (*c<DECDPUNMAX+1) continue;       /* estimate was correct  */
    6545             :         carry++;
    6546             :         *c-=DECDPUNMAX+1;
    6547             :         continue;
    6548             :         }
    6549             :       /* negative case  */
    6550             :       carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive  */
    6551             :       est=(((ueInt)carry>>3)*16777)>>21;
    6552             :       *c=(Unit)(carry-est*(DECDPUNMAX+1));
    6553             :       carry=est-(DECDPUNMAX+1);              /* correctly negative  */
    6554             :       if (*c<DECDPUNMAX+1) continue;         /* was OK  */
    6555             :       carry++;
    6556             :       *c-=DECDPUNMAX+1;
    6557             :     #elif DECDPUN<=2
    6558           0 :       if (carry>=0) {
    6559           0 :         est=QUOT10(carry, DECDPUN);
    6560           0 :         *c=(Unit)(carry-est*(DECDPUNMAX+1)); /* remainder  */
    6561           0 :         carry=est;                           /* quotient  */
    6562           0 :         continue;
    6563             :         }
    6564             :       /* negative case  */
    6565           0 :       carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive  */
    6566           0 :       est=QUOT10(carry, DECDPUN);
    6567           0 :       *c=(Unit)(carry-est*(DECDPUNMAX+1));
    6568           0 :       carry=est-(DECDPUNMAX+1);              /* correctly negative  */
    6569             :     #else
    6570             :       if ((ueInt)carry<(DECDPUNMAX+1)*2){    /* fastpath carry 1  */
    6571             :         *c=(Unit)(carry-(DECDPUNMAX+1));
    6572             :         carry=1;
    6573             :         continue;
    6574             :         }
    6575             :       /* remainder operator is undefined if negative, so must test  */
    6576             :       if (carry>=0) {
    6577             :         *c=(Unit)(carry%(DECDPUNMAX+1));
    6578             :         carry=carry/(DECDPUNMAX+1);
    6579             :         continue;
    6580             :         }
    6581             :       /* negative case  */
    6582             :       carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive  */
    6583             :       *c=(Unit)(carry%(DECDPUNMAX+1));
    6584             :       carry=carry/(DECDPUNMAX+1)-(DECDPUNMAX+1);
    6585             :     #endif
    6586             :     } /* c  */
    6587             : 
    6588             :   /* OK, all A and B processed; might still have carry or borrow  */
    6589             :   /* return number of Units in the result, negated if a borrow  */
    6590           0 :   if (carry==0) return c-clsu;     /* no carry, so no more to do  */
    6591           0 :   if (carry>0) {                   /* positive carry  */
    6592           0 :     *c=(Unit)carry;                /* place as new unit  */
    6593           0 :     c++;                           /* ..  */
    6594           0 :     return c-clsu;
    6595             :     }
    6596             :   /* -ve carry: it's a borrow; complement needed  */
    6597           0 :   add=1;                           /* temporary carry...  */
    6598           0 :   for (c=clsu; c<maxC; c++) {
    6599           0 :     add=DECDPUNMAX+add-*c;
    6600           0 :     if (add<=DECDPUNMAX) {
    6601           0 :       *c=(Unit)add;
    6602           0 :       add=0;
    6603             :       }
    6604             :      else {
    6605           0 :       *c=0;
    6606           0 :       add=1;
    6607             :       }
    6608             :     }
    6609             :   /* add an extra unit iff it would be non-zero  */
    6610             :   #if DECTRACE
    6611             :     printf("UAS borrow: add %ld, carry %ld\n", add, carry);
    6612             :   #endif
    6613           0 :   if ((add-carry-1)!=0) {
    6614           0 :     *c=(Unit)(add-carry-1);
    6615           0 :     c++;                      /* interesting, include it  */
    6616             :     }
    6617           0 :   return clsu-c;              /* -ve result indicates borrowed  */
    6618             :   } /* decUnitAddSub  */
    6619             : 
    6620             : /* ------------------------------------------------------------------ */
    6621             : /* decTrim -- trim trailing zeros or normalize                        */
    6622             : /*                                                                    */
    6623             : /*   dn is the number to trim or normalize                            */
    6624             : /*   set is the context to use to check for clamp                     */
    6625             : /*   all is 1 to remove all trailing zeros, 0 for just fraction ones  */
    6626             : /*   noclamp is 1 to unconditional (unclamped) trim                   */
    6627             : /*   dropped returns the number of discarded trailing zeros           */
    6628             : /*   returns dn                                                       */
    6629             : /*                                                                    */
    6630             : /* If clamp is set in the context then the number of zeros trimmed    */
    6631             : /* may be limited if the exponent is high.                            */
    6632             : /* All fields are updated as required.  This is a utility operation,  */
    6633             : /* so special values are unchanged and no error is possible.          */
    6634             : /* ------------------------------------------------------------------ */
    6635           0 : static decNumber * decTrim(decNumber *dn, decContext *set, Flag all,
    6636             :                            Flag noclamp, Int *dropped) {
    6637             :   Int   d, exp;                    /* work  */
    6638             :   uInt  cut;                       /* ..  */
    6639             :   Unit  *up;                       /* -> current Unit  */
    6640             : 
    6641             :   #if DECCHECK
    6642             :   if (decCheckOperands(dn, DECUNUSED, DECUNUSED, DECUNCONT)) return dn;
    6643             :   #endif
    6644             : 
    6645           0 :   *dropped=0;                           /* assume no zeros dropped  */
    6646           0 :   if ((dn->bits & DECSPECIAL)           /* fast exit if special ..  */
    6647           0 :     || (*dn->lsu & 0x01)) return dn;    /* .. or odd  */
    6648           0 :   if (ISZERO(dn)) {                     /* .. or 0  */
    6649           0 :     dn->exponent=0;                     /* (sign is preserved)  */
    6650           0 :     return dn;
    6651             :     }
    6652             : 
    6653             :   /* have a finite number which is even  */
    6654           0 :   exp=dn->exponent;
    6655           0 :   cut=1;                           /* digit (1-DECDPUN) in Unit  */
    6656           0 :   up=dn->lsu;                      /* -> current Unit  */
    6657           0 :   for (d=0; d<dn->digits-1; d++) { /* [don't strip the final digit]  */
    6658             :     /* slice by powers  */
    6659             :     #if DECDPUN<=4
    6660           0 :       uInt quot=QUOT10(*up, cut);
    6661           0 :       if ((*up-quot*powers[cut])!=0) break;  /* found non-0 digit  */
    6662             :     #else
    6663             :       if (*up%powers[cut]!=0) break;         /* found non-0 digit  */
    6664             :     #endif
    6665             :     /* have a trailing 0  */
    6666           0 :     if (!all) {                    /* trimming  */
    6667             :       /* [if exp>0 then all trailing 0s are significant for trim]  */
    6668           0 :       if (exp<=0) {                /* if digit might be significant  */
    6669           0 :         if (exp==0) break;         /* then quit  */
    6670           0 :         exp++;                     /* next digit might be significant  */
    6671             :         }
    6672             :       }
    6673           0 :     cut++;                         /* next power  */
    6674           0 :     if (cut>DECDPUN) {             /* need new Unit  */
    6675           0 :       up++;
    6676           0 :       cut=1;
    6677             :       }
    6678             :     } /* d  */
    6679           0 :   if (d==0) return dn;             /* none to drop  */
    6680             : 
    6681             :   /* may need to limit drop if clamping  */
    6682           0 :   if (set->clamp && !noclamp) {
    6683           0 :     Int maxd=set->emax-set->digits+1-dn->exponent;
    6684           0 :     if (maxd<=0) return dn;        /* nothing possible  */
    6685           0 :     if (d>maxd) d=maxd;
    6686             :     }
    6687             : 
    6688             :   /* effect the drop  */
    6689           0 :   decShiftToLeast(dn->lsu, D2U(dn->digits), d);
    6690           0 :   dn->exponent+=d;                 /* maintain numerical value  */
    6691           0 :   dn->digits-=d;                   /* new length  */
    6692           0 :   *dropped=d;                      /* report the count  */
    6693           0 :   return dn;
    6694             :   } /* decTrim  */
    6695             : 
    6696             : /* ------------------------------------------------------------------ */
    6697             : /* decReverse -- reverse a Unit array in place                        */
    6698             : /*                                                                    */
    6699             : /*   ulo    is the start of the array                                 */
    6700             : /*   uhi    is the end of the array (highest Unit to include)         */
    6701             : /*                                                                    */
    6702             : /* The units ulo through uhi are reversed in place (if the number     */
    6703             : /* of units is odd, the middle one is untouched).  Note that the      */
    6704             : /* digit(s) in each unit are unaffected.                              */
    6705             : /* ------------------------------------------------------------------ */
    6706           0 : static void decReverse(Unit *ulo, Unit *uhi) {
    6707             :   Unit temp;
    6708           0 :   for (; ulo<uhi; ulo++, uhi--) {
    6709           0 :     temp=*ulo;
    6710           0 :     *ulo=*uhi;
    6711           0 :     *uhi=temp;
    6712             :     }
    6713           0 :   return;
    6714             :   } /* decReverse  */
    6715             : 
    6716             : /* ------------------------------------------------------------------ */
    6717             : /* decShiftToMost -- shift digits in array towards most significant   */
    6718             : /*                                                                    */
    6719             : /*   uar    is the array                                              */
    6720             : /*   digits is the count of digits in use in the array                */
    6721             : /*   shift  is the number of zeros to pad with (least significant);   */
    6722             : /*     it must be zero or positive                                    */
    6723             : /*                                                                    */
    6724             : /*   returns the new length of the integer in the array, in digits    */
    6725             : /*                                                                    */
    6726             : /* No overflow is permitted (that is, the uar array must be known to  */
    6727             : /* be large enough to hold the result, after shifting).               */
    6728             : /* ------------------------------------------------------------------ */
    6729           0 : static Int decShiftToMost(Unit *uar, Int digits, Int shift) {
    6730             :   Unit  *target, *source, *first;  /* work  */
    6731             :   Int   cut;                       /* odd 0's to add  */
    6732             :   uInt  next;                      /* work  */
    6733             : 
    6734           0 :   if (shift==0) return digits;     /* [fastpath] nothing to do  */
    6735           0 :   if ((digits+shift)<=DECDPUN) {   /* [fastpath] single-unit case  */
    6736           0 :     *uar=(Unit)(*uar*powers[shift]);
    6737           0 :     return digits+shift;
    6738             :     }
    6739             : 
    6740           0 :   next=0;                          /* all paths  */
    6741           0 :   source=uar+D2U(digits)-1;        /* where msu comes from  */
    6742           0 :   target=source+D2U(shift);        /* where upper part of first cut goes  */
    6743           0 :   cut=DECDPUN-MSUDIGITS(shift);    /* where to slice  */
    6744           0 :   if (cut==0) {                    /* unit-boundary case  */
    6745           0 :     for (; source>=uar; source--, target--) *target=*source;
    6746             :     }
    6747             :    else {
    6748           0 :     first=uar+D2U(digits+shift)-1; /* where msu of source will end up  */
    6749           0 :     for (; source>=uar; source--, target--) {
    6750             :       /* split the source Unit and accumulate remainder for next  */
    6751             :       #if DECDPUN<=4
    6752           0 :         uInt quot=QUOT10(*source, cut);
    6753           0 :         uInt rem=*source-quot*powers[cut];
    6754           0 :         next+=quot;
    6755             :       #else
    6756             :         uInt rem=*source%powers[cut];
    6757             :         next+=*source/powers[cut];
    6758             :       #endif
