Line data Source code
1 : // © 2016 and later: Unicode, Inc. and others.
2 : // License & terms of use: http://www.unicode.org/copyright.html
3 : /*
4 : *******************************************************************************
5 : * Copyright (C) 1997-2016, International Business Machines Corporation and
6 : * others. All Rights Reserved.
7 : *******************************************************************************
8 : *
9 : * File GREGOCAL.CPP
10 : *
11 : * Modification History:
12 : *
13 : * Date Name Description
14 : * 02/05/97 clhuang Creation.
15 : * 03/28/97 aliu Made highly questionable fix to computeFields to
16 : * handle DST correctly.
17 : * 04/22/97 aliu Cleaned up code drastically. Added monthLength().
18 : * Finished unimplemented parts of computeTime() for
19 : * week-based date determination. Removed quetionable
20 : * fix and wrote correct fix for computeFields() and
21 : * daylight time handling. Rewrote inDaylightTime()
22 : * and computeFields() to handle sensitive Daylight to
23 : * Standard time transitions correctly.
24 : * 05/08/97 aliu Added code review changes. Fixed isLeapYear() to
25 : * not cutover.
26 : * 08/12/97 aliu Added equivalentTo. Misc other fixes. Updated
27 : * add() from Java source.
28 : * 07/28/98 stephen Sync up with JDK 1.2
29 : * 09/14/98 stephen Changed type of kOneDay, kOneWeek to double.
30 : * Fixed bug in roll()
31 : * 10/15/99 aliu Fixed j31, incorrect WEEK_OF_YEAR computation.
32 : * 10/15/99 aliu Fixed j32, cannot set date to Feb 29 2000 AD.
33 : * {JDK bug 4210209 4209272}
34 : * 11/15/99 weiv Added YEAR_WOY and DOW_LOCAL computation
35 : * to timeToFields method, updated kMinValues, kMaxValues & kLeastMaxValues
36 : * 12/09/99 aliu Fixed j81, calculation errors and roll bugs
37 : * in year of cutover.
38 : * 01/24/2000 aliu Revised computeJulianDay for YEAR YEAR_WOY WOY.
39 : ********************************************************************************
40 : */
41 :
42 : #include "unicode/utypes.h"
43 : #include <float.h>
44 :
45 : #if !UCONFIG_NO_FORMATTING
46 :
47 : #include "unicode/gregocal.h"
48 : #include "gregoimp.h"
49 : #include "umutex.h"
50 : #include "uassert.h"
51 :
52 : // *****************************************************************************
53 : // class GregorianCalendar
54 : // *****************************************************************************
55 :
56 : /**
57 : * Note that the Julian date used here is not a true Julian date, since
58 : * it is measured from midnight, not noon. This value is the Julian
59 : * day number of January 1, 1970 (Gregorian calendar) at noon UTC. [LIU]
60 : */
61 :
62 : static const int16_t kNumDays[]
63 : = {0,31,59,90,120,151,181,212,243,273,304,334}; // 0-based, for day-in-year
64 : static const int16_t kLeapNumDays[]
65 : = {0,31,60,91,121,152,182,213,244,274,305,335}; // 0-based, for day-in-year
66 : static const int8_t kMonthLength[]
67 : = {31,28,31,30,31,30,31,31,30,31,30,31}; // 0-based
68 : static const int8_t kLeapMonthLength[]
69 : = {31,29,31,30,31,30,31,31,30,31,30,31}; // 0-based
70 :
71 : // setTimeInMillis() limits the Julian day range to +/-7F000000.
72 : // This would seem to limit the year range to:
73 : // ms=+183882168921600000 jd=7f000000 December 20, 5828963 AD
74 : // ms=-184303902528000000 jd=81000000 September 20, 5838270 BC
75 : // HOWEVER, CalendarRegressionTest/Test4167060 shows that the actual
76 : // range limit on the year field is smaller (~ +/-140000). [alan 3.0]
77 :
78 : static const int32_t kGregorianCalendarLimits[UCAL_FIELD_COUNT][4] = {
79 : // Minimum Greatest Least Maximum
80 : // Minimum Maximum
81 : { 0, 0, 1, 1}, // ERA
82 : { 1, 1, 140742, 144683}, // YEAR
83 : { 0, 0, 11, 11}, // MONTH
84 : { 1, 1, 52, 53}, // WEEK_OF_YEAR
85 : {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // WEEK_OF_MONTH
86 : { 1, 1, 28, 31}, // DAY_OF_MONTH
87 : { 1, 1, 365, 366}, // DAY_OF_YEAR
88 : {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // DAY_OF_WEEK
89 : { -1, -1, 4, 5}, // DAY_OF_WEEK_IN_MONTH
90 : {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // AM_PM
91 : {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // HOUR
92 : {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // HOUR_OF_DAY
93 : {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // MINUTE
94 : {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // SECOND
95 : {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // MILLISECOND
96 : {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // ZONE_OFFSET
97 : {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // DST_OFFSET
98 : { -140742, -140742, 140742, 144683}, // YEAR_WOY
99 : {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // DOW_LOCAL
100 : { -140742, -140742, 140742, 144683}, // EXTENDED_YEAR
101 : {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // JULIAN_DAY
102 : {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // MILLISECONDS_IN_DAY
103 : {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // IS_LEAP_MONTH
104 : };
105 :
106 : /*
107 : * <pre>
108 : * Greatest Least
109 : * Field name Minimum Minimum Maximum Maximum
110 : * ---------- ------- ------- ------- -------
111 : * ERA 0 0 1 1
112 : * YEAR 1 1 140742 144683
113 : * MONTH 0 0 11 11
114 : * WEEK_OF_YEAR 1 1 52 53
115 : * WEEK_OF_MONTH 0 0 4 6
116 : * DAY_OF_MONTH 1 1 28 31
117 : * DAY_OF_YEAR 1 1 365 366
118 : * DAY_OF_WEEK 1 1 7 7
119 : * DAY_OF_WEEK_IN_MONTH -1 -1 4 5
120 : * AM_PM 0 0 1 1
121 : * HOUR 0 0 11 11
122 : * HOUR_OF_DAY 0 0 23 23
123 : * MINUTE 0 0 59 59
124 : * SECOND 0 0 59 59
125 : * MILLISECOND 0 0 999 999
126 : * ZONE_OFFSET -12* -12* 12* 12*
127 : * DST_OFFSET 0 0 1* 1*
128 : * YEAR_WOY 1 1 140742 144683
129 : * DOW_LOCAL 1 1 7 7
130 : * </pre>
131 : * (*) In units of one-hour
132 : */
133 :
134 : #if defined( U_DEBUG_CALSVC ) || defined (U_DEBUG_CAL)
135 : #include <stdio.h>
136 : #endif
137 :
138 : U_NAMESPACE_BEGIN
139 :
140 0 : UOBJECT_DEFINE_RTTI_IMPLEMENTATION(GregorianCalendar)
141 :
142 : // 00:00:00 UTC, October 15, 1582, expressed in ms from the epoch.
