Line data Source code
1 : // © 2016 and later: Unicode, Inc. and others.
2 : // License & terms of use: http://www.unicode.org/copyright.html
3 : /*
4 : ******************************************************************************
5 : * Copyright (C) 1997-2015, International Business Machines
6 : * Corporation and others. All Rights Reserved.
7 : ******************************************************************************
8 : * file name: nfrule.cpp
9 : * encoding: UTF-8
10 : * tab size: 8 (not used)
11 : * indentation:4
12 : *
13 : * Modification history
14 : * Date Name Comments
15 : * 10/11/2001 Doug Ported from ICU4J
16 : */
17 :
18 : #include "nfrule.h"
19 :
20 : #if U_HAVE_RBNF
21 :
22 : #include "unicode/localpointer.h"
23 : #include "unicode/rbnf.h"
24 : #include "unicode/tblcoll.h"
25 : #include "unicode/plurfmt.h"
26 : #include "unicode/upluralrules.h"
27 : #include "unicode/coleitr.h"
28 : #include "unicode/uchar.h"
29 : #include "nfrs.h"
30 : #include "nfrlist.h"
31 : #include "nfsubs.h"
32 : #include "patternprops.h"
33 : #include "putilimp.h"
34 :
35 : U_NAMESPACE_BEGIN
36 :
37 0 : NFRule::NFRule(const RuleBasedNumberFormat* _rbnf, const UnicodeString &_ruleText, UErrorCode &status)
38 : : baseValue((int32_t)0)
39 : , radix(10)
40 : , exponent(0)
41 : , decimalPoint(0)
42 : , ruleText(_ruleText)
43 : , sub1(NULL)
44 : , sub2(NULL)
45 : , formatter(_rbnf)
46 0 : , rulePatternFormat(NULL)
47 : {
48 0 : if (!ruleText.isEmpty()) {
49 0 : parseRuleDescriptor(ruleText, status);
50 : }
51 0 : }
52 :
53 0 : NFRule::~NFRule()
54 : {
55 0 : if (sub1 != sub2) {
56 0 : delete sub2;
57 0 : sub2 = NULL;
58 : }
59 0 : delete sub1;
60 0 : sub1 = NULL;
61 0 : delete rulePatternFormat;
62 0 : rulePatternFormat = NULL;
63 0 : }
64 :
65 : static const UChar gLeftBracket = 0x005b;
66 : static const UChar gRightBracket = 0x005d;
67 : static const UChar gColon = 0x003a;
68 : static const UChar gZero = 0x0030;
69 : static const UChar gNine = 0x0039;
70 : static const UChar gSpace = 0x0020;
71 : static const UChar gSlash = 0x002f;
72 : static const UChar gGreaterThan = 0x003e;
73 : static const UChar gLessThan = 0x003c;
74 : static const UChar gComma = 0x002c;
75 : static const UChar gDot = 0x002e;
76 : static const UChar gTick = 0x0027;
77 : //static const UChar gMinus = 0x002d;
78 : static const UChar gSemicolon = 0x003b;
79 : static const UChar gX = 0x0078;
80 :
81 : static const UChar gMinusX[] = {0x2D, 0x78, 0}; /* "-x" */
82 : static const UChar gInf[] = {0x49, 0x6E, 0x66, 0}; /* "Inf" */
83 : static const UChar gNaN[] = {0x4E, 0x61, 0x4E, 0}; /* "NaN" */
84 :
85 : static const UChar gDollarOpenParenthesis[] = {0x24, 0x28, 0}; /* "$(" */
86 : static const UChar gClosedParenthesisDollar[] = {0x29, 0x24, 0}; /* ")$" */
87 :
88 : static const UChar gLessLess[] = {0x3C, 0x3C, 0}; /* "<<" */
89 : static const UChar gLessPercent[] = {0x3C, 0x25, 0}; /* "<%" */
90 : static const UChar gLessHash[] = {0x3C, 0x23, 0}; /* "<#" */
91 : static const UChar gLessZero[] = {0x3C, 0x30, 0}; /* "<0" */
92 : static const UChar gGreaterGreater[] = {0x3E, 0x3E, 0}; /* ">>" */
93 : static const UChar gGreaterPercent[] = {0x3E, 0x25, 0}; /* ">%" */
94 : static const UChar gGreaterHash[] = {0x3E, 0x23, 0}; /* ">#" */
95 : static const UChar gGreaterZero[] = {0x3E, 0x30, 0}; /* ">0" */
96 : static const UChar gEqualPercent[] = {0x3D, 0x25, 0}; /* "=%" */
97 : static const UChar gEqualHash[] = {0x3D, 0x23, 0}; /* "=#" */
98 : static const UChar gEqualZero[] = {0x3D, 0x30, 0}; /* "=0" */
99 : static const UChar gGreaterGreaterGreater[] = {0x3E, 0x3E, 0x3E, 0}; /* ">>>" */
100 :
101 : static const UChar * const RULE_PREFIXES[] = {