    6759           0 :       if (target<=first) *target=(Unit)next;   /* write to target iff valid  */
    6760           0 :       next=rem*powers[DECDPUN-cut];            /* save remainder for next Unit  */
    6761             :       }
    6762             :     } /* shift-move  */
    6763             : 
    6764             :   /* propagate any partial unit to one below and clear the rest  */
    6765           0 :   for (; target>=uar; target--) {
    6766           0 :     *target=(Unit)next;
    6767           0 :     next=0;
    6768             :     }
    6769           0 :   return digits+shift;
    6770             :   } /* decShiftToMost  */
    6771             : 
    6772             : /* ------------------------------------------------------------------ */
    6773             : /* decShiftToLeast -- shift digits in array towards least significant */
    6774             : /*                                                                    */
    6775             : /*   uar   is the array                                               */
    6776             : /*   units is length of the array, in units                           */
    6777             : /*   shift is the number of digits to remove from the lsu end; it     */
    6778             : /*     must be zero or positive and <= than units*DECDPUN.            */
    6779             : /*                                                                    */
    6780             : /*   returns the new length of the integer in the array, in units     */
    6781             : /*                                                                    */
    6782             : /* Removed digits are discarded (lost).  Units not required to hold   */
    6783             : /* the final result are unchanged.                                    */
    6784             : /* ------------------------------------------------------------------ */
    6785           0 : static Int decShiftToLeast(Unit *uar, Int units, Int shift) {
    6786             :   Unit  *target, *up;              /* work  */
    6787             :   Int   cut, count;                /* work  */
    6788             :   Int   quot, rem;                 /* for division  */
    6789             : 
    6790           0 :   if (shift==0) return units;      /* [fastpath] nothing to do  */
    6791           0 :   if (shift==units*DECDPUN) {      /* [fastpath] little to do  */
    6792           0 :     *uar=0;                        /* all digits cleared gives zero  */
    6793           0 :     return 1;                      /* leaves just the one  */
    6794             :     }
    6795             : 
    6796           0 :   target=uar;                      /* both paths  */
    6797           0 :   cut=MSUDIGITS(shift);
    6798           0 :   if (cut==DECDPUN) {              /* unit-boundary case; easy  */
    6799           0 :     up=uar+D2U(shift);
    6800           0 :     for (; up<uar+units; target++, up++) *target=*up;
    6801           0 :     return target-uar;
    6802             :     }
    6803             : 
    6804             :   /* messier  */
    6805           0 :   up=uar+D2U(shift-cut);           /* source; correct to whole Units  */
    6806           0 :   count=units*DECDPUN-shift;       /* the maximum new length  */
    6807             :   #if DECDPUN<=4
    6808           0 :     quot=QUOT10(*up, cut);
    6809             :   #else
    6810             :     quot=*up/powers[cut];
    6811             :   #endif
    6812           0 :   for (; ; target++) {
    6813           0 :     *target=(Unit)quot;
    6814           0 :     count-=(DECDPUN-cut);
    6815           0 :     if (count<=0) break;
    6816           0 :     up++;
    6817           0 :     quot=*up;
    6818             :     #if DECDPUN<=4
    6819           0 :       quot=QUOT10(quot, cut);
    6820           0 :       rem=*up-quot*powers[cut];
    6821             :     #else
    6822             :       rem=quot%powers[cut];
    6823             :       quot=quot/powers[cut];
    6824             :     #endif
    6825           0 :     *target=(Unit)(*target+rem*powers[DECDPUN-cut]);
    6826           0 :     count-=cut;
    6827           0 :     if (count<=0) break;
    6828             :     }
    6829           0 :   return target-uar+1;
    6830             :   } /* decShiftToLeast  */
    6831             : 
    6832             : #if DECSUBSET
    6833             : /* ------------------------------------------------------------------ */
    6834             : /* decRoundOperand -- round an operand  [used for subset only]        */
    6835             : /*                                                                    */
    6836             : /*   dn is the number to round (dn->digits is > set->digits)          */
    6837             : /*   set is the relevant context                                      */
    6838             : /*   status is the status accumulator                                 */
    6839             : /*                                                                    */
    6840             : /*   returns an allocated decNumber with the rounded result.          */
    6841             : /*                                                                    */
    6842             : /* lostDigits and other status may be set by this.                    */
    6843             : /*                                                                    */
    6844             : /* Since the input is an operand, it must not be modified.            */
    6845             : /* Instead, return an allocated decNumber, rounded as required.       */
    6846             : /* It is the caller's responsibility to free the allocated storage.   */
    6847             : /*                                                                    */
    6848             : /* If no storage is available then the result cannot be used, so NULL */
    6849             : /* is returned.                                                       */
    6850             : /* ------------------------------------------------------------------ */
    6851             : static decNumber *decRoundOperand(const decNumber *dn, decContext *set,
    6852             :                                   uInt *status) {
    6853             :   decNumber *res;                       /* result structure  */
    6854             :   uInt newstatus=0;                     /* status from round  */
    6855             :   Int  residue=0;                       /* rounding accumulator  */
    6856             : 
    6857             :   /* Allocate storage for the returned decNumber, big enough for the  */
    6858             :   /* length specified by the context  */
    6859             :   res=(decNumber *)malloc(sizeof(decNumber)
    6860             :                           +(D2U(set->digits)-1)*sizeof(Unit));
    6861             :   if (res==NULL) {
    6862             :     *status|=DEC_Insufficient_storage;
    6863             :     return NULL;
    6864             :     }
    6865             :   decCopyFit(res, dn, set, &residue, &newstatus);
    6866             :   decApplyRound(res, set, residue, &newstatus);
    6867             : 
    6868             :   /* If that set Inexact then "lost digits" is raised...  */
    6869             :   if (newstatus & DEC_Inexact) newstatus|=DEC_Lost_digits;
    6870             :   *status|=newstatus;
    6871             :   return res;
    6872             :   } /* decRoundOperand  */
    6873             : #endif
    6874             : 
    6875             : /* ------------------------------------------------------------------ */
    6876             : /* decCopyFit -- copy a number, truncating the coefficient if needed  */
    6877             : /*                                                                    */
    6878             : /*   dest is the target decNumber                                     */
    6879             : /*   src  is the source decNumber                                     */
    6880             : /*   set is the context [used for length (digits) and rounding mode]  */
    6881             : /*   residue is the residue accumulator                               */
    6882             : /*   status contains the current status to be updated                 */
    6883             : /*                                                                    */
    6884             : /* (dest==src is allowed and will be a no-op if fits)                 */
    6885             : /* All fields are updated as required.                                */
    6886             : /* ------------------------------------------------------------------ */
    6887           0 : static void decCopyFit(decNumber *dest, const decNumber *src,
    6888             :                        decContext *set, Int *residue, uInt *status) {
    6889           0 :   dest->bits=src->bits;
    6890           0 :   dest->exponent=src->exponent;
    6891           0 :   decSetCoeff(dest, set, src->lsu, src->digits, residue, status);
    6892           0 :   } /* decCopyFit  */
    6893             : 
    6894             : /* ------------------------------------------------------------------ */
    6895             : /* decSetCoeff -- set the coefficient of a number                     */
    6896             : /*                                                                    */
    6897             : /*   dn    is the number whose coefficient array is to be set.        */
    6898             : /*         It must have space for set->digits digits                  */
    6899             : /*   set   is the context [for size]                                  */
    6900             : /*   lsu   -> lsu of the source coefficient [may be dn->lsu]          */
    6901             : /*   len   is digits in the source coefficient [may be dn->digits]    */
    6902             : /*   residue is the residue accumulator.  This has values as in       */
    6903             : /*         decApplyRound, and will be unchanged unless the            */
    6904             : /*         target size is less than len.  In this case, the           */
    6905             : /*         coefficient is truncated and the residue is updated to     */
    6906             : /*         reflect the previous residue and the dropped digits.       */
    6907             : /*   status is the status accumulator, as usual                       */
    6908             : /*                                                                    */
    6909             : /* The coefficient may already be in the number, or it can be an      */
    6910             : /* external intermediate array.  If it is in the number, lsu must ==  */
    6911             : /* dn->lsu and len must == dn->digits.                                */
    6912             : /*                                                                    */
    6913             : /* Note that the coefficient length (len) may be < set->digits, and   */
    6914             : /* in this case this merely copies the coefficient (or is a no-op     */
    6915             : /* if dn->lsu==lsu).                                                  */
    6916             : /*                                                                    */
    6917             : /* Note also that (only internally, from decQuantizeOp and            */
    6918             : /* decSetSubnormal) the value of set->digits may be less than one,    */
    6919             : /* indicating a round to left.  This routine handles that case        */
    6920             : /* correctly; caller ensures space.                                   */
    6921             : /*                                                                    */
    6922             : /* dn->digits, dn->lsu (and as required), and dn->exponent are        */
    6923             : /* updated as necessary.   dn->bits (sign) is unchanged.              */
    6924             : /*                                                                    */
    6925             : /* DEC_Rounded status is set if any digits are discarded.             */
    6926             : /* DEC_Inexact status is set if any non-zero digits are discarded, or */
    6927             : /*                       incoming residue was non-0 (implies rounded) */
    6928             : /* ------------------------------------------------------------------ */
    6929             : /* mapping array: maps 0-9 to canonical residues, so that a residue  */
    6930             : /* can be adjusted in the range [-1, +1] and achieve correct rounding  */
    6931             : /*                             0  1  2  3  4  5  6  7  8  9  */
    6932             : static const uByte resmap[10]={0, 3, 3, 3, 3, 5, 7, 7, 7, 7};
    6933           0 : static void decSetCoeff(decNumber *dn, decContext *set, const Unit *lsu,
    6934             :                         Int len, Int *residue, uInt *status) {
    6935             :   Int   discard;              /* number of digits to discard  */
    6936             :   uInt  cut;                  /* cut point in Unit  */
    6937             :   const Unit *up;             /* work  */
    6938             :   Unit  *target;              /* ..  */
    6939             :   Int   count;                /* ..  */
    6940             :   #if DECDPUN<=4
    6941             :   uInt  temp;                 /* ..  */
    6942             :   #endif
    6943             : 
    6944           0 :   discard=len-set->digits;    /* digits to discard  */
    6945           0 :   if (discard<=0) {           /* no digits are being discarded  */
    6946           0 :     if (dn->lsu!=lsu) {       /* copy needed  */