143 : // Note that only Italy and other Catholic countries actually
144 : // observed this cutover. Most other countries followed in
145 : // the next few centuries, some as late as 1928. [LIU]
146 : // in Java, -12219292800000L
147 : //const UDate GregorianCalendar::kPapalCutover = -12219292800000L;
148 : static const uint32_t kCutoverJulianDay = 2299161;
149 : static const UDate kPapalCutover = (2299161.0 - kEpochStartAsJulianDay) * U_MILLIS_PER_DAY;
150 : //static const UDate kPapalCutoverJulian = (2299161.0 - kEpochStartAsJulianDay);
151 :
152 : // -------------------------------------
153 :
154 0 : GregorianCalendar::GregorianCalendar(UErrorCode& status)
155 : : Calendar(status),
156 : fGregorianCutover(kPapalCutover),
157 0 : fCutoverJulianDay(kCutoverJulianDay), fNormalizedGregorianCutover(fGregorianCutover), fGregorianCutoverYear(1582),
158 0 : fIsGregorian(TRUE), fInvertGregorian(FALSE)
159 : {
160 0 : setTimeInMillis(getNow(), status);
161 0 : }
162 :
163 : // -------------------------------------
164 :
165 0 : GregorianCalendar::GregorianCalendar(TimeZone* zone, UErrorCode& status)
166 : : Calendar(zone, Locale::getDefault(), status),
167 : fGregorianCutover(kPapalCutover),
168 0 : fCutoverJulianDay(kCutoverJulianDay), fNormalizedGregorianCutover(fGregorianCutover), fGregorianCutoverYear(1582),
169 0 : fIsGregorian(TRUE), fInvertGregorian(FALSE)
170 : {
171 0 : setTimeInMillis(getNow(), status);
172 0 : }
173 :
174 : // -------------------------------------
175 :
176 0 : GregorianCalendar::GregorianCalendar(const TimeZone& zone, UErrorCode& status)
177 : : Calendar(zone, Locale::getDefault(), status),
178 : fGregorianCutover(kPapalCutover),
179 0 : fCutoverJulianDay(kCutoverJulianDay), fNormalizedGregorianCutover(fGregorianCutover), fGregorianCutoverYear(1582),
180 0 : fIsGregorian(TRUE), fInvertGregorian(FALSE)
181 : {
182 0 : setTimeInMillis(getNow(), status);
183 0 : }
184 :
185 : // -------------------------------------
186 :
187 0 : GregorianCalendar::GregorianCalendar(const Locale& aLocale, UErrorCode& status)
188 : : Calendar(TimeZone::createDefault(), aLocale, status),
189 : fGregorianCutover(kPapalCutover),
190 0 : fCutoverJulianDay(kCutoverJulianDay), fNormalizedGregorianCutover(fGregorianCutover), fGregorianCutoverYear(1582),
191 0 : fIsGregorian(TRUE), fInvertGregorian(FALSE)
192 : {
193 0 : setTimeInMillis(getNow(), status);
194 0 : }
195 :
196 : // -------------------------------------
197 :
198 0 : GregorianCalendar::GregorianCalendar(TimeZone* zone, const Locale& aLocale,
199 0 : UErrorCode& status)
200 : : Calendar(zone, aLocale, status),
201 : fGregorianCutover(kPapalCutover),
202 0 : fCutoverJulianDay(kCutoverJulianDay), fNormalizedGregorianCutover(fGregorianCutover), fGregorianCutoverYear(1582),
203 0 : fIsGregorian(TRUE), fInvertGregorian(FALSE)
204 : {
205 0 : setTimeInMillis(getNow(), status);
206 0 : }
207 :
208 : // -------------------------------------
209 :
210 0 : GregorianCalendar::GregorianCalendar(const TimeZone& zone, const Locale& aLocale,
211 0 : UErrorCode& status)
212 : : Calendar(zone, aLocale, status),
213 : fGregorianCutover(kPapalCutover),
214 0 : fCutoverJulianDay(kCutoverJulianDay), fNormalizedGregorianCutover(fGregorianCutover), fGregorianCutoverYear(1582),
215 0 : fIsGregorian(TRUE), fInvertGregorian(FALSE)
216 : {
217 0 : setTimeInMillis(getNow(), status);
218 0 : }
219 :
220 : // -------------------------------------
221 :
222 0 : GregorianCalendar::GregorianCalendar(int32_t year, int32_t month, int32_t date,
223 0 : UErrorCode& status)
224 : : Calendar(TimeZone::createDefault(), Locale::getDefault(), status),
225 : fGregorianCutover(kPapalCutover),
226 0 : fCutoverJulianDay(kCutoverJulianDay), fNormalizedGregorianCutover(fGregorianCutover), fGregorianCutoverYear(1582),
227 0 : fIsGregorian(TRUE), fInvertGregorian(FALSE)
228 : {
229 0 : set(UCAL_ERA, AD);
230 0 : set(UCAL_YEAR, year);
231 0 : set(UCAL_MONTH, month);
232 0 : set(UCAL_DATE, date);
233 0 : }
234 :
235 : // -------------------------------------
236 :
237 0 : GregorianCalendar::GregorianCalendar(int32_t year, int32_t month, int32_t date,
238 0 : int32_t hour, int32_t minute, UErrorCode& status)
239 : : Calendar(TimeZone::createDefault(), Locale::getDefault(), status),
240 : fGregorianCutover(kPapalCutover),
241 0 : fCutoverJulianDay(kCutoverJulianDay), fNormalizedGregorianCutover(fGregorianCutover), fGregorianCutoverYear(1582),
242 0 : fIsGregorian(TRUE), fInvertGregorian(FALSE)
243 : {
244 0 : set(UCAL_ERA, AD);
245 0 : set(UCAL_YEAR, year);
246 0 : set(UCAL_MONTH, month);
247 0 : set(UCAL_DATE, date);
248 0 : set(UCAL_HOUR_OF_DAY, hour);
249 0 : set(UCAL_MINUTE, minute);
250 0 : }
251 :
252 : // -------------------------------------
253 :
254 0 : GregorianCalendar::GregorianCalendar(int32_t year, int32_t month, int32_t date,
255 : int32_t hour, int32_t minute, int32_t second,
256 0 : UErrorCode& status)
257 : : Calendar(TimeZone::createDefault(), Locale::getDefault(), status),
258 : fGregorianCutover(kPapalCutover),
259 0 : fCutoverJulianDay(kCutoverJulianDay), fNormalizedGregorianCutover(fGregorianCutover), fGregorianCutoverYear(1582),
260 0 : fIsGregorian(TRUE), fInvertGregorian(FALSE)
261 : {
262 0 : set(UCAL_ERA, AD);
263 0 : set(UCAL_YEAR, year);
264 0 : set(UCAL_MONTH, month);
265 0 : set(UCAL_DATE, date);
266 0 : set(UCAL_HOUR_OF_DAY, hour);
267 0 : set(UCAL_MINUTE, minute);
268 0 : set(UCAL_SECOND, second);
269 0 : }
270 :
271 : // -------------------------------------
272 :
273 0 : GregorianCalendar::~GregorianCalendar()
274 : {
275 0 : }
276 :
277 : // -------------------------------------
278 :
279 0 : GregorianCalendar::GregorianCalendar(const GregorianCalendar &source)
280 : : Calendar(source),
281 0 : fGregorianCutover(source.fGregorianCutover),
282 0 : fCutoverJulianDay(source.fCutoverJulianDay), fNormalizedGregorianCutover(source.fNormalizedGregorianCutover), fGregorianCutoverYear(source.fGregorianCutoverYear),
283 0 : fIsGregorian(source.fIsGregorian), fInvertGregorian(source.fInvertGregorian)
284 : {
285 0 : }
286 :
287 : // -------------------------------------
288 :
289 0 : Calendar* GregorianCalendar::clone() const
290 : {
291 0 : return new GregorianCalendar(*this);
292 : }
293 :
294 : // -------------------------------------
295 :
296 : GregorianCalendar &
297 0 : GregorianCalendar::operator=(const GregorianCalendar &right)
298 : {
299 0 : if (this != &right)
300 : {
301 0 : Calendar::operator=(right);
302 0 : fGregorianCutover = right.fGregorianCutover;
303 0 : fNormalizedGregorianCutover = right.fNormalizedGregorianCutover;
304 0 : fGregorianCutoverYear = right.fGregorianCutoverYear;
305 0 : fCutoverJulianDay = right.fCutoverJulianDay;
306 : }
307 0 : return *this;
308 : }
309 :
310 : // -------------------------------------
311 :
312 0 : UBool GregorianCalendar::isEquivalentTo(const Calendar& other) const
313 : {
314 : // Calendar override.