    6947             :       /* copy the coefficient array to the result number; no shift needed  */
    6948           0 :       count=len;              /* avoids D2U  */
    6949           0 :       up=lsu;
    6950           0 :       for (target=dn->lsu; count>0; target++, up++, count-=DECDPUN)
    6951           0 :         *target=*up;
    6952           0 :       dn->digits=len;         /* set the new length  */
    6953             :       }
    6954             :     /* dn->exponent and residue are unchanged, record any inexactitude  */
    6955           0 :     if (*residue!=0) *status|=(DEC_Inexact | DEC_Rounded);
    6956           0 :     return;
    6957             :     }
    6958             : 
    6959             :   /* some digits must be discarded ...  */
    6960           0 :   dn->exponent+=discard;      /* maintain numerical value  */
    6961           0 :   *status|=DEC_Rounded;       /* accumulate Rounded status  */
    6962           0 :   if (*residue>1) *residue=1; /* previous residue now to right, so reduce  */
    6963             : 
    6964           0 :   if (discard>len) {          /* everything, +1, is being discarded  */
    6965             :     /* guard digit is 0  */
    6966             :     /* residue is all the number [NB could be all 0s]  */
    6967           0 :     if (*residue<=0) {        /* not already positive  */
    6968           0 :       count=len;              /* avoids D2U  */
    6969           0 :       for (up=lsu; count>0; up++, count-=DECDPUN) if (*up!=0) { /* found non-0  */
    6970           0 :         *residue=1;
    6971           0 :         break;                /* no need to check any others  */
    6972             :         }
    6973             :       }
    6974           0 :     if (*residue!=0) *status|=DEC_Inexact; /* record inexactitude  */
    6975           0 :     *dn->lsu=0;               /* coefficient will now be 0  */
    6976           0 :     dn->digits=1;             /* ..  */
    6977           0 :     return;
    6978             :     } /* total discard  */
    6979             : 
    6980             :   /* partial discard [most common case]  */
    6981             :   /* here, at least the first (most significant) discarded digit exists  */
    6982             : 
    6983             :   /* spin up the number, noting residue during the spin, until get to  */
    6984             :   /* the Unit with the first discarded digit.  When reach it, extract  */
    6985             :   /* it and remember its position  */
    6986           0 :   count=0;
    6987           0 :   for (up=lsu;; up++) {
    6988           0 :     count+=DECDPUN;
    6989           0 :     if (count>=discard) break; /* full ones all checked  */
    6990           0 :     if (*up!=0) *residue=1;
    6991             :     } /* up  */
    6992             : 
    6993             :   /* here up -> Unit with first discarded digit  */
    6994           0 :   cut=discard-(count-DECDPUN)-1;
    6995           0 :   if (cut==DECDPUN-1) {       /* unit-boundary case (fast)  */
    6996           0 :     Unit half=(Unit)powers[DECDPUN]>>1;
    6997             :     /* set residue directly  */
    6998           0 :     if (*up>=half) {
    6999           0 :       if (*up>half) *residue=7;
    7000           0 :       else *residue+=5;       /* add sticky bit  */
    7001             :       }
    7002             :      else { /* <half  */
    7003           0 :       if (*up!=0) *residue=3; /* [else is 0, leave as sticky bit]  */
    7004             :       }
    7005           0 :     if (set->digits<=0) {     /* special for Quantize/Subnormal :-(  */
    7006           0 :       *dn->lsu=0;             /* .. result is 0  */
    7007           0 :       dn->digits=1;           /* ..  */
    7008             :       }
    7009             :      else {                   /* shift to least  */
    7010           0 :       count=set->digits;      /* now digits to end up with  */
    7011           0 :       dn->digits=count;       /* set the new length  */
    7012           0 :       up++;                   /* move to next  */
    7013             :       /* on unit boundary, so shift-down copy loop is simple  */
    7014           0 :       for (target=dn->lsu; count>0; target++, up++, count-=DECDPUN)
    7015           0 :         *target=*up;
    7016             :       }
    7017             :     } /* unit-boundary case  */
    7018             : 
    7019             :    else { /* discard digit is in low digit(s), and not top digit  */
    7020             :     uInt  discard1;                /* first discarded digit  */
    7021             :     uInt  quot, rem;               /* for divisions  */
    7022           0 :     if (cut==0) quot=*up;          /* is at bottom of unit  */
    7023             :      else /* cut>0 */ {            /* it's not at bottom of unit  */
    7024             :       #if DECDPUN<=4
    7025           0 :         U_ASSERT(/* cut >= 0 &&*/ cut <= 4);
    7026           0 :         quot=QUOT10(*up, cut);
    7027           0 :         rem=*up-quot*powers[cut];
    7028             :       #else
    7029             :         rem=*up%powers[cut];
    7030             :         quot=*up/powers[cut];
    7031             :       #endif
    7032           0 :       if (rem!=0) *residue=1;
    7033             :       }
    7034             :     /* discard digit is now at bottom of quot  */
    7035             :     #if DECDPUN<=4
    7036           0 :       temp=(quot*6554)>>16;        /* fast /10  */
    7037             :       /* Vowels algorithm here not a win (9 instructions)  */
    7038           0 :       discard1=quot-X10(temp);
    7039           0 :       quot=temp;
    7040             :     #else
    7041             :       discard1=quot%10;
    7042             :       quot=quot/10;
    7043             :     #endif
    7044             :     /* here, discard1 is the guard digit, and residue is everything  */
    7045             :     /* else [use mapping array to accumulate residue safely]  */
    7046           0 :     *residue+=resmap[discard1];
    7047           0 :     cut++;                         /* update cut  */
    7048             :     /* here: up -> Unit of the array with bottom digit  */
    7049             :     /*       cut is the division point for each Unit  */
    7050             :     /*       quot holds the uncut high-order digits for the current unit  */
    7051           0 :     if (set->digits<=0) {          /* special for Quantize/Subnormal :-(  */
    7052           0 :       *dn->lsu=0;                  /* .. result is 0  */
    7053           0 :       dn->digits=1;                /* ..  */
    7054             :       }
    7055             :      else {                        /* shift to least needed  */
    7056           0 :       count=set->digits;           /* now digits to end up with  */
    7057           0 :       dn->digits=count;            /* set the new length  */
    7058             :       /* shift-copy the coefficient array to the result number  */
    7059           0 :       for (target=dn->lsu; ; target++) {
    7060           0 :         *target=(Unit)quot;
    7061           0 :         count-=(DECDPUN-cut);
    7062           0 :         if (count<=0) break;
    7063           0 :         up++;
    7064           0 :         quot=*up;
    7065             :         #if DECDPUN<=4
    7066           0 :           quot=QUOT10(quot, cut);
    7067           0 :           rem=*up-quot*powers[cut];
    7068             :         #else
    7069             :           rem=quot%powers[cut];
    7070             :           quot=quot/powers[cut];
    7071             :         #endif
    7072           0 :         *target=(Unit)(*target+rem*powers[DECDPUN-cut]);
    7073           0 :         count-=cut;
    7074           0 :         if (count<=0) break;
    7075             :         } /* shift-copy loop  */
    7076             :       } /* shift to least  */
    7077             :     } /* not unit boundary  */
    7078             : 
    7079           0 :   if (*residue!=0) *status|=DEC_Inexact; /* record inexactitude  */
    7080           0 :   return;
    7081             :   } /* decSetCoeff  */
    7082             : 
    7083             : /* ------------------------------------------------------------------ */
    7084             : /* decApplyRound -- apply pending rounding to a number                */
    7085             : /*                                                                    */
    7086             : /*   dn    is the number, with space for set->digits digits           */
    7087             : /*   set   is the context [for size and rounding mode]                */
    7088             : /*   residue indicates pending rounding, being any accumulated        */
    7089             : /*         guard and sticky information.  It may be:                  */
    7090             : /*         6-9: rounding digit is >5                                  */
    7091             : /*         5:   rounding digit is exactly half-way                    */
    7092             : /*         1-4: rounding digit is <5 and >0                           */
    7093             : /*         0:   the coefficient is exact                              */
    7094             : /*        -1:   as 1, but the hidden digits are subtractive, that     */
    7095             : /*              is, of the opposite sign to dn.  In this case the     */
    7096             : /*              coefficient must be non-0.  This case occurs when     */
    7097             : /*              subtracting a small number (which can be reduced to   */
    7098             : /*              a sticky bit); see decAddOp.                          */
    7099             : /*   status is the status accumulator, as usual                       */
    7100             : /*                                                                    */
    7101             : /* This routine applies rounding while keeping the length of the      */
    7102             : /* coefficient constant.  The exponent and status are unchanged       */
    7103             : /* except if:                                                         */
    7104             : /*                                                                    */
    7105             : /*   -- the coefficient was increased and is all nines (in which      */
    7106             : /*      case Overflow could occur, and is handled directly here so    */
    7107             : /*      the caller does not need to re-test for overflow)             */
    7108             : /*                                                                    */
    7109             : /*   -- the coefficient was decreased and becomes all nines (in which */
    7110             : /*      case Underflow could occur, and is also handled directly).    */
    7111             : /*                                                                    */
    7112             : /* All fields in dn are updated as required.                          */
    7113             : /*                                                                    */
    7114             : /* ------------------------------------------------------------------ */
    7115           0 : static void decApplyRound(decNumber *dn, decContext *set, Int residue,
    7116             :                           uInt *status) {
    7117             :   Int  bump;                  /* 1 if coefficient needs to be incremented  */
    7118             :                               /* -1 if coefficient needs to be decremented  */
    7119             : 
    7120           0 :   if (residue==0) return;     /* nothing to apply  */
    7121             : 
    7122           0 :   bump=0;                     /* assume a smooth ride  */
    7123             : 
    7124             :   /* now decide whether, and how, to round, depending on mode  */
    7125           0 :   switch (set->round) {
    7126             :     case DEC_ROUND_05UP: {    /* round zero or five up (for reround)  */
    7127             :       /* This is the same as DEC_ROUND_DOWN unless there is a  */
    7128             :       /* positive residue and the lsd of dn is 0 or 5, in which case  */
    7129             :       /* it is bumped; when residue is <0, the number is therefore  */
    7130             :       /* bumped down unless the final digit was 1 or 6 (in which  */
    7131             :       /* case it is bumped down and then up -- a no-op)  */
    7132           0 :       Int lsd5=*dn->lsu%5;     /* get lsd and quintate  */
    7133           0 :       if (residue<0 && lsd5!=1) bump=-1;
    7134           0 :        else if (residue>0 && lsd5==0) bump=1;
    7135             :       /* [bump==1 could be applied directly; use common path for clarity]  */
    7136           0 :       break;} /* r-05  */
    7137             : 
    7138             :     case DEC_ROUND_DOWN: {
    7139             :       /* no change, except if negative residue  */
    7140           0 :       if (residue<0) bump=-1;
    7141           0 :       break;} /* r-d  */
    7142             : 
    7143             :     case DEC_ROUND_HALF_DOWN: {
    7144           0 :       if (residue>5) bump=1;
    7145           0 :       break;} /* r-h-d  */
    7146             : 
    7147             :     case DEC_ROUND_HALF_EVEN: {
    7148           0 :       if (residue>5) bump=1;            /* >0.5 goes up  */
    7149           0 :        else if (residue==5) {           /* exactly 0.5000...  */
    7150             :         /* 0.5 goes up iff [new] lsd is odd  */
    7151           0 :         if (*dn->lsu & 0x01) bump=1;
    7152             :         }
    7153           0 :       break;} /* r-h-e  */
    7154             : 
    7155             :     case DEC_ROUND_HALF_UP: {
    7156           0 :       if (residue>=5) bump=1;
    7157           0 :       break;} /* r-h-u  */
    7158             : 
    7159             :     case DEC_ROUND_UP: {
    7160           0 :       if (residue>0) bump=1;
    7161           0 :       break;} /* r-u  */
    7162             : 
    7163             :     case DEC_ROUND_CEILING: {
    7164             :       /* same as _UP for positive numbers, and as _DOWN for negatives  */
    7165             :       /* [negative residue cannot occur on 0]  */
    7166           0 :       if (decNumberIsNegative(dn)) {
    7167           0 :         if (residue<0) bump=-1;
    7168             :         }
    7169             :        else {
    7170           0 :         if (residue>0) bump=1;
    7171             :         }
    7172           0 :       break;} /* r-c  */
    7173             : 
    7174             :     case DEC_ROUND_FLOOR: {
    7175             :       /* same as _UP for negative numbers, and as _DOWN for positive  */
    7176             :       /* [negative residue cannot occur on 0]  */
    7177           0 :       if (!decNumberIsNegative(dn)) {
    7178           0 :         if (residue<0) bump=-1;
    7179             :         }
    7180             :        else {
    7181           0 :         if (residue>0) bump=1;
    7182             :         }
    7183           0 :       break;} /* r-f  */
    7184             : 
    7185             :     default: {      /* e.g., DEC_ROUND_MAX  */
    7186           0 :       *status|=DEC_Invalid_context;
    7187             :       #if DECTRACE || (DECCHECK && DECVERB)
    7188             :       printf("Unknown rounding mode: %d\n", set->round);
    7189             :       #endif
    7190           0 :       break;}
    7191             :     } /* switch  */
    7192             : 
    7193             :   /* now bump the number, up or down, if need be  */
    7194           0 :   if (bump==0) return;                       /* no action required  */
    7195             : 
    7196             :   /* Simply use decUnitAddSub unless bumping up and the number is  */
    7197             :   /* all nines.  In this special case set to 100... explicitly  */
    7198             :   /* and adjust the exponent by one (as otherwise could overflow  */
    7199             :   /* the array)  */
    7200             :   /* Similarly handle all-nines result if bumping down.  */
    7201           0 :   if (bump>0) {
    7202             :     Unit *up;                                /* work  */
    7203           0 :     uInt count=dn->digits;                   /* digits to be checked  */
    7204           0 :     for (up=dn->lsu; ; up++) {
    7205           0 :       if (count<=DECDPUN) {
    7206             :         /* this is the last Unit (the msu)  */
    7207           0 :         if (*up!=powers[count]-1) break;     /* not still 9s  */
    7208             :         /* here if it, too, is all nines  */
    7209           0 :         *up=(Unit)powers[count-1];           /* here 999 -> 100 etc.  */
    7210           0 :         for (up=up-1; up>=dn->lsu; up--) *up=0; /* others all to 0  */
    7211           0 :         dn->exponent++;                      /* and bump exponent  */
    7212             :         /* [which, very rarely, could cause Overflow...]  */
    7213           0 :         if ((dn->exponent+dn->digits)>set->emax+1) {
    7214           0 :           decSetOverflow(dn, set, status);
    7215             :           }
    7216           0 :         return;                              /* done  */
    7217             :         }
    7218             :       /* a full unit to check, with more to come  */
    7219           0 :       if (*up!=DECDPUNMAX) break;            /* not still 9s  */
    7220           0 :       count-=DECDPUN;
    7221             :       } /* up  */
    7222             :     } /* bump>0  */
    7223             :    else {                                    /* -1  */
    7224             :     /* here checking for a pre-bump of 1000... (leading 1, all  */
    7225             :     /* other digits zero)  */
    7226             :     Unit *up, *sup;                          /* work  */
    7227           0 :     uInt count=dn->digits;                   /* digits to be checked  */
    7228           0 :     for (up=dn->lsu; ; up++) {
    7229           0 :       if (count<=DECDPUN) {
    7230             :         /* this is the last Unit (the msu)  */
    7231           0 :         if (*up!=powers[count-1]) break;     /* not 100..  */
    7232             :         /* here if have the 1000... case  */
    7233           0 :         sup=up;                              /* save msu pointer  */
    7234           0 :         *up=(Unit)powers[count]-1;           /* here 100 in msu -> 999  */
    7235             :         /* others all to all-nines, too  */
    7236           0 :         for (up=up-1; up>=dn->lsu; up--) *up=(Unit)powers[DECDPUN]-1;
    7237           0 :         dn->exponent--;                      /* and bump exponent  */
    7238             : 
    7239             :         /* iff the number was at the subnormal boundary (exponent=etiny)  */
    7240             :         /* then the exponent is now out of range, so it will in fact get  */
    7241             :         /* clamped to etiny and the final 9 dropped.  */
    7242             :         /* printf(">> emin=%d exp=%d sdig=%d\n", set->emin,  */
    7243             :         /*        dn->exponent, set->digits);  */
    7244           0 :         if (dn->exponent+1==set->emin-set->digits+1) {
    7245           0 :           if (count==1 && dn->digits==1) *sup=0;  /* here 9 -> 0[.9]  */
    7246             :            else {
    7247           0 :             *sup=(Unit)powers[count-1]-1;    /* here 999.. in msu -> 99..  */
    7248           0 :             dn->digits--;
    7249             :             }
    7250           0 :           dn->exponent++;
    7251           0 :           *status|=DEC_Underflow | DEC_Subnormal | DEC_Inexact | DEC_Rounded;
    7252             :           }
    7253           0 :         return;                              /* done  */
    7254             :         }
    7255             : 
    7256             :       /* a full unit to check, with more to come  */
    7257           0 :       if (*up!=0) break;                     /* not still 0s  */
    7258           0 :       count-=DECDPUN;
    7259             :       } /* up  */
    7260             : 
    7261             :     } /* bump<0  */
    7262             : 
    7263             :   /* Actual bump needed.  Do it.  */
    7264           0 :   decUnitAddSub(dn->lsu, D2U(dn->digits), uarrone, 1, 0, dn->lsu, bump);
    7265             :   } /* decApplyRound  */
    7266             : 
    7267             : #if DECSUBSET
    7268             : /* ------------------------------------------------------------------ */
    7269             : /* decFinish -- finish processing a number                            */
    7270             : /*                                                                    */
    7271             : /*   dn is the number                                                 */
    7272             : /*   set is the context                                               */
    7273             : /*   residue is the rounding accumulator (as in decApplyRound)        */
    7274             : /*   status is the accumulator                                        */
    7275             : /*                                                                    */
    7276             : /* This finishes off the current number by:                           */
    7277             : /*    1. If not extended:                                             */
    7278             : /*       a. Converting a zero result to clean '0'                     */
    7279             : /*       b. Reducing positive exponents to 0, if would fit in digits  */
    7280             : /*    2. Checking for overflow and subnormals (always)                */
    7281             : /* Note this is just Finalize when no subset arithmetic.              */
    7282             : /* All fields are updated as required.                                */
    7283             : /* ------------------------------------------------------------------ */
    7284             : static void decFinish(decNumber *dn, decContext *set, Int *residue,
    7285             :                       uInt *status) {
    7286             :   if (!set->extended) {
    7287             :     if ISZERO(dn) {                /* value is zero  */
    7288             :       dn->exponent=0;              /* clean exponent ..  */
    7289             :       dn->bits=0;                  /* .. and sign  */
    7290             :       return;                      /* no error possible  */
    7291             :       }
    7292             :     if (dn->exponent>=0) {         /* non-negative exponent  */
    7293             :       /* >0; reduce to integer if possible  */
    7294             :       if (set->digits >= (dn->exponent+dn->digits)) {
    7295             :         dn->digits=decShiftToMost(dn->lsu, dn->digits, dn->exponent);
    7296             :         dn->exponent=0;
    7297             :         }
    7298             :       }
    7299             :     } /* !extended  */
    7300             : 
    7301             :   decFinalize(dn, set, residue, status);
    7302             :   } /* decFinish  */
    7303             : #endif
    7304             : 
    7305             : /* ------------------------------------------------------------------ */
    7306             : /* decFinalize -- final check, clamp, and round of a number           */
    7307             : /*                                                                    */
    7308             : /*   dn is the number                                                 */
    7309             : /*   set is the context                                               */
    7310             : /*   residue is the rounding accumulator (as in decApplyRound)        */
    7311             : /*   status is the status accumulator                                 */
    7312             : /*                                                                    */
    7313             : /* This finishes off the current number by checking for subnormal     */
    7314             : /* results, applying any pending rounding, checking for overflow,     */
    7315             : /* and applying any clamping.                                         */
    7316             : /* Underflow and overflow conditions are raised as appropriate.       */
    7317             : /* All fields are updated as required.                                */
    7318             : /* ------------------------------------------------------------------ */
    7319           0 : static void decFinalize(decNumber *dn, decContext *set, Int *residue,
    7320             :                         uInt *status) {
    7321             :   Int shift;                            /* shift needed if clamping  */
    7322           0 :   Int tinyexp=set->emin-dn->digits+1;   /* precalculate subnormal boundary  */
    7323             : 
    7324             :   /* Must be careful, here, when checking the exponent as the  */
    7325             :   /* adjusted exponent could overflow 31 bits [because it may already  */
    7326             :   /* be up to twice the expected].  */
    7327             : 
    7328             :   /* First test for subnormal.  This must be done before any final  */
    7329             :   /* round as the result could be rounded to Nmin or 0.  */
    7330           0 :   if (dn->exponent<=tinyexp) {          /* prefilter  */
    7331             :     Int comp;
    7332             :     decNumber nmin;
    7333             :     /* A very nasty case here is dn == Nmin and residue<0  */
    7334           0 :     if (dn->exponent<tinyexp) {
    7335             :       /* Go handle subnormals; this will apply round if needed.  */
    7336           0 :       decSetSubnormal(dn, set, residue, status);
    7337           0 :       return;
    7338             :       }
    7339             :     /* Equals case: only subnormal if dn=Nmin and negative residue  */
    7340           0 :     uprv_decNumberZero(&nmin);
    7341           0 :     nmin.lsu[0]=1;
    7342           0 :     nmin.exponent=set->emin;
    7343           0 :     comp=decCompare(dn, &nmin, 1);                /* (signless compare)  */
    7344           0 :     if (comp==BADINT) {                           /* oops  */
    7345           0 :       *status|=DEC_Insufficient_storage;          /* abandon...  */
    7346           0 :       return;
    7347             :       }
    7348           0 :     if (*residue<0 && comp==0) {                  /* neg residue and dn==Nmin  */
    7349           0 :       decApplyRound(dn, set, *residue, status);   /* might force down  */
    7350           0 :       decSetSubnormal(dn, set, residue, status);
    7351           0 :       return;
    7352             :       }
    7353             :     }
    7354             : 
    7355             :   /* now apply any pending round (this could raise overflow).  */
    7356           0 :   if (*residue!=0) decApplyRound(dn, set, *residue, status);
    7357             : 
    7358             :   /* Check for overflow [redundant in the 'rare' case] or clamp  */
    7359           0 :   if (dn->exponent<=set->emax-set->digits+1) return;   /* neither needed  */
    7360             : 
    7361             : 
    7362             :   /* here when might have an overflow or clamp to do  */
    7363           0 :   if (dn->exponent>set->emax-dn->digits+1) {           /* too big  */