315 0 : return Calendar::isEquivalentTo(other) &&
316 0 : fGregorianCutover == ((GregorianCalendar*)&other)->fGregorianCutover;
317 : }
318 :
319 : // -------------------------------------
320 :
321 : void
322 0 : GregorianCalendar::setGregorianChange(UDate date, UErrorCode& status)
323 : {
324 0 : if (U_FAILURE(status))
325 0 : return;
326 :
327 0 : fGregorianCutover = date;
328 :
329 : // Precompute two internal variables which we use to do the actual
330 : // cutover computations. These are the normalized cutover, which is the
331 : // midnight at or before the cutover, and the cutover year. The
332 : // normalized cutover is in pure date milliseconds; it contains no time
333 : // of day or timezone component, and it used to compare against other
334 : // pure date values.
335 0 : int32_t cutoverDay = (int32_t)ClockMath::floorDivide(fGregorianCutover, (double)kOneDay);
336 0 : fNormalizedGregorianCutover = cutoverDay * kOneDay;
337 :
338 : // Handle the rare case of numeric overflow. If the user specifies a
339 : // change of UDate(Long.MIN_VALUE), in order to get a pure Gregorian
340 : // calendar, then the epoch day is -106751991168, which when multiplied
341 : // by ONE_DAY gives 9223372036794351616 -- the negative value is too
342 : // large for 64 bits, and overflows into a positive value. We correct
343 : // this by using the next day, which for all intents is semantically
344 : // equivalent.
345 0 : if (cutoverDay < 0 && fNormalizedGregorianCutover > 0) {
346 0 : fNormalizedGregorianCutover = (cutoverDay + 1) * kOneDay;
347 : }
348 :
349 : // Normalize the year so BC values are represented as 0 and negative
350 : // values.
351 0 : GregorianCalendar *cal = new GregorianCalendar(getTimeZone(), status);
352 : /* test for NULL */
353 0 : if (cal == 0) {
354 0 : status = U_MEMORY_ALLOCATION_ERROR;
355 0 : return;
356 : }
357 0 : if(U_FAILURE(status))
358 0 : return;
359 0 : cal->setTime(date, status);
360 0 : fGregorianCutoverYear = cal->get(UCAL_YEAR, status);
361 0 : if (cal->get(UCAL_ERA, status) == BC)
362 0 : fGregorianCutoverYear = 1 - fGregorianCutoverYear;
363 0 : fCutoverJulianDay = cutoverDay;
364 0 : delete cal;
365 : }
366 :
367 :
368 0 : void GregorianCalendar::handleComputeFields(int32_t julianDay, UErrorCode& status) {
369 : int32_t eyear, month, dayOfMonth, dayOfYear, unusedRemainder;
370 :
371 :
372 0 : if(U_FAILURE(status)) {
373 0 : return;
374 : }
375 :
376 : #if defined (U_DEBUG_CAL)
377 : fprintf(stderr, "%s:%d: jd%d- (greg's %d)- [cut=%d]\n",
378 : __FILE__, __LINE__, julianDay, getGregorianDayOfYear(), fCutoverJulianDay);
379 : #endif
380 :
381 :
382 0 : if (julianDay >= fCutoverJulianDay) {
383 0 : month = getGregorianMonth();
384 0 : dayOfMonth = getGregorianDayOfMonth();
385 0 : dayOfYear = getGregorianDayOfYear();
386 0 : eyear = getGregorianYear();
387 : } else {
388 : // The Julian epoch day (not the same as Julian Day)
389 : // is zero on Saturday December 30, 0 (Gregorian).
390 0 : int32_t julianEpochDay = julianDay - (kJan1_1JulianDay - 2);
391 0 : eyear = (int32_t) ClockMath::floorDivide((4.0*julianEpochDay) + 1464.0, (int32_t) 1461, unusedRemainder);
392 :
393 : // Compute the Julian calendar day number for January 1, eyear
394 0 : int32_t january1 = 365*(eyear-1) + ClockMath::floorDivide(eyear-1, (int32_t)4);
395 0 : dayOfYear = (julianEpochDay - january1); // 0-based
396 :
397 : // Julian leap years occurred historically every 4 years starting
398 : // with 8 AD. Before 8 AD the spacing is irregular; every 3 years
399 : // from 45 BC to 9 BC, and then none until 8 AD. However, we don't
400 : // implement this historical detail; instead, we implement the
401 : // computatinally cleaner proleptic calendar, which assumes
402 : // consistent 4-year cycles throughout time.
403 0 : UBool isLeap = ((eyear&0x3) == 0); // equiv. to (eyear%4 == 0)
404 :
405 : // Common Julian/Gregorian calculation
406 0 : int32_t correction = 0;
407 0 : int32_t march1 = isLeap ? 60 : 59; // zero-based DOY for March 1
408 0 : if (dayOfYear >= march1) {
409 0 : correction = isLeap ? 1 : 2;
410 : }
411 0 : month = (12 * (dayOfYear + correction) + 6) / 367; // zero-based month
412 0 : dayOfMonth = dayOfYear - (isLeap?kLeapNumDays[month]:kNumDays[month]) + 1; // one-based DOM
413 0 : ++dayOfYear;
414 : #if defined (U_DEBUG_CAL)
415 : // fprintf(stderr, "%d - %d[%d] + 1\n", dayOfYear, isLeap?kLeapNumDays[month]:kNumDays[month], month );
416 : // fprintf(stderr, "%s:%d: greg's HCF %d -> %d/%d/%d not %d/%d/%d\n",
417 : // __FILE__, __LINE__,julianDay,
418 : // eyear,month,dayOfMonth,
419 : // getGregorianYear(), getGregorianMonth(), getGregorianDayOfMonth() );
420 : fprintf(stderr, "%s:%d: doy %d (greg's %d)- [cut=%d]\n",
421 : __FILE__, __LINE__, dayOfYear, getGregorianDayOfYear(), fCutoverJulianDay);
422 : #endif
423 :
424 : }
425 :
426 : // [j81] if we are after the cutover in its year, shift the day of the year
427 0 : if((eyear == fGregorianCutoverYear) && (julianDay >= fCutoverJulianDay)) {
428 : //from handleComputeMonthStart
429 0 : int32_t gregShift = Grego::gregorianShift(eyear);
430 : #if defined (U_DEBUG_CAL)
431 : fprintf(stderr, "%s:%d: gregorian shift %d ::: doy%d => %d [cut=%d]\n",
432 : __FILE__, __LINE__,gregShift, dayOfYear, dayOfYear+gregShift, fCutoverJulianDay);
433 : #endif
434 0 : dayOfYear += gregShift;
435 : }
436 :
437 0 : internalSet(UCAL_MONTH, month);
438 0 : internalSet(UCAL_DAY_OF_MONTH, dayOfMonth);
439 0 : internalSet(UCAL_DAY_OF_YEAR, dayOfYear);
440 0 : internalSet(UCAL_EXTENDED_YEAR, eyear);
441 0 : int32_t era = AD;
442 0 : if (eyear < 1) {
443 0 : era = BC;
444 0 : eyear = 1 - eyear;
445 : }
446 0 : internalSet(UCAL_ERA, era);
447 0 : internalSet(UCAL_YEAR, eyear);
448 : }
449 :
450 :
451 : // -------------------------------------
452 :
453 : UDate
454 0 : GregorianCalendar::getGregorianChange() const
455 : {
456 0 : return fGregorianCutover;
457 : }
458 :
459 : // -------------------------------------
460 :
461 : UBool
462 0 : GregorianCalendar::isLeapYear(int32_t year) const
463 : {
464 : // MSVC complains bitterly if we try to use Grego::isLeapYear here
465 : // NOTE: year&0x3 == year%4
466 0 : return (year >= fGregorianCutoverYear ?
467 0 : (((year&0x3) == 0) && ((year%100 != 0) || (year%400 == 0))) : // Gregorian
468 0 : ((year&0x3) == 0)); // Julian
469 : }
470 :
471 : // -------------------------------------
472 :
473 0 : int32_t GregorianCalendar::handleComputeJulianDay(UCalendarDateFields bestField)
474 : {
475 0 : fInvertGregorian = FALSE;
476 :
477 0 : int32_t jd = Calendar::handleComputeJulianDay(bestField);
478 :
479 0 : if((bestField == UCAL_WEEK_OF_YEAR) && // if we are doing WOY calculations, we are counting relative to Jan 1 *julian*
480 0 : (internalGet(UCAL_EXTENDED_YEAR)==fGregorianCutoverYear) &&
481 0 : jd >= fCutoverJulianDay) {
482 0 : fInvertGregorian = TRUE; // So that the Julian Jan 1 will be used in handleComputeMonthStart
483 0 : return Calendar::handleComputeJulianDay(bestField);
484 : }
485 :
486 :
487 : // The following check handles portions of the cutover year BEFORE the
488 : // cutover itself happens.
489 : //if ((fIsGregorian==TRUE) != (jd >= fCutoverJulianDay)) { /* cutoverJulianDay)) { */
490 0 : if ((fIsGregorian==TRUE) != (jd >= fCutoverJulianDay)) { /* cutoverJulianDay)) { */
491 : #if defined (U_DEBUG_CAL)
492 : fprintf(stderr, "%s:%d: jd [invert] %d\n",
493 : __FILE__, __LINE__, jd);
494 : #endif
495 0 : fInvertGregorian = TRUE;
496 0 : jd = Calendar::handleComputeJulianDay(bestField);
497 : #if defined (U_DEBUG_CAL)
498 : fprintf(stderr, "%s:%d: fIsGregorian %s, fInvertGregorian %s - ",
499 : __FILE__, __LINE__,fIsGregorian?"T":"F", fInvertGregorian?"T":"F");
500 : fprintf(stderr, " jd NOW %d\n",
501 : jd);
502 : #endif
503 : } else {
504 : #if defined (U_DEBUG_CAL)
505 : fprintf(stderr, "%s:%d: jd [==] %d - %sfIsGregorian %sfInvertGregorian, %d\n",
506 : __FILE__, __LINE__, jd, fIsGregorian?"T":"F", fInvertGregorian?"T":"F", bestField);
507 : #endif
508 : }
509 :
510 0 : if(fIsGregorian && (internalGet(UCAL_EXTENDED_YEAR) == fGregorianCutoverYear)) {
511 0 : int32_t gregShift = Grego::gregorianShift(internalGet(UCAL_EXTENDED_YEAR));
512 0 : if (bestField == UCAL_DAY_OF_YEAR) {
513 : #if defined (U_DEBUG_CAL)
514 : fprintf(stderr, "%s:%d: [DOY%d] gregorian shift of JD %d += %d\n",
515 : __FILE__, __LINE__, fFields[bestField],jd, gregShift);
516 : #endif
517 0 : jd -= gregShift;
518 0 : } else if ( bestField == UCAL_WEEK_OF_MONTH ) {
519 0 : int32_t weekShift = 14;
520 : #if defined (U_DEBUG_CAL)
521 : fprintf(stderr, "%s:%d: [WOY/WOM] gregorian week shift of %d += %d\n",
522 : __FILE__, __LINE__, jd, weekShift);
523 : #endif
524 0 : jd += weekShift; // shift by weeks for week based fields.
525 : }
526 : }
527 :
528 0 : return jd;
529 : }
530 :
531 0 : int32_t GregorianCalendar::handleComputeMonthStart(int32_t eyear, int32_t month,
532 :
533 : UBool /* useMonth */) const
534 : {
535 0 : GregorianCalendar *nonConstThis = (GregorianCalendar*)this; // cast away const
536 :
537 : // If the month is out of range, adjust it into range, and
538 : // modify the extended year value accordingly.
539 0 : if (month < 0 || month > 11) {
540 0 : eyear += ClockMath::floorDivide(month, 12, month);
541 : }
542 :
543 0 : UBool isLeap = eyear%4 == 0;
544 0 : int32_t y = eyear-1;
545 0 : int32_t julianDay = 365*y + ClockMath::floorDivide(y, 4) + (kJan1_1JulianDay - 3);
546 :
547 0 : nonConstThis->fIsGregorian = (eyear >= fGregorianCutoverYear);
548 : #if defined (U_DEBUG_CAL)
549 : fprintf(stderr, "%s:%d: (hcms%d/%d) fIsGregorian %s, fInvertGregorian %s\n",
550 : __FILE__, __LINE__, eyear,month, fIsGregorian?"T":"F", fInvertGregorian?"T":"F");
551 : #endif
552 0 : if (fInvertGregorian) {
553 0 : nonConstThis->fIsGregorian = !fIsGregorian;
554 : }
555 0 : if (fIsGregorian) {
556 0 : isLeap = isLeap && ((eyear%100 != 0) || (eyear%400 == 0));
557 : // Add 2 because Gregorian calendar starts 2 days after
558 : // Julian calendar
559 0 : int32_t gregShift = Grego::gregorianShift(eyear);
560 : #if defined (U_DEBUG_CAL)
561 : fprintf(stderr, "%s:%d: (hcms%d/%d) gregorian shift of %d += %d\n",
562 : __FILE__, __LINE__, eyear, month, julianDay, gregShift);
563 : #endif
564 0 : julianDay += gregShift;
565 : }
566 :
567 : // At this point julianDay indicates the day BEFORE the first
568 : // day of January 1, <eyear> of either the Julian or Gregorian
569 : // calendar.
570 :
571 0 : if (month != 0) {
572 0 : julianDay += isLeap?kLeapNumDays[month]:kNumDays[month];
573 : }
574 :
575 0 : return julianDay;
576 : }
577 :
578 0 : int32_t GregorianCalendar::handleGetMonthLength(int32_t extendedYear, int32_t month) const
579 : {
580 : // If the month is out of range, adjust it into range, and
581 : // modify the extended year value accordingly.
582 0 : if (month < 0 || month > 11) {
583 0 : extendedYear += ClockMath::floorDivide(month, 12, month);
584 : }
585 :
586 0 : return isLeapYear(extendedYear) ? kLeapMonthLength[month] : kMonthLength[month];
587 : }
588 :
589 0 : int32_t GregorianCalendar::handleGetYearLength(int32_t eyear) const {
590 0 : return isLeapYear(eyear) ? 366 : 365;
591 : }
592 :
593 :
594 : int32_t
595 0 : GregorianCalendar::monthLength(int32_t month) const
596 : {
597 0 : int32_t year = internalGet(UCAL_EXTENDED_YEAR);
598 0 : return handleGetMonthLength(year, month);
599 : }
600 :
601 : // -------------------------------------
602 :
603 : int32_t
604 0 : GregorianCalendar::monthLength(int32_t month, int32_t year) const
605 : {
606 0 : return isLeapYear(year) ? kLeapMonthLength[month] : kMonthLength[month];
607 : }
608 :
609 : // -------------------------------------
610 :
611 : int32_t
612 0 : GregorianCalendar::yearLength(int32_t year) const
613 : {
614 0 : return isLeapYear(year) ? 366 : 365;
615 : }
616 :
617 : // -------------------------------------
618 :
619 : int32_t
620 0 : GregorianCalendar::yearLength() const
621 : {
622 0 : return isLeapYear(internalGet(UCAL_YEAR)) ? 366 : 365;
623 : }
624 :
625 : // -------------------------------------
626 :
627 : /**
628 : * After adjustments such as add(MONTH), add(YEAR), we don't want the
629 : * month to jump around. E.g., we don't want Jan 31 + 1 month to go to Mar
630 : * 3, we want it to go to Feb 28. Adjustments which might run into this
631 : * problem call this method to retain the proper month.