    7364           0 :     decSetOverflow(dn, set, status);
    7365           0 :     return;
    7366             :     }
    7367             :   /* here when the result is normal but in clamp range  */
    7368           0 :   if (!set->clamp) return;
    7369             : 
    7370             :   /* here when need to apply the IEEE exponent clamp (fold-down)  */
    7371           0 :   shift=dn->exponent-(set->emax-set->digits+1);
    7372             : 
    7373             :   /* shift coefficient (if non-zero)  */
    7374           0 :   if (!ISZERO(dn)) {
    7375           0 :     dn->digits=decShiftToMost(dn->lsu, dn->digits, shift);
    7376             :     }
    7377           0 :   dn->exponent-=shift;   /* adjust the exponent to match  */
    7378           0 :   *status|=DEC_Clamped;  /* and record the dirty deed  */
    7379           0 :   return;
    7380             :   } /* decFinalize  */
    7381             : 
    7382             : /* ------------------------------------------------------------------ */
    7383             : /* decSetOverflow -- set number to proper overflow value              */
    7384             : /*                                                                    */
    7385             : /*   dn is the number (used for sign [only] and result)               */
    7386             : /*   set is the context [used for the rounding mode, etc.]            */
    7387             : /*   status contains the current status to be updated                 */
    7388             : /*                                                                    */
    7389             : /* This sets the sign of a number and sets its value to either        */
    7390             : /* Infinity or the maximum finite value, depending on the sign of     */
    7391             : /* dn and the rounding mode, following IEEE 754 rules.                */
    7392             : /* ------------------------------------------------------------------ */
    7393           0 : static void decSetOverflow(decNumber *dn, decContext *set, uInt *status) {
    7394           0 :   Flag needmax=0;                  /* result is maximum finite value  */
    7395           0 :   uByte sign=dn->bits&DECNEG;      /* clean and save sign bit  */
    7396             : 
    7397           0 :   if (ISZERO(dn)) {                /* zero does not overflow magnitude  */
    7398           0 :     Int emax=set->emax;                      /* limit value  */
    7399           0 :     if (set->clamp) emax-=set->digits-1;     /* lower if clamping  */
    7400           0 :     if (dn->exponent>emax) {                 /* clamp required  */
    7401           0 :       dn->exponent=emax;
    7402           0 :       *status|=DEC_Clamped;
    7403             :       }
    7404           0 :     return;
    7405             :     }
    7406             : 
    7407           0 :   uprv_decNumberZero(dn);
    7408           0 :   switch (set->round) {
    7409             :     case DEC_ROUND_DOWN: {
    7410           0 :       needmax=1;                   /* never Infinity  */
    7411           0 :       break;} /* r-d  */
    7412             :     case DEC_ROUND_05UP: {
    7413           0 :       needmax=1;                   /* never Infinity  */
    7414           0 :       break;} /* r-05  */
    7415             :     case DEC_ROUND_CEILING: {
    7416           0 :       if (sign) needmax=1;         /* Infinity if non-negative  */
    7417           0 :       break;} /* r-c  */
    7418             :     case DEC_ROUND_FLOOR: {
    7419           0 :       if (!sign) needmax=1;        /* Infinity if negative  */
    7420           0 :       break;} /* r-f  */
    7421           0 :     default: break;                /* Infinity in all other cases  */
    7422             :     }
    7423           0 :   if (needmax) {
    7424           0 :     decSetMaxValue(dn, set);
    7425           0 :     dn->bits=sign;                 /* set sign  */
    7426             :     }
    7427           0 :    else dn->bits=sign|DECINF;      /* Value is +/-Infinity  */
    7428           0 :   *status|=DEC_Overflow | DEC_Inexact | DEC_Rounded;
    7429             :   } /* decSetOverflow  */
    7430             : 
    7431             : /* ------------------------------------------------------------------ */
    7432             : /* decSetMaxValue -- set number to +Nmax (maximum normal value)       */
    7433             : /*                                                                    */
    7434             : /*   dn is the number to set                                          */
    7435             : /*   set is the context [used for digits and emax]                    */
    7436             : /*                                                                    */
    7437             : /* This sets the number to the maximum positive value.                */
    7438             : /* ------------------------------------------------------------------ */
    7439           0 : static void decSetMaxValue(decNumber *dn, decContext *set) {
    7440             :   Unit *up;                        /* work  */
    7441           0 :   Int count=set->digits;           /* nines to add  */
    7442           0 :   dn->digits=count;
    7443             :   /* fill in all nines to set maximum value  */
    7444           0 :   for (up=dn->lsu; ; up++) {
    7445           0 :     if (count>DECDPUN) *up=DECDPUNMAX;  /* unit full o'nines  */
    7446             :      else {                             /* this is the msu  */
    7447           0 :       *up=(Unit)(powers[count]-1);
    7448           0 :       break;
    7449             :       }
    7450           0 :     count-=DECDPUN;                /* filled those digits  */
    7451             :     } /* up  */
    7452           0 :   dn->bits=0;                      /* + sign  */
    7453           0 :   dn->exponent=set->emax-set->digits+1;
    7454           0 :   } /* decSetMaxValue  */
    7455             : 
    7456             : /* ------------------------------------------------------------------ */
    7457             : /* decSetSubnormal -- process value whose exponent is <Emin           */
    7458             : /*                                                                    */
    7459             : /*   dn is the number (used as input as well as output; it may have   */
    7460             : /*         an allowed subnormal value, which may need to be rounded)  */
    7461             : /*   set is the context [used for the rounding mode]                  */
    7462             : /*   residue is any pending residue                                   */
    7463             : /*   status contains the current status to be updated                 */
    7464             : /*                                                                    */
    7465             : /* If subset mode, set result to zero and set Underflow flags.        */
    7466             : /*                                                                    */
    7467             : /* Value may be zero with a low exponent; this does not set Subnormal */
    7468             : /* but the exponent will be clamped to Etiny.                         */
    7469             : /*                                                                    */
    7470             : /* Otherwise ensure exponent is not out of range, and round as        */
    7471             : /* necessary.  Underflow is set if the result is Inexact.             */
    7472             : /* ------------------------------------------------------------------ */
    7473           0 : static void decSetSubnormal(decNumber *dn, decContext *set, Int *residue,
    7474             :                             uInt *status) {
    7475             :   decContext workset;         /* work  */
    7476             :   Int        etiny, adjust;   /* ..  */
    7477             : 
    7478             :   #if DECSUBSET
    7479             :   /* simple set to zero and 'hard underflow' for subset  */
    7480             :   if (!set->extended) {
    7481             :     uprv_decNumberZero(dn);
    7482             :     /* always full overflow  */
    7483             :     *status|=DEC_Underflow | DEC_Subnormal | DEC_Inexact | DEC_Rounded;
    7484             :     return;
    7485             :     }
    7486             :   #endif
    7487             : 
    7488             :   /* Full arithmetic -- allow subnormals, rounded to minimum exponent  */
    7489             :   /* (Etiny) if needed  */
    7490           0 :   etiny=set->emin-(set->digits-1);      /* smallest allowed exponent  */
    7491             : 
    7492           0 :   if ISZERO(dn) {                       /* value is zero  */
    7493             :     /* residue can never be non-zero here  */
    7494             :     #if DECCHECK
    7495             :       if (*residue!=0) {
    7496             :         printf("++ Subnormal 0 residue %ld\n", (LI)*residue);
    7497             :         *status|=DEC_Invalid_operation;
    7498             :         }
    7499             :     #endif
    7500           0 :     if (dn->exponent<etiny) {           /* clamp required  */
    7501           0 :       dn->exponent=etiny;
    7502           0 :       *status|=DEC_Clamped;
    7503             :       }
    7504           0 :     return;
    7505             :     }
    7506             : 
    7507           0 :   *status|=DEC_Subnormal;               /* have a non-zero subnormal  */
    7508           0 :   adjust=etiny-dn->exponent;            /* calculate digits to remove  */
    7509           0 :   if (adjust<=0) {                      /* not out of range; unrounded  */
    7510             :     /* residue can never be non-zero here, except in the Nmin-residue  */
    7511             :     /* case (which is a subnormal result), so can take fast-path here  */
    7512             :     /* it may already be inexact (from setting the coefficient)  */
    7513           0 :     if (*status&DEC_Inexact) *status|=DEC_Underflow;
    7514           0 :     return;
    7515             :     }
    7516             : 
    7517             :   /* adjust>0, so need to rescale the result so exponent becomes Etiny  */
    7518             :   /* [this code is similar to that in rescale]  */
    7519           0 :   workset=*set;                         /* clone rounding, etc.  */
    7520           0 :   workset.digits=dn->digits-adjust;     /* set requested length  */
    7521           0 :   workset.emin-=adjust;                 /* and adjust emin to match  */
    7522             :   /* [note that the latter can be <1, here, similar to Rescale case]  */
    7523           0 :   decSetCoeff(dn, &workset, dn->lsu, dn->digits, residue, status);
    7524           0 :   decApplyRound(dn, &workset, *residue, status);
    7525             : 
    7526             :   /* Use 754 default rule: Underflow is set iff Inexact  */
    7527             :   /* [independent of whether trapped]  */
    7528           0 :   if (*status&DEC_Inexact) *status|=DEC_Underflow;
    7529             : 
    7530             :   /* if rounded up a 999s case, exponent will be off by one; adjust  */
    7531             :   /* back if so [it will fit, because it was shortened earlier]  */
    7532           0 :   if (dn->exponent>etiny) {
    7533           0 :     dn->digits=decShiftToMost(dn->lsu, dn->digits, 1);
    7534           0 :     dn->exponent--;                     /* (re)adjust the exponent.  */
    7535             :     }
    7536             : 
    7537             :   /* if rounded to zero, it is by definition clamped...  */
    7538           0 :   if (ISZERO(dn)) *status|=DEC_Clamped;
    7539             :   } /* decSetSubnormal  */
    7540             : 
    7541             : /* ------------------------------------------------------------------ */
    7542             : /* decCheckMath - check entry conditions for a math function          */
    7543             : /*                                                                    */
    7544             : /*   This checks the context and the operand                          */
    7545             : /*                                                                    */
    7546             : /*   rhs is the operand to check                                      */
    7547             : /*   set is the context to check                                      */
    7548             : /*   status is unchanged if both are good                             */
    7549             : /*                                                                    */
    7550             : /* returns non-zero if status is changed, 0 otherwise                 */
    7551             : /*                                                                    */
    7552             : /* Restrictions enforced:                                             */
    7553             : /*                                                                    */
    7554             : /*   digits, emax, and -emin in the context must be less than         */
    7555             : /*   DEC_MAX_MATH (999999), and A must be within these bounds if      */
    7556             : /*   non-zero.  Invalid_operation is set in the status if a           */
    7557             : /*   restriction is violated.                                         */
    7558             : /* ------------------------------------------------------------------ */
    7559           0 : static uInt decCheckMath(const decNumber *rhs, decContext *set,
    7560             :                          uInt *status) {
    7561           0 :   uInt save=*status;                         /* record  */