632 : */
633 : void
634 0 : GregorianCalendar::pinDayOfMonth()
635 : {
636 0 : int32_t monthLen = monthLength(internalGet(UCAL_MONTH));
637 0 : int32_t dom = internalGet(UCAL_DATE);
638 0 : if(dom > monthLen)
639 0 : set(UCAL_DATE, monthLen);
640 0 : }
641 :
642 : // -------------------------------------
643 :
644 :
645 : UBool
646 0 : GregorianCalendar::validateFields() const
647 : {
648 0 : for (int32_t field = 0; field < UCAL_FIELD_COUNT; field++) {
649 : // Ignore DATE and DAY_OF_YEAR which are handled below
650 0 : if (field != UCAL_DATE &&
651 0 : field != UCAL_DAY_OF_YEAR &&
652 0 : isSet((UCalendarDateFields)field) &&
653 0 : ! boundsCheck(internalGet((UCalendarDateFields)field), (UCalendarDateFields)field))
654 0 : return FALSE;
655 : }
656 :
657 : // Values differ in Least-Maximum and Maximum should be handled
658 : // specially.
659 0 : if (isSet(UCAL_DATE)) {
660 0 : int32_t date = internalGet(UCAL_DATE);
661 0 : if (date < getMinimum(UCAL_DATE) ||
662 0 : date > monthLength(internalGet(UCAL_MONTH))) {
663 0 : return FALSE;
664 : }
665 : }
666 :
667 0 : if (isSet(UCAL_DAY_OF_YEAR)) {
668 0 : int32_t days = internalGet(UCAL_DAY_OF_YEAR);
669 0 : if (days < 1 || days > yearLength()) {
670 0 : return FALSE;
671 : }
672 : }
673 :
674 : // Handle DAY_OF_WEEK_IN_MONTH, which must not have the value zero.
675 : // We've checked against minimum and maximum above already.
676 0 : if (isSet(UCAL_DAY_OF_WEEK_IN_MONTH) &&
677 0 : 0 == internalGet(UCAL_DAY_OF_WEEK_IN_MONTH)) {
678 0 : return FALSE;
679 : }
680 :
681 0 : return TRUE;
682 : }
683 :
684 : // -------------------------------------
685 :
686 : UBool
687 0 : GregorianCalendar::boundsCheck(int32_t value, UCalendarDateFields field) const
688 : {
689 0 : return value >= getMinimum(field) && value <= getMaximum(field);
690 : }
691 :
692 : // -------------------------------------
693 :
694 : UDate
695 0 : GregorianCalendar::getEpochDay(UErrorCode& status)
696 : {
697 0 : complete(status);
698 : // Divide by 1000 (convert to seconds) in order to prevent overflow when
699 : // dealing with UDate(Long.MIN_VALUE) and UDate(Long.MAX_VALUE).
700 0 : double wallSec = internalGetTime()/1000 + (internalGet(UCAL_ZONE_OFFSET) + internalGet(UCAL_DST_OFFSET))/1000;
701 :
702 0 : return ClockMath::floorDivide(wallSec, kOneDay/1000.0);
703 : }
704 :
705 : // -------------------------------------
706 :
707 :
708 : // -------------------------------------
709 :
710 : /**
711 : * Compute the julian day number of the day BEFORE the first day of
712 : * January 1, year 1 of the given calendar. If julianDay == 0, it
713 : * specifies (Jan. 1, 1) - 1, in whatever calendar we are using (Julian
714 : * or Gregorian).
715 : */
716 0 : double GregorianCalendar::computeJulianDayOfYear(UBool isGregorian,
717 : int32_t year, UBool& isLeap)
718 : {
719 0 : isLeap = year%4 == 0;
720 0 : int32_t y = year - 1;
721 0 : double julianDay = 365.0*y + ClockMath::floorDivide(y, 4) + (kJan1_1JulianDay - 3);
722 :
723 0 : if (isGregorian) {
724 0 : isLeap = isLeap && ((year%100 != 0) || (year%400 == 0));
725 : // Add 2 because Gregorian calendar starts 2 days after Julian calendar
726 0 : julianDay += Grego::gregorianShift(year);
727 : }
728 :
729 0 : return julianDay;
730 : }
731 :
732 : // /**
733 : // * Compute the day of week, relative to the first day of week, from
734 : // * 0..6, of the current DOW_LOCAL or DAY_OF_WEEK fields. This is
735 : // * equivalent to get(DOW_LOCAL) - 1.
736 : // */
737 : // int32_t GregorianCalendar::computeRelativeDOW() const {
738 : // int32_t relDow = 0;
739 : // if (fStamp[UCAL_DOW_LOCAL] > fStamp[UCAL_DAY_OF_WEEK]) {
740 : // relDow = internalGet(UCAL_DOW_LOCAL) - 1; // 1-based
741 : // } else if (fStamp[UCAL_DAY_OF_WEEK] != kUnset) {
742 : // relDow = internalGet(UCAL_DAY_OF_WEEK) - getFirstDayOfWeek();
743 : // if (relDow < 0) relDow += 7;
744 : // }
745 : // return relDow;
746 : // }
747 :
748 : // /**
749 : // * Compute the day of week, relative to the first day of week,
750 : // * from 0..6 of the given julian day.
751 : // */
752 : // int32_t GregorianCalendar::computeRelativeDOW(double julianDay) const {
753 : // int32_t relDow = julianDayToDayOfWeek(julianDay) - getFirstDayOfWeek();
754 : // if (relDow < 0) {
755 : // relDow += 7;
756 : // }
757 : // return relDow;
758 : // }
759 :
760 : // /**
761 : // * Compute the DOY using the WEEK_OF_YEAR field and the julian day
762 : // * of the day BEFORE January 1 of a year (a return value from
763 : // * computeJulianDayOfYear).
764 : // */
765 : // int32_t GregorianCalendar::computeDOYfromWOY(double julianDayOfYear) const {
766 : // // Compute DOY from day of week plus week of year
767 :
768 : // // Find the day of the week for the first of this year. This
769 : // // is zero-based, with 0 being the locale-specific first day of
770 : // // the week. Add 1 to get first day of year.
771 : // int32_t fdy = computeRelativeDOW(julianDayOfYear + 1);
772 :
773 : // return
774 : // // Compute doy of first (relative) DOW of WOY 1
775 : // (((7 - fdy) < getMinimalDaysInFirstWeek())
776 : // ? (8 - fdy) : (1 - fdy))
777 :
778 : // // Adjust for the week number.
779 : // + (7 * (internalGet(UCAL_WEEK_OF_YEAR) - 1))
780 :
781 : // // Adjust for the DOW
782 : // + computeRelativeDOW();
783 : // }
784 :
785 : // -------------------------------------
786 :
787 : double
788 0 : GregorianCalendar::millisToJulianDay(UDate millis)
789 : {
790 0 : return (double)kEpochStartAsJulianDay + ClockMath::floorDivide(millis, (double)kOneDay);
791 : }
792 :
793 : // -------------------------------------
794 :
795 : UDate
796 0 : GregorianCalendar::julianDayToMillis(double julian)
797 : {
798 0 : return (UDate) ((julian - kEpochStartAsJulianDay) * (double) kOneDay);
799 : }
800 :
801 : // -------------------------------------
802 :
803 : int32_t
804 0 : GregorianCalendar::aggregateStamp(int32_t stamp_a, int32_t stamp_b)
805 : {
806 0 : return (((stamp_a != kUnset && stamp_b != kUnset)
807 0 : ? uprv_max(stamp_a, stamp_b)
808 0 : : (int32_t)kUnset));
809 : }
810 :
811 : // -------------------------------------
812 :
813 : /**
814 : * Roll a field by a signed amount.