    7562           0 :   if (set->digits>DEC_MAX_MATH
    7563           0 :    || set->emax>DEC_MAX_MATH
    7564           0 :    || -set->emin>DEC_MAX_MATH) *status|=DEC_Invalid_context;
    7565           0 :    else if ((rhs->digits>DEC_MAX_MATH
    7566           0 :      || rhs->exponent+rhs->digits>DEC_MAX_MATH+1
    7567           0 :      || rhs->exponent+rhs->digits<2*(1-DEC_MAX_MATH))
    7568           0 :      && !ISZERO(rhs)) *status|=DEC_Invalid_operation;
    7569           0 :   return (*status!=save);
    7570             :   } /* decCheckMath  */
    7571             : 
    7572             : /* ------------------------------------------------------------------ */
    7573             : /* decGetInt -- get integer from a number                             */
    7574             : /*                                                                    */
    7575             : /*   dn is the number [which will not be altered]                     */
    7576             : /*                                                                    */
    7577             : /*   returns one of:                                                  */
    7578             : /*     BADINT if there is a non-zero fraction                         */
    7579             : /*     the converted integer                                          */
    7580             : /*     BIGEVEN if the integer is even and magnitude > 2*10**9         */
    7581             : /*     BIGODD  if the integer is odd  and magnitude > 2*10**9         */
    7582             : /*                                                                    */
    7583             : /* This checks and gets a whole number from the input decNumber.      */
    7584             : /* The sign can be determined from dn by the caller when BIGEVEN or   */
    7585             : /* BIGODD is returned.                                                */
    7586             : /* ------------------------------------------------------------------ */
    7587           0 : static Int decGetInt(const decNumber *dn) {
    7588             :   Int  theInt;                          /* result accumulator  */
    7589             :   const Unit *up;                       /* work  */
    7590             :   Int  got;                             /* digits (real or not) processed  */
    7591           0 :   Int  ilength=dn->digits+dn->exponent; /* integral length  */
    7592           0 :   Flag neg=decNumberIsNegative(dn);     /* 1 if -ve  */
    7593             : 
    7594             :   /* The number must be an integer that fits in 10 digits  */
    7595             :   /* Assert, here, that 10 is enough for any rescale Etiny  */
    7596             :   #if DEC_MAX_EMAX > 999999999
    7597             :     #error GetInt may need updating [for Emax]
    7598             :   #endif
    7599             :   #if DEC_MIN_EMIN < -999999999
    7600             :     #error GetInt may need updating [for Emin]
    7601             :   #endif
    7602           0 :   if (ISZERO(dn)) return 0;             /* zeros are OK, with any exponent  */
    7603             : 
    7604           0 :   up=dn->lsu;                           /* ready for lsu  */
    7605           0 :   theInt=0;                             /* ready to accumulate  */
    7606           0 :   if (dn->exponent>=0) {                /* relatively easy  */
    7607             :     /* no fractional part [usual]; allow for positive exponent  */
    7608           0 :     got=dn->exponent;
    7609             :     }
    7610             :    else { /* -ve exponent; some fractional part to check and discard  */
    7611           0 :     Int count=-dn->exponent;            /* digits to discard  */
    7612             :     /* spin up whole units until reach the Unit with the unit digit  */
    7613           0 :     for (; count>=DECDPUN; up++) {
    7614           0 :       if (*up!=0) return BADINT;        /* non-zero Unit to discard  */
    7615           0 :       count-=DECDPUN;
    7616             :       }
    7617           0 :     if (count==0) got=0;                /* [a multiple of DECDPUN]  */
    7618             :      else {                             /* [not multiple of DECDPUN]  */
    7619             :       Int rem;                          /* work  */
    7620             :       /* slice off fraction digits and check for non-zero  */
    7621             :       #if DECDPUN<=4
    7622           0 :         theInt=QUOT10(*up, count);
    7623           0 :         rem=*up-theInt*powers[count];
    7624             :       #else
    7625             :         rem=*up%powers[count];          /* slice off discards  */
    7626             :         theInt=*up/powers[count];
    7627             :       #endif
    7628           0 :       if (rem!=0) return BADINT;        /* non-zero fraction  */
    7629             :       /* it looks good  */
    7630           0 :       got=DECDPUN-count;                /* number of digits so far  */
    7631           0 :       up++;                             /* ready for next  */
    7632             :       }
    7633             :     }
    7634             :   /* now it's known there's no fractional part  */
    7635             : 
    7636             :   /* tricky code now, to accumulate up to 9.3 digits  */
    7637           0 :   if (got==0) {theInt=*up; got+=DECDPUN; up++;} /* ensure lsu is there  */
    7638             : 
    7639           0 :   if (ilength<11) {
    7640           0 :     Int save=theInt;
    7641             :     /* collect any remaining unit(s)  */
    7642           0 :     for (; got<ilength; up++) {
    7643           0 :       theInt+=*up*powers[got];
    7644           0 :       got+=DECDPUN;
    7645             :       }
    7646           0 :     if (ilength==10) {                  /* need to check for wrap  */
    7647           0 :       if (theInt/(Int)powers[got-DECDPUN]!=(Int)*(up-1)) ilength=11;
    7648             :          /* [that test also disallows the BADINT result case]  */
    7649           0 :        else if (neg && theInt>1999999997) ilength=11;
    7650           0 :        else if (!neg && theInt>999999999) ilength=11;
    7651           0 :       if (ilength==11) theInt=save;     /* restore correct low bit  */
    7652             :       }
    7653             :     }
    7654             : 
    7655           0 :   if (ilength>10) {                     /* too big  */
    7656           0 :     if (theInt&1) return BIGODD;        /* bottom bit 1  */
    7657           0 :     return BIGEVEN;                     /* bottom bit 0  */
    7658             :     }
    7659             : 
    7660           0 :   if (neg) theInt=-theInt;              /* apply sign  */
    7661           0 :   return theInt;
    7662             :   } /* decGetInt  */
    7663             : 
    7664             : /* ------------------------------------------------------------------ */
    7665             : /* decDecap -- decapitate the coefficient of a number                 */
    7666             : /*                                                                    */
    7667             : /*   dn   is the number to be decapitated                             */
    7668             : /*   drop is the number of digits to be removed from the left of dn;  */
    7669             : /*     this must be <= dn->digits (if equal, the coefficient is       */
    7670             : /*     set to 0)                                                      */
    7671             : /*                                                                    */
    7672             : /* Returns dn; dn->digits will be <= the initial digits less drop     */
    7673             : /* (after removing drop digits there may be leading zero digits       */
    7674             : /* which will also be removed).  Only dn->lsu and dn->digits change.  */
    7675             : /* ------------------------------------------------------------------ */
    7676           0 : static decNumber *decDecap(decNumber *dn, Int drop) {
    7677             :   Unit *msu;                            /* -> target cut point  */
    7678             :   Int cut;                              /* work  */
    7679           0 :   if (drop>=dn->digits) {               /* losing the whole thing  */
    7680             :     #if DECCHECK
    7681             :     if (drop>dn->digits)
    7682             :       printf("decDecap called with drop>digits [%ld>%ld]\n",
    7683             :              (LI)drop, (LI)dn->digits);
    7684             :     #endif
    7685           0 :     dn->lsu[0]=0;
    7686           0 :     dn->digits=1;
    7687           0 :     return dn;
    7688             :     }
    7689           0 :   msu=dn->lsu+D2U(dn->digits-drop)-1;   /* -> likely msu  */
    7690           0 :   cut=MSUDIGITS(dn->digits-drop);       /* digits to be in use in msu  */
    7691           0 :   if (cut!=DECDPUN) *msu%=powers[cut];  /* clear left digits  */
    7692             :   /* that may have left leading zero digits, so do a proper count...  */
    7693           0 :   dn->digits=decGetDigits(dn->lsu, msu-dn->lsu+1);
    7694           0 :   return dn;
    7695             :   } /* decDecap  */
    7696             : 
    7697             : /* ------------------------------------------------------------------ */
    7698             : /* decBiStr -- compare string with pairwise options                   */
    7699             : /*                                                                    */
    7700             : /*   targ is the string to compare                                    */
    7701             : /*   str1 is one of the strings to compare against (length may be 0)  */
    7702             : /*   str2 is the other; it must be the same length as str1            */
    7703             : /*                                                                    */
    7704             : /*   returns 1 if strings compare equal, (that is, it is the same     */
    7705             : /*   length as str1 and str2, and each character of targ is in either */
    7706             : /*   str1 or str2 in the corresponding position), or 0 otherwise      */
    7707             : /*                                                                    */
    7708             : /* This is used for generic caseless compare, including the awkward   */
    7709             : /* case of the Turkish dotted and dotless Is.  Use as (for example):  */
    7710             : /*   if (decBiStr(test, "mike", "MIKE")) ...                          */
    7711             : /* ------------------------------------------------------------------ */
    7712           0 : static Flag decBiStr(const char *targ, const char *str1, const char *str2) {
    7713           0 :   for (;;targ++, str1++, str2++) {
    7714           0 :     if (*targ!=*str1 && *targ!=*str2) return 0;
    7715             :     /* *targ has a match in one (or both, if terminator)  */
    7716           0 :     if (*targ=='\0') break;
    7717             :     } /* forever  */
    7718           0 :   return 1;
    7719             :   } /* decBiStr  */
    7720             : 
    7721             : /* ------------------------------------------------------------------ */
    7722             : /* decNaNs -- handle NaN operand or operands                          */
    7723             : /*                                                                    */
    7724             : /*   res     is the result number                                     */
    7725             : /*   lhs     is the first operand                                     */
    7726             : /*   rhs     is the second operand, or NULL if none                   */
    7727             : /*   context is used to limit payload length                          */
    7728             : /*   status  contains the current status                              */
    7729             : /*   returns res in case convenient                                   */
    7730             : /*                                                                    */
    7731             : /* Called when one or both operands is a NaN, and propagates the      */
    7732             : /* appropriate result to res.  When an sNaN is found, it is changed   */
    7733             : /* to a qNaN and Invalid operation is set.                            */
    7734             : /* ------------------------------------------------------------------ */
    7735           0 : static decNumber * decNaNs(decNumber *res, const decNumber *lhs,
    7736             :                            const decNumber *rhs, decContext *set,
    7737             :                            uInt *status) {
    7738             :   /* This decision tree ends up with LHS being the source pointer,  */
    7739             :   /* and status updated if need be  */
    7740           0 :   if (lhs->bits & DECSNAN)
    7741           0 :     *status|=DEC_Invalid_operation | DEC_sNaN;
    7742           0 :    else if (rhs==NULL);
    7743           0 :    else if (rhs->bits & DECSNAN) {
    7744           0 :     lhs=rhs;
    7745           0 :     *status|=DEC_Invalid_operation | DEC_sNaN;
    7746             :     }
    7747           0 :    else if (lhs->bits & DECNAN);
    7748           0 :    else lhs=rhs;
    7749             : 
    7750             :   /* propagate the payload  */
    7751           0 :   if (lhs->digits<=set->digits) uprv_decNumberCopy(res, lhs); /* easy  */
    7752             :    else { /* too long  */
    7753             :     const Unit *ul;
    7754             :     Unit *ur, *uresp1;
    7755             :     /* copy safe number of units, then decapitate  */
    7756           0 :     res->bits=lhs->bits;                /* need sign etc.  */
    7757           0 :     uresp1=res->lsu+D2U(set->digits);
    7758           0 :     for (ur=res->lsu, ul=lhs->lsu; ur<uresp1; ur++, ul++) *ur=*ul;
    7759           0 :     res->digits=D2U(set->digits)*DECDPUN;
    7760             :     /* maybe still too long  */
    7761           0 :     if (res->digits>set->digits) decDecap(res, res->digits-set->digits);
    7762             :     }
    7763             : 
    7764           0 :   res->bits&=~DECSNAN;        /* convert any sNaN to NaN, while  */
    7765           0 :   res->bits|=DECNAN;          /* .. preserving sign  */
    7766           0 :   res->exponent=0;            /* clean exponent  */
    7767             :                               /* [coefficient was copied/decapitated]  */
    7768           0 :   return res;
    7769             :   } /* decNaNs  */
    7770             : 
    7771             : /* ------------------------------------------------------------------ */
    7772             : /* decStatus -- apply non-zero status                                 */
    7773             : /*                                                                    */
    7774             : /*   dn     is the number to set if error                             */
    7775             : /*   status contains the current status (not yet in context)          */
    7776             : /*   set    is the context                                            */
    7777             : /*                                                                    */
    7778             : /* If the status is an error status, the number is set to a NaN,      */
    7779             : /* unless the error was an overflow, divide-by-zero, or underflow,    */
    7780             : /* in which case the number will have already been set.               */
    7781             : /*                                                                    */
    7782             : /* The context status is then updated with the new status.  Note that */
    7783             : /* this may raise a signal, so control may never return from this     */
    7784             : /* routine (hence resources must be recovered before it is called).   */
    7785             : /* ------------------------------------------------------------------ */
    7786           0 : static void decStatus(decNumber *dn, uInt status, decContext *set) {
    7787           0 :   if (status & DEC_NaNs) {              /* error status -> NaN  */
    7788             :     /* if cause was an sNaN, clear and propagate [NaN is already set up]  */
    7789           0 :     if (status & DEC_sNaN) status&=~DEC_sNaN;
    7790             :      else {
    7791           0 :       uprv_decNumberZero(dn);                /* other error: clean throughout  */
    7792           0 :       dn->bits=DECNAN;                  /* and make a quiet NaN  */
    7793             :       }
    7794             :     }
    7795           0 :   uprv_decContextSetStatus(set, status);     /* [may not return]  */
    7796           0 :   return;
    7797             :   } /* decStatus  */
    7798             : 
    7799             : /* ------------------------------------------------------------------ */
    7800             : /* decGetDigits -- count digits in a Units array                      */
    7801             : /*                                                                    */
    7802             : /*   uar is the Unit array holding the number (this is often an       */
    7803             : /*          accumulator of some sort)                                 */
    7804             : /*   len is the length of the array in units [>=1]                    */
    7805             : /*                                                                    */
    7806             : /*   returns the number of (significant) digits in the array          */
    7807             : /*                                                                    */
    7808             : /* All leading zeros are excluded, except the last if the array has   */
    7809             : /* only zero Units.                                                   */
    7810             : /* ------------------------------------------------------------------ */
    7811             : /* This may be called twice during some operations.  */
    7812           0 : static Int decGetDigits(Unit *uar, Int len) {
    7813           0 :   Unit *up=uar+(len-1);            /* -> msu  */
    7814           0 :   Int  digits=(len-1)*DECDPUN+1;   /* possible digits excluding msu  */
    7815             :   #if DECDPUN>4
    7816             :   uInt const *pow;                 /* work  */
    7817             :   #endif
    7818             :                                    /* (at least 1 in final msu)  */
    7819             :   #if DECCHECK
    7820             :   if (len<1) printf("decGetDigits called with len<1 [%ld]\n", (LI)len);
    7821             :   #endif
    7822             : 
    7823           0 :   for (; up>=uar; up--) {
    7824           0 :     if (*up==0) {                  /* unit is all 0s  */
    7825           0 :       if (digits==1) break;        /* a zero has one digit  */
    7826           0 :       digits-=DECDPUN;             /* adjust for 0 unit  */
    7827           0 :       continue;}
    7828             :     /* found the first (most significant) non-zero Unit  */
    7829             :     #if DECDPUN>1                  /* not done yet  */
    7830             :     if (*up<10) break;             /* is 1-9  */
    7831             :     digits++;
    7832             :     #if DECDPUN>2                  /* not done yet  */
    7833             :     if (*up<100) break;            /* is 10-99  */
    7834             :     digits++;
    7835             :     #if DECDPUN>3                  /* not done yet  */
    7836             :     if (*up<1000) break;           /* is 100-999  */
    7837             :     digits++;
    7838             :     #if DECDPUN>4                  /* count the rest ...  */
    7839             :     for (pow=&powers[4]; *up>=*pow; pow++) digits++;
    7840             :     #endif
    7841             :     #endif
    7842             :     #endif
    7843             :     #endif
    7844           0 :     break;
    7845             :     } /* up  */
    7846           0 :   return digits;
    7847             :   } /* decGetDigits  */
    7848             : 
    7849             : #if DECTRACE | DECCHECK
    7850             : /* ------------------------------------------------------------------ */
    7851             : /* decNumberShow -- display a number [debug aid]                      */
    7852             : /*   dn is the number to show                                         */
    7853             : /*                                                                    */
    7854             : /* Shows: sign, exponent, coefficient (msu first), digits             */
    7855             : /*    or: sign, special-value                                         */
    7856             : /* ------------------------------------------------------------------ */
    7857             : /* this is public so other modules can use it  */
    7858             : void uprv_decNumberShow(const decNumber *dn) {
    7859             :   const Unit *up;                  /* work  */
    7860             :   uInt u, d;                       /* ..  */
    7861             :   Int cut;                         /* ..  */
    7862             :   char isign='+';                  /* main sign  */
    7863             :   if (dn==NULL) {
    7864             :     printf("NULL\n");
    7865             :     return;}
    7866             :   if (decNumberIsNegative(dn)) isign='-';
    7867             :   printf(" >> %c ", isign);
    7868             :   if (dn->bits&DECSPECIAL) {       /* Is a special value  */
    7869             :     if (decNumberIsInfinite(dn)) printf("Infinity");
    7870             :      else {                                  /* a NaN  */
    7871             :       if (dn->bits&DECSNAN) printf("sNaN");  /* signalling NaN  */
    7872             :        else printf("NaN");
    7873             :       }
    7874             :     /* if coefficient and exponent are 0, no more to do  */
    7875             :     if (dn->exponent==0 && dn->digits==1 && *dn->lsu==0) {
    7876             :       printf("\n");
    7877             :       return;}
    7878             :     /* drop through to report other information  */
    7879             :     printf(" ");
    7880             :     }
    7881             : 
    7882             :   /* now carefully display the coefficient  */
    7883             :   up=dn->lsu+D2U(dn->digits)-1;         /* msu  */
    7884             :   printf("%ld", (LI)*up);
    7885             :   for (up=up-1; up>=dn->lsu; up--) {
    7886             :     u=*up;
    7887             :     printf(":");
    7888             :     for (cut=DECDPUN-1; cut>=0; cut--) {
    7889             :       d=u/powers[cut];
    7890             :       u-=d*powers[cut];
    7891             :       printf("%ld", (LI)d);
    7892             :       } /* cut  */
    7893             :     } /* up  */
    7894             :   if (dn->exponent!=0) {
    7895             :     char esign='+';
    7896             :     if (dn->exponent<0) esign='-';
    7897             :     printf(" E%c%ld", esign, (LI)abs(dn->exponent));
    7898             :     }
    7899             :   printf(" [%ld]\n", (LI)dn->digits);
    7900             :   } /* decNumberShow  */
    7901             : #endif
    7902             : 
    7903             : #if DECTRACE || DECCHECK
    7904             : /* ------------------------------------------------------------------ */
    7905             : /* decDumpAr -- display a unit array [debug/check aid]                */
    7906             : /*   name is a single-character tag name                              */
    7907             : /*   ar   is the array to display                                     */
    7908             : /*   len  is the length of the array in Units                         */
    7909             : /* ------------------------------------------------------------------ */
    7910             : static void decDumpAr(char name, const Unit *ar, Int len) {
    7911             :   Int i;
    7912             :   const char *spec;
    7913             :   #if DECDPUN==9
    7914             :     spec="%09d ";
    7915             :   #elif DECDPUN==8
    7916             :     spec="%08d ";
    7917             :   #elif DECDPUN==7
    7918             :     spec="%07d ";
    7919             :   #elif DECDPUN==6
    7920             :     spec="%06d ";
    7921             :   #elif DECDPUN==5
    7922             :     spec="%05d ";
    7923             :   #elif DECDPUN==4
    7924             :     spec="%04d ";
    7925             :   #elif DECDPUN==3
    7926             :     spec="%03d ";
    7927             :   #elif DECDPUN==2
    7928             :     spec="%02d ";
    7929             :   #else
    7930             :     spec="%d ";
    7931             :   #endif
    7932             :   printf("  :%c: ", name);
    7933             :   for (i=len-1; i>=0; i--) {
    7934             :     if (i==len-1) printf("%ld ", (LI)ar[i]);
    7935             :      else printf(spec, ar[i]);
    7936             :     }
    7937             :   printf("\n");
    7938             :   return;}
    7939             : #endif
    7940             : 
    7941             : #if DECCHECK
    7942             : /* ------------------------------------------------------------------ */
    7943             : /* decCheckOperands -- check operand(s) to a routine                  */
    7944             : /*   res is the result structure (not checked; it will be set to      */
    7945             : /*          quiet NaN if error found (and it is not NULL))            */
    7946             : /*   lhs is the first operand (may be DECUNRESU)                      */
    7947             : /*   rhs is the second (may be DECUNUSED)                             */
    7948             : /*   set is the context (may be DECUNCONT)                            */
    7949             : /*   returns 0 if both operands, and the context are clean, or 1      */
    7950             : /*     otherwise (in which case the context will show an error,       */
    7951             : /*     unless NULL).  Note that res is not cleaned; caller should     */
    7952             : /*     handle this so res=NULL case is safe.                          */
    7953             : /* The caller is expected to abandon immediately if 1 is returned.    */
    7954             : /* ------------------------------------------------------------------ */
    7955             : static Flag decCheckOperands(decNumber *res, const decNumber *lhs,
    7956             :                              const decNumber *rhs, decContext *set) {
    7957             :   Flag bad=0;
    7958             :   if (set==NULL) {                 /* oops; hopeless  */
    7959             :     #if DECTRACE || DECVERB
    7960             :     printf("Reference to context is NULL.\n");
    7961             :     #endif
    7962             :     bad=1;
    7963             :     return 1;}
    7964             :    else if (set!=DECUNCONT
    7965             :      && (set->digits<1 || set->round>=DEC_ROUND_MAX)) {
    7966             :     bad=1;
    7967             :     #if DECTRACE || DECVERB
    7968             :     printf("Bad context [digits=%ld round=%ld].\n",
    7969             :            (LI)set->digits, (LI)set->round);
    7970             :     #endif
    7971             :     }
    7972             :    else {