815 : * Note: This will be made public later. [LIU]
816 : */
817 :
818 : void
819 0 : GregorianCalendar::roll(EDateFields field, int32_t amount, UErrorCode& status) {
820 0 : roll((UCalendarDateFields) field, amount, status);
821 0 : }
822 :
823 : void
824 0 : GregorianCalendar::roll(UCalendarDateFields field, int32_t amount, UErrorCode& status)
825 : {
826 0 : if((amount == 0) || U_FAILURE(status)) {
827 0 : return;
828 : }
829 :
830 : // J81 processing. (gregorian cutover)
831 0 : UBool inCutoverMonth = FALSE;
832 0 : int32_t cMonthLen=0; // 'c' for cutover; in days
833 0 : int32_t cDayOfMonth=0; // no discontinuity: [0, cMonthLen)
834 0 : double cMonthStart=0.0; // in ms
835 :
836 : // Common code - see if we're in the cutover month of the cutover year
837 0 : if(get(UCAL_EXTENDED_YEAR, status) == fGregorianCutoverYear) {
838 0 : switch (field) {
839 : case UCAL_DAY_OF_MONTH:
840 : case UCAL_WEEK_OF_MONTH:
841 : {
842 0 : int32_t max = monthLength(internalGet(UCAL_MONTH));
843 0 : UDate t = internalGetTime();
844 : // We subtract 1 from the DAY_OF_MONTH to make it zero-based, and an
845 : // additional 10 if we are after the cutover. Thus the monthStart
846 : // value will be correct iff we actually are in the cutover month.
847 0 : cDayOfMonth = internalGet(UCAL_DAY_OF_MONTH) - ((t >= fGregorianCutover) ? 10 : 0);
848 0 : cMonthStart = t - ((cDayOfMonth - 1) * kOneDay);
849 : // A month containing the cutover is 10 days shorter.
850 0 : if ((cMonthStart < fGregorianCutover) &&
851 0 : (cMonthStart + (cMonthLen=(max-10))*kOneDay >= fGregorianCutover)) {
852 0 : inCutoverMonth = TRUE;
853 : }
854 : }
855 0 : break;
856 : default:
857 : ;
858 : }
859 : }
860 :
861 0 : switch (field) {
862 : case UCAL_WEEK_OF_YEAR: {
863 : // Unlike WEEK_OF_MONTH, WEEK_OF_YEAR never shifts the day of the
864 : // week. Also, rolling the week of the year can have seemingly
865 : // strange effects simply because the year of the week of year
866 : // may be different from the calendar year. For example, the
867 : // date Dec 28, 1997 is the first day of week 1 of 1998 (if
868 : // weeks start on Sunday and the minimal days in first week is
869 : // <= 3).
870 0 : int32_t woy = get(UCAL_WEEK_OF_YEAR, status);
871 : // Get the ISO year, which matches the week of year. This
872 : // may be one year before or after the calendar year.
873 0 : int32_t isoYear = get(UCAL_YEAR_WOY, status);
874 0 : int32_t isoDoy = internalGet(UCAL_DAY_OF_YEAR);
875 0 : if (internalGet(UCAL_MONTH) == UCAL_JANUARY) {
876 0 : if (woy >= 52) {
877 0 : isoDoy += handleGetYearLength(isoYear);
878 : }
879 : } else {
880 0 : if (woy == 1) {
881 0 : isoDoy -= handleGetYearLength(isoYear - 1);
882 : }
883 : }
884 0 : woy += amount;
885 : // Do fast checks to avoid unnecessary computation:
886 0 : if (woy < 1 || woy > 52) {
887 : // Determine the last week of the ISO year.
888 : // We do this using the standard formula we use
889 : // everywhere in this file. If we can see that the
890 : // days at the end of the year are going to fall into
891 : // week 1 of the next year, we drop the last week by
892 : // subtracting 7 from the last day of the year.
893 0 : int32_t lastDoy = handleGetYearLength(isoYear);
894 0 : int32_t lastRelDow = (lastDoy - isoDoy + internalGet(UCAL_DAY_OF_WEEK) -
895 0 : getFirstDayOfWeek()) % 7;
896 0 : if (lastRelDow < 0) lastRelDow += 7;
897 0 : if ((6 - lastRelDow) >= getMinimalDaysInFirstWeek()) lastDoy -= 7;
898 0 : int32_t lastWoy = weekNumber(lastDoy, lastRelDow + 1);
899 0 : woy = ((woy + lastWoy - 1) % lastWoy) + 1;
900 : }
901 0 : set(UCAL_WEEK_OF_YEAR, woy);
902 0 : set(UCAL_YEAR_WOY,isoYear);
903 0 : return;
904 : }
905 :
906 : case UCAL_DAY_OF_MONTH:
907 0 : if( !inCutoverMonth ) {
908 0 : Calendar::roll(field, amount, status);
909 0 : return;
910 : } else {
911 : // [j81] 1582 special case for DOM
912 : // The default computation works except when the current month
913 : // contains the Gregorian cutover. We handle this special case
914 : // here. [j81 - aliu]
915 0 : double monthLen = cMonthLen * kOneDay;
916 0 : double msIntoMonth = uprv_fmod(internalGetTime() - cMonthStart +
917 0 : amount * kOneDay, monthLen);
918 0 : if (msIntoMonth < 0) {
919 0 : msIntoMonth += monthLen;
920 : }
921 : #if defined (U_DEBUG_CAL)
922 : fprintf(stderr, "%s:%d: roll DOM %d -> %.0lf ms \n",
923 : __FILE__, __LINE__,amount, cMonthLen, cMonthStart+msIntoMonth);
924 : #endif
925 0 : setTimeInMillis(cMonthStart + msIntoMonth, status);
926 0 : return;
927 : }
928 :
929 : case UCAL_WEEK_OF_MONTH:
930 0 : if( !inCutoverMonth ) {
931 0 : Calendar::roll(field, amount, status);
932 0 : return;
933 : } else {
934 : #if defined (U_DEBUG_CAL)
935 : fprintf(stderr, "%s:%d: roll WOM %d ??????????????????? \n",
936 : __FILE__, __LINE__,amount);
937 : #endif
938 : // NOTE: following copied from the old
939 : // GregorianCalendar::roll( WEEK_OF_MONTH ) code
940 :
941 : // This is tricky, because during the roll we may have to shift
942 : // to a different day of the week. For example:
943 :
944 : // s m t w r f s
945 : // 1 2 3 4 5
946 : // 6 7 8 9 10 11 12
947 :
948 : // When rolling from the 6th or 7th back one week, we go to the
949 : // 1st (assuming that the first partial week counts). The same
950 : // thing happens at the end of the month.
951 :
952 : // The other tricky thing is that we have to figure out whether
953 : // the first partial week actually counts or not, based on the
954 : // minimal first days in the week. And we have to use the
955 : // correct first day of the week to delineate the week
956 : // boundaries.
957 :
958 : // Here's our algorithm. First, we find the real boundaries of
959 : // the month. Then we discard the first partial week if it
960 : // doesn't count in this locale. Then we fill in the ends with
961 : // phantom days, so that the first partial week and the last
962 : // partial week are full weeks. We then have a nice square
963 : // block of weeks. We do the usual rolling within this block,
964 : // as is done elsewhere in this method. If we wind up on one of
965 : // the phantom days that we added, we recognize this and pin to
966 : // the first or the last day of the month. Easy, eh?
967 :
968 : // Another wrinkle: To fix jitterbug 81, we have to make all this
969 : // work in the oddball month containing the Gregorian cutover.
970 : // This month is 10 days shorter than usual, and also contains
971 : // a discontinuity in the days; e.g., the default cutover month
972 : // is Oct 1582, and goes from day of month 4 to day of month 15.
973 :
974 : // Normalize the DAY_OF_WEEK so that 0 is the first day of the week
975 : // in this locale. We have dow in 0..6.
976 0 : int32_t dow = internalGet(UCAL_DAY_OF_WEEK) - getFirstDayOfWeek();
977 0 : if (dow < 0)
978 0 : dow += 7;
979 :
980 : // Find the day of month, compensating for cutover discontinuity.
981 0 : int32_t dom = cDayOfMonth;
982 :
983 : // Find the day of the week (normalized for locale) for the first
984 : // of the month.
985 0 : int32_t fdm = (dow - dom + 1) % 7;
986 0 : if (fdm < 0)
987 0 : fdm += 7;
988 :
989 : // Get the first day of the first full week of the month,
990 : // including phantom days, if any. Figure out if the first week
991 : // counts or not; if it counts, then fill in phantom days. If
992 : // not, advance to the first real full week (skip the partial week).
993 : int32_t start;
994 0 : if ((7 - fdm) < getMinimalDaysInFirstWeek())
995 0 : start = 8 - fdm; // Skip the first partial week
996 : else
997 0 : start = 1 - fdm; // This may be zero or negative
998 :
999 : // Get the day of the week (normalized for locale) for the last
1000 : // day of the month.
1001 0 : int32_t monthLen = cMonthLen;
1002 0 : int32_t ldm = (monthLen - dom + dow) % 7;
1003 : // We know monthLen >= DAY_OF_MONTH so we skip the += 7 step here.
1004 :
1005 : // Get the limit day for the blocked-off rectangular month; that
1006 : // is, the day which is one past the last day of the month,
1007 : // after the month has already been filled in with phantom days
1008 : // to fill out the last week. This day has a normalized DOW of 0.
1009 0 : int32_t limit = monthLen + 7 - ldm;
1010 :
1011 : // Now roll between start and (limit - 1).
1012 0 : int32_t gap = limit - start;
1013 0 : int32_t newDom = (dom + amount*7 - start) % gap;
1014 0 : if (newDom < 0)
1015 0 : newDom += gap;
1016 0 : newDom += start;
1017 :
1018 : // Finally, pin to the real start and end of the month.
1019 0 : if (newDom < 1)
1020 0 : newDom = 1;
1021 0 : if (newDom > monthLen)
1022 0 : newDom = monthLen;
1023 :
1024 : // Set the DAY_OF_MONTH. We rely on the fact that this field
1025 : // takes precedence over everything else (since all other fields
1026 : // are also set at this point). If this fact changes (if the
1027 : // disambiguation algorithm changes) then we will have to unset
1028 : // the appropriate fields here so that DAY_OF_MONTH is attended
1029 : // to.
1030 :
1031 : // If we are in the cutover month, manipulate ms directly. Don't do
1032 : // this in general because it doesn't work across DST boundaries
1033 : // (details, details). This takes care of the discontinuity.
1034 0 : setTimeInMillis(cMonthStart + (newDom-1)*kOneDay, status);
1035 0 : return;
1036 : }
1037 :
1038 : default:
1039 0 : Calendar::roll(field, amount, status);
1040 0 : return;
1041 : }
1042 : }
1043 :
1044 : // -------------------------------------
1045 :
1046 :
1047 : /**
1048 : * Return the minimum value that this field could have, given the current date.
1049 : * For the Gregorian calendar, this is the same as getMinimum() and getGreatestMinimum().
1050 : * @param field the time field.
1051 : * @return the minimum value that this field could have, given the current date.
1052 : * @deprecated ICU 2.6. Use getActualMinimum(UCalendarDateFields field) instead.
1053 : */
1054 0 : int32_t GregorianCalendar::getActualMinimum(EDateFields field) const
1055 : {
1056 0 : return getMinimum((UCalendarDateFields)field);
1057 : }
1058 :
1059 0 : int32_t GregorianCalendar::getActualMinimum(EDateFields field, UErrorCode& /* status */) const
1060 : {
1061 0 : return getMinimum((UCalendarDateFields)field);
1062 : }
1063 :
1064 : /**
1065 : * Return the minimum value that this field could have, given the current date.
1066 : * For the Gregorian calendar, this is the same as getMinimum() and getGreatestMinimum().
1067 : * @param field the time field.
1068 : * @return the minimum value that this field could have, given the current date.
1069 : * @draft ICU 2.6.
1070 : */
1071 0 : int32_t GregorianCalendar::getActualMinimum(UCalendarDateFields field, UErrorCode& /* status */) const
1072 : {
1073 0 : return getMinimum(field);
1074 : }
1075 :
1076 :
1077 : // ------------------------------------
1078 :
1079 : /**
1080 : * Old year limits were least max 292269054, max 292278994.
1081 : */
1082 :
1083 : /**
1084 : * @stable ICU 2.0
1085 : */
1086 0 : int32_t GregorianCalendar::handleGetLimit(UCalendarDateFields field, ELimitType limitType) const {
1087 0 : return kGregorianCalendarLimits[field][limitType];
1088 : }
1089 :
1090 : /**
1091 : * Return the maximum value that this field could have, given the current date.
1092 : * For example, with the date "Feb 3, 1997" and the DAY_OF_MONTH field, the actual
1093 : * maximum would be 28; for "Feb 3, 1996" it s 29. Similarly for a Hebrew calendar,
1094 : * for some years the actual maximum for MONTH is 12, and for others 13.
1095 : * @stable ICU 2.0
1096 : */
1097 0 : int32_t GregorianCalendar::getActualMaximum(UCalendarDateFields field, UErrorCode& status) const
1098 : {
1099 : /* It is a known limitation that the code here (and in getActualMinimum)
1100 : * won't behave properly at the extreme limits of GregorianCalendar's
1101 : * representable range (except for the code that handles the YEAR
1102 : * field). That's because the ends of the representable range are at
1103 : * odd spots in the year. For calendars with the default Gregorian
1104 : * cutover, these limits are Sun Dec 02 16:47:04 GMT 292269055 BC to Sun
1105 : * Aug 17 07:12:55 GMT 292278994 AD, somewhat different for non-GMT
1106 : * zones. As a result, if the calendar is set to Aug 1 292278994 AD,
1107 : * the actual maximum of DAY_OF_MONTH is 17, not 30. If the date is Mar
1108 : * 31 in that year, the actual maximum month might be Jul, whereas is
1109 : * the date is Mar 15, the actual maximum might be Aug -- depending on
1110 : * the precise semantics that are desired. Similar considerations
1111 : * affect all fields. Nonetheless, this effect is sufficiently arcane
1112 : * that we permit it, rather than complicating the code to handle such
1113 : * intricacies. - liu 8/20/98
1114 :
1115 : * UPDATE: No longer true, since we have pulled in the limit values on
1116 : * the year. - Liu 11/6/00 */
1117 :
1118 0 : switch (field) {
1119 :
1120 : case UCAL_YEAR:
1121 : /* The year computation is no different, in principle, from the
1122 : * others, however, the range of possible maxima is large. In
1123 : * addition, the way we know we've exceeded the range is different.
1124 : * For these reasons, we use the special case code below to handle
1125 : * this field.
1126 : *
1127 : * The actual maxima for YEAR depend on the type of calendar:
1128 : *
1129 : * Gregorian = May 17, 292275056 BC - Aug 17, 292278994 AD
1130 : * Julian = Dec 2, 292269055 BC - Jan 3, 292272993 AD
1131 : * Hybrid = Dec 2, 292269055 BC - Aug 17, 292278994 AD
1132 : *
1133 : * We know we've exceeded the maximum when either the month, date,
1134 : * time, or era changes in response to setting the year. We don't
1135 : * check for month, date, and time here because the year and era are
1136 : * sufficient to detect an invalid year setting. NOTE: If code is
1137 : * added to check the month and date in the future for some reason,
1138 : * Feb 29 must be allowed to shift to Mar 1 when setting the year.