    7973             :     if (res==NULL) {
    7974             :       bad=1;
    7975             :       #if DECTRACE
    7976             :       /* this one not DECVERB as standard tests include NULL  */
    7977             :       printf("Reference to result is NULL.\n");
    7978             :       #endif
    7979             :       }
    7980             :     if (!bad && lhs!=DECUNUSED) bad=(decCheckNumber(lhs));
    7981             :     if (!bad && rhs!=DECUNUSED) bad=(decCheckNumber(rhs));
    7982             :     }
    7983             :   if (bad) {
    7984             :     if (set!=DECUNCONT) uprv_decContextSetStatus(set, DEC_Invalid_operation);
    7985             :     if (res!=DECUNRESU && res!=NULL) {
    7986             :       uprv_decNumberZero(res);
    7987             :       res->bits=DECNAN;       /* qNaN  */
    7988             :       }
    7989             :     }
    7990             :   return bad;
    7991             :   } /* decCheckOperands  */
    7992             : 
    7993             : /* ------------------------------------------------------------------ */
    7994             : /* decCheckNumber -- check a number                                   */
    7995             : /*   dn is the number to check                                        */
    7996             : /*   returns 0 if the number is clean, or 1 otherwise                 */
    7997             : /*                                                                    */
    7998             : /* The number is considered valid if it could be a result from some   */
    7999             : /* operation in some valid context.                                   */
    8000             : /* ------------------------------------------------------------------ */
    8001             : static Flag decCheckNumber(const decNumber *dn) {
    8002             :   const Unit *up;             /* work  */
    8003             :   uInt maxuint;               /* ..  */
    8004             :   Int ae, d, digits;          /* ..  */
    8005             :   Int emin, emax;             /* ..  */
    8006             : 
    8007             :   if (dn==NULL) {             /* hopeless  */
    8008             :     #if DECTRACE
    8009             :     /* this one not DECVERB as standard tests include NULL  */
    8010             :     printf("Reference to decNumber is NULL.\n");
    8011             :     #endif
    8012             :     return 1;}
    8013             : 
    8014             :   /* check special values  */
    8015             :   if (dn->bits & DECSPECIAL) {
    8016             :     if (dn->exponent!=0) {
    8017             :       #if DECTRACE || DECVERB
    8018             :       printf("Exponent %ld (not 0) for a special value [%02x].\n",
    8019             :              (LI)dn->exponent, dn->bits);
    8020             :       #endif
    8021             :       return 1;}
    8022             : 
    8023             :     /* 2003.09.08: NaNs may now have coefficients, so next tests Inf only  */
    8024             :     if (decNumberIsInfinite(dn)) {
    8025             :       if (dn->digits!=1) {
    8026             :         #if DECTRACE || DECVERB
    8027             :         printf("Digits %ld (not 1) for an infinity.\n", (LI)dn->digits);
    8028             :         #endif
    8029             :         return 1;}
    8030             :       if (*dn->lsu!=0) {
    8031             :         #if DECTRACE || DECVERB
    8032             :         printf("LSU %ld (not 0) for an infinity.\n", (LI)*dn->lsu);
    8033             :         #endif
    8034             :         decDumpAr('I', dn->lsu, D2U(dn->digits));
    8035             :         return 1;}
    8036             :       } /* Inf  */
    8037             :     /* 2002.12.26: negative NaNs can now appear through proposed IEEE  */
    8038             :     /*             concrete formats (decimal64, etc.).  */
    8039             :     return 0;
    8040             :     }
    8041             : 
    8042             :   /* check the coefficient  */
    8043             :   if (dn->digits<1 || dn->digits>DECNUMMAXP) {
    8044             :     #if DECTRACE || DECVERB
    8045             :     printf("Digits %ld in number.\n", (LI)dn->digits);
    8046             :     #endif
    8047             :     return 1;}
    8048             : 
    8049             :   d=dn->digits;
    8050             : 
    8051             :   for (up=dn->lsu; d>0; up++) {
    8052             :     if (d>DECDPUN) maxuint=DECDPUNMAX;
    8053             :      else {                   /* reached the msu  */
    8054             :       maxuint=powers[d]-1;
    8055             :       if (dn->digits>1 && *up<powers[d-1]) {
    8056             :         #if DECTRACE || DECVERB
    8057             :         printf("Leading 0 in number.\n");
    8058             :         uprv_decNumberShow(dn);
    8059             :         #endif
    8060             :         return 1;}
    8061             :       }
    8062             :     if (*up>maxuint) {
    8063             :       #if DECTRACE || DECVERB
    8064             :       printf("Bad Unit [%08lx] in %ld-digit number at offset %ld [maxuint %ld].\n",
    8065             :               (LI)*up, (LI)dn->digits, (LI)(up-dn->lsu), (LI)maxuint);
    8066             :       #endif
    8067             :       return 1;}
    8068             :     d-=DECDPUN;
    8069             :     }
    8070             : 
    8071             :   /* check the exponent.  Note that input operands can have exponents  */
    8072             :   /* which are out of the set->emin/set->emax and set->digits range  */
    8073             :   /* (just as they can have more digits than set->digits).  */
    8074             :   ae=dn->exponent+dn->digits-1;    /* adjusted exponent  */
    8075             :   emax=DECNUMMAXE;
    8076             :   emin=DECNUMMINE;
    8077             :   digits=DECNUMMAXP;
    8078             :   if (ae<emin-(digits-1)) {
    8079             :     #if DECTRACE || DECVERB
    8080             :     printf("Adjusted exponent underflow [%ld].\n", (LI)ae);
    8081             :     uprv_decNumberShow(dn);
    8082             :     #endif
    8083             :     return 1;}
    8084             :   if (ae>+emax) {
    8085             :     #if DECTRACE || DECVERB
    8086             :     printf("Adjusted exponent overflow [%ld].\n", (LI)ae);
    8087             :     uprv_decNumberShow(dn);
    8088             :     #endif
    8089             :     return 1;}
    8090             : 
    8091             :   return 0;              /* it's OK  */
    8092             :   } /* decCheckNumber  */
    8093             : 
    8094             : /* ------------------------------------------------------------------ */
    8095             : /* decCheckInexact -- check a normal finite inexact result has digits */
    8096             : /*   dn is the number to check                                        */
    8097             : /*   set is the context (for status and precision)                    */
    8098             : /*   sets Invalid operation, etc., if some digits are missing         */
    8099             : /* [this check is not made for DECSUBSET compilation or when          */
    8100             : /* subnormal is not set]                                              */
    8101             : /* ------------------------------------------------------------------ */
    8102             : static void decCheckInexact(const decNumber *dn, decContext *set) {
    8103             :   #if !DECSUBSET && DECEXTFLAG
    8104             :     if ((set->status & (DEC_Inexact|DEC_Subnormal))==DEC_Inexact
    8105             :      && (set->digits!=dn->digits) && !(dn->bits & DECSPECIAL)) {
    8106             :       #if DECTRACE || DECVERB
    8107             :       printf("Insufficient digits [%ld] on normal Inexact result.\n",
    8108             :              (LI)dn->digits);
    8109             :       uprv_decNumberShow(dn);
    8110             :       #endif
    8111             :       uprv_decContextSetStatus(set, DEC_Invalid_operation);
    8112             :       }
    8113             :   #else
    8114             :     /* next is a noop for quiet compiler  */
    8115             :     if (dn!=NULL && dn->digits==0) set->status|=DEC_Invalid_operation;
    8116             :   #endif
    8117             :   return;
    8118             :   } /* decCheckInexact  */
    8119             : #endif
    8120             : 
    8121             : #if DECALLOC
    8122             : #undef malloc
    8123             : #undef free
    8124             : /* ------------------------------------------------------------------ */
    8125             : /* decMalloc -- accountable allocation routine                        */
    8126             : /*   n is the number of bytes to allocate                             */
    8127             : /*                                                                    */
    8128             : /* Semantics is the same as the stdlib malloc routine, but bytes      */
    8129             : /* allocated are accounted for globally, and corruption fences are    */
    8130             : /* added before and after the 'actual' storage.                       */
    8131             : /* ------------------------------------------------------------------ */
    8132             : /* This routine allocates storage with an extra twelve bytes; 8 are   */
    8133             : /* at the start and hold:                                             */
    8134             : /*   0-3 the original length requested                                */
    8135             : /*   4-7 buffer corruption detection fence (DECFENCE, x4)             */
    8136             : /* The 4 bytes at the end also hold a corruption fence (DECFENCE, x4) */
    8137             : /* ------------------------------------------------------------------ */
    8138             : static void *decMalloc(size_t n) {
    8139             :   uInt  size=n+12;                 /* true size  */
    8140             :   void  *alloc;                    /* -> allocated storage  */
    8141             :   uByte *b, *b0;                   /* work  */
    8142             :   uInt  uiwork;                    /* for macros  */
    8143             : 
    8144             :   alloc=malloc(size);              /* -> allocated storage  */
    8145             :   if (alloc==NULL) return NULL;    /* out of strorage  */
    8146             :   b0=(uByte *)alloc;               /* as bytes  */
    8147             :   decAllocBytes+=n;                /* account for storage  */
    8148             :   UBFROMUI(alloc, n);              /* save n  */
    8149             :   /* printf(" alloc ++ dAB: %ld (%ld)\n", (LI)decAllocBytes, (LI)n);  */
    8150             :   for (b=b0+4; b<b0+8; b++) *b=DECFENCE;
    8151             :   for (b=b0+n+8; b<b0+n+12; b++) *b=DECFENCE;
    8152             :   return b0+8;                     /* -> play area  */
    8153             :   } /* decMalloc  */
    8154             : 
    8155             : /* ------------------------------------------------------------------ */
    8156             : /* decFree -- accountable free routine                                */
    8157             : /*   alloc is the storage to free                                     */
    8158             : /*                                                                    */
    8159             : /* Semantics is the same as the stdlib malloc routine, except that    */
    8160             : /* the global storage accounting is updated and the fences are        */
    8161             : /* checked to ensure that no routine has written 'out of bounds'.     */
    8162             : /* ------------------------------------------------------------------ */
    8163             : /* This routine first checks that the fences have not been corrupted. */
    8164             : /* It then frees the storage using the 'truw' storage address (that   */
    8165             : /* is, offset by 8).                                                  */
    8166             : /* ------------------------------------------------------------------ */
    8167             : static void decFree(void *alloc) {
    8168             :   uInt  n;                         /* original length  */
    8169             :   uByte *b, *b0;                   /* work  */
    8170             :   uInt  uiwork;                    /* for macros  */
    8171             : 
    8172             :   if (alloc==NULL) return;         /* allowed; it's a nop  */
    8173             :   b0=(uByte *)alloc;               /* as bytes  */
    8174             :   b0-=8;                           /* -> true start of storage  */
    8175             :   n=UBTOUI(b0);                    /* lift length  */
    8176             :   for (b=b0+4; b<b0+8; b++) if (*b!=DECFENCE)
    8177             :     printf("=== Corrupt byte [%02x] at offset %d from %ld ===\n", *b,
    8178             :            b-b0-8, (LI)b0);
    8179             :   for (b=b0+n+8; b<b0+n+12; b++) if (*b!=DECFENCE)
    8180             :     printf("=== Corrupt byte [%02x] at offset +%d from %ld, n=%ld ===\n", *b,
    8181             :            b-b0-8, (LI)b0, (LI)n);
    8182             :   free(b0);                        /* drop the storage  */
    8183             :   decAllocBytes-=n;                /* account for storage  */
    8184             :   /* printf(" free -- dAB: %d (%d)\n", decAllocBytes, -n);  */
    8185             :   } /* decFree  */
    8186             : #define malloc(a) decMalloc(a)
    8187             : #define free(a) decFree(a)
    8188             : #endif

Generated by: LCOV version 1.13