1139 : */
1140 : {
1141 0 : if(U_FAILURE(status)) return 0;
1142 0 : Calendar *cal = clone();
1143 0 : if(!cal) {
1144 0 : status = U_MEMORY_ALLOCATION_ERROR;
1145 0 : return 0;
1146 : }
1147 :
1148 0 : cal->setLenient(TRUE);
1149 :
1150 0 : int32_t era = cal->get(UCAL_ERA, status);
1151 0 : UDate d = cal->getTime(status);
1152 :
1153 : /* Perform a binary search, with the invariant that lowGood is a
1154 : * valid year, and highBad is an out of range year.
1155 : */
1156 0 : int32_t lowGood = kGregorianCalendarLimits[UCAL_YEAR][1];
1157 0 : int32_t highBad = kGregorianCalendarLimits[UCAL_YEAR][2]+1;
1158 0 : while ((lowGood + 1) < highBad) {
1159 0 : int32_t y = (lowGood + highBad) / 2;
1160 0 : cal->set(UCAL_YEAR, y);
1161 0 : if (cal->get(UCAL_YEAR, status) == y && cal->get(UCAL_ERA, status) == era) {
1162 0 : lowGood = y;
1163 : } else {
1164 0 : highBad = y;
1165 0 : cal->setTime(d, status); // Restore original fields
1166 : }
1167 : }
1168 :
1169 0 : delete cal;
1170 0 : return lowGood;
1171 : }
1172 :
1173 : default:
1174 0 : return Calendar::getActualMaximum(field,status);
1175 : }
1176 : }
1177 :
1178 :
1179 0 : int32_t GregorianCalendar::handleGetExtendedYear() {
1180 : // the year to return
1181 0 : int32_t year = kEpochYear;
1182 :
1183 : // year field to use
1184 0 : int32_t yearField = UCAL_EXTENDED_YEAR;
1185 :
1186 : // There are three separate fields which could be used to
1187 : // derive the proper year. Use the one most recently set.
1188 0 : if (fStamp[yearField] < fStamp[UCAL_YEAR])
1189 0 : yearField = UCAL_YEAR;
1190 0 : if (fStamp[yearField] < fStamp[UCAL_YEAR_WOY])
1191 0 : yearField = UCAL_YEAR_WOY;
1192 :
1193 : // based on the "best" year field, get the year
1194 0 : switch(yearField) {
1195 : case UCAL_EXTENDED_YEAR:
1196 0 : year = internalGet(UCAL_EXTENDED_YEAR, kEpochYear);
1197 0 : break;
1198 :
1199 : case UCAL_YEAR:
1200 : {
1201 : // The year defaults to the epoch start, the era to AD
1202 0 : int32_t era = internalGet(UCAL_ERA, AD);
1203 0 : if (era == BC) {
1204 0 : year = 1 - internalGet(UCAL_YEAR, 1); // Convert to extended year
1205 : } else {
1206 0 : year = internalGet(UCAL_YEAR, kEpochYear);
1207 : }
1208 : }
1209 0 : break;
1210 :
1211 : case UCAL_YEAR_WOY:
1212 0 : year = handleGetExtendedYearFromWeekFields(internalGet(UCAL_YEAR_WOY), internalGet(UCAL_WEEK_OF_YEAR));
1213 : #if defined (U_DEBUG_CAL)
1214 : // if(internalGet(UCAL_YEAR_WOY) != year) {
1215 : fprintf(stderr, "%s:%d: hGEYFWF[%d,%d] -> %d\n",
1216 : __FILE__, __LINE__,internalGet(UCAL_YEAR_WOY),internalGet(UCAL_WEEK_OF_YEAR),year);
1217 : //}
1218 : #endif
1219 0 : break;
1220 :
1221 : default:
1222 0 : year = kEpochYear;
1223 : }
1224 0 : return year;
1225 : }
1226 :
1227 0 : int32_t GregorianCalendar::handleGetExtendedYearFromWeekFields(int32_t yearWoy, int32_t woy)
1228 : {
1229 : // convert year to extended form
1230 0 : int32_t era = internalGet(UCAL_ERA, AD);
1231 0 : if(era == BC) {
1232 0 : yearWoy = 1 - yearWoy;
1233 : }
1234 0 : return Calendar::handleGetExtendedYearFromWeekFields(yearWoy, woy);
1235 : }
1236 :
1237 :
1238 : // -------------------------------------
1239 :
1240 : UBool
1241 0 : GregorianCalendar::inDaylightTime(UErrorCode& status) const
1242 : {
1243 0 : if (U_FAILURE(status) || !getTimeZone().useDaylightTime())
1244 0 : return FALSE;
1245 :
1246 : // Force an update of the state of the Calendar.
1247 0 : ((GregorianCalendar*)this)->complete(status); // cast away const
1248 :
1249 0 : return (UBool)(U_SUCCESS(status) ? (internalGet(UCAL_DST_OFFSET) != 0) : FALSE);
1250 : }
1251 :
1252 : // -------------------------------------
1253 :
1254 : /**
1255 : * Return the ERA. We need a special method for this because the
1256 : * default ERA is AD, but a zero (unset) ERA is BC.
1257 : */
1258 : int32_t
1259 0 : GregorianCalendar::internalGetEra() const {
1260 0 : return isSet(UCAL_ERA) ? internalGet(UCAL_ERA) : (int32_t)AD;
1261 : }
1262 :
1263 : const char *
1264 0 : GregorianCalendar::getType() const {
1265 : //static const char kGregorianType = "gregorian";
1266 :
1267 0 : return "gregorian";
1268 : }
1269 :
1270 : /**
1271 : * The system maintains a static default century start date and Year. They are
1272 : * initialized the first time they are used. Once the system default century date
1273 : * and year are set, they do not change.
1274 : */
1275 : static UDate gSystemDefaultCenturyStart = DBL_MIN;
1276 : static int32_t gSystemDefaultCenturyStartYear = -1;
1277 : static icu::UInitOnce gSystemDefaultCenturyInit = U_INITONCE_INITIALIZER;
1278 :
1279 :
1280 0 : UBool GregorianCalendar::haveDefaultCentury() const
1281 : {
1282 0 : return TRUE;
1283 : }
1284 :
1285 : static void U_CALLCONV
1286 0 : initializeSystemDefaultCentury()
1287 : {
1288 : // initialize systemDefaultCentury and systemDefaultCenturyYear based
1289 : // on the current time. They'll be set to 80 years before
1290 : // the current time.
1291 0 : UErrorCode status = U_ZERO_ERROR;
1292 0 : GregorianCalendar calendar(status);
1293 0 : if (U_SUCCESS(status)) {
1294 0 : calendar.setTime(Calendar::getNow(), status);
1295 0 : calendar.add(UCAL_YEAR, -80, status);
1296 :
1297 0 : gSystemDefaultCenturyStart = calendar.getTime(status);
1298 0 : gSystemDefaultCenturyStartYear = calendar.get(UCAL_YEAR, status);
1299 : }
1300 : // We have no recourse upon failure unless we want to propagate the failure
1301 : // out.
1302 0 : }
1303 :
1304 0 : UDate GregorianCalendar::defaultCenturyStart() const {
1305 : // lazy-evaluate systemDefaultCenturyStart
1306 0 : umtx_initOnce(gSystemDefaultCenturyInit, &initializeSystemDefaultCentury);
1307 0 : return gSystemDefaultCenturyStart;
1308 : }
1309 :
1310 0 : int32_t GregorianCalendar::defaultCenturyStartYear() const {
1311 : // lazy-evaluate systemDefaultCenturyStartYear
1312 0 : umtx_initOnce(gSystemDefaultCenturyInit, &initializeSystemDefaultCentury);
1313 0 : return gSystemDefaultCenturyStartYear;
1314 : }
1315 :
1316 : U_NAMESPACE_END
1317 :
1318 : #endif /* #if !UCONFIG_NO_FORMATTING */
1319 :
1320 : //eof
|