102 : gLessLess, gLessPercent, gLessHash, gLessZero,
103 : gGreaterGreater, gGreaterPercent,gGreaterHash, gGreaterZero,
104 : gEqualPercent, gEqualHash, gEqualZero, NULL
105 : };
106 :
107 : void
108 0 : NFRule::makeRules(UnicodeString& description,
109 : NFRuleSet *owner,
110 : const NFRule *predecessor,
111 : const RuleBasedNumberFormat *rbnf,
112 : NFRuleList& rules,
113 : UErrorCode& status)
114 : {
115 : // we know we're making at least one rule, so go ahead and
116 : // new it up and initialize its basevalue and divisor
117 : // (this also strips the rule descriptor, if any, off the
118 : // descripton string)
119 0 : NFRule* rule1 = new NFRule(rbnf, description, status);
120 : /* test for NULL */
121 0 : if (rule1 == 0) {
122 0 : status = U_MEMORY_ALLOCATION_ERROR;
123 0 : return;
124 : }
125 0 : description = rule1->ruleText;
126 :
127 : // check the description to see whether there's text enclosed
128 : // in brackets
129 0 : int32_t brack1 = description.indexOf(gLeftBracket);
130 0 : int32_t brack2 = brack1 < 0 ? -1 : description.indexOf(gRightBracket);
131 :
132 : // if the description doesn't contain a matched pair of brackets,
133 : // or if it's of a type that doesn't recognize bracketed text,
134 : // then leave the description alone, initialize the rule's
135 : // rule text and substitutions, and return that rule
136 0 : if (brack2 < 0 || brack1 > brack2
137 0 : || rule1->getType() == kProperFractionRule
138 0 : || rule1->getType() == kNegativeNumberRule
139 0 : || rule1->getType() == kInfinityRule
140 0 : || rule1->getType() == kNaNRule)
141 : {
142 0 : rule1->extractSubstitutions(owner, description, predecessor, status);
143 : }
144 : else {
145 : // if the description does contain a matched pair of brackets,
146 : // then it's really shorthand for two rules (with one exception)
147 0 : NFRule* rule2 = NULL;
148 0 : UnicodeString sbuf;
149 :
150 : // we'll actually only split the rule into two rules if its
151 : // base value is an even multiple of its divisor (or it's one
152 : // of the special rules)
153 0 : if ((rule1->baseValue > 0
154 0 : && (rule1->baseValue % util64_pow(rule1->radix, rule1->exponent)) == 0)
155 0 : || rule1->getType() == kImproperFractionRule
156 0 : || rule1->getType() == kMasterRule) {
157 :
158 : // if it passes that test, new up the second rule. If the
159 : // rule set both rules will belong to is a fraction rule
160 : // set, they both have the same base value; otherwise,
161 : // increment the original rule's base value ("rule1" actually
162 : // goes SECOND in the rule set's rule list)
163 0 : rule2 = new NFRule(rbnf, UnicodeString(), status);
164 : /* test for NULL */
165 0 : if (rule2 == 0) {
166 0 : status = U_MEMORY_ALLOCATION_ERROR;
167 0 : return;
168 : }
169 0 : if (rule1->baseValue >= 0) {
170 0 : rule2->baseValue = rule1->baseValue;
171 0 : if (!owner->isFractionRuleSet()) {
172 0 : ++rule1->baseValue;
173 : }
174 : }
175 :
176 : // if the description began with "x.x" and contains bracketed
177 : // text, it describes both the improper fraction rule and
178 : // the proper fraction rule
179 0 : else if (rule1->getType() == kImproperFractionRule) {
180 0 : rule2->setType(kProperFractionRule);
181 : }
182 :
183 : // if the description began with "x.0" and contains bracketed
184 : // text, it describes both the master rule and the
185 : // improper fraction rule
186 0 : else if (rule1->getType() == kMasterRule) {
187 0 : rule2->baseValue = rule1->baseValue;
188 0 : rule1->setType(kImproperFractionRule);
189 : }
190 :
191 : // both rules have the same radix and exponent (i.e., the
192 : // same divisor)
193 0 : rule2->radix = rule1->radix;
194 0 : rule2->exponent = rule1->exponent;
195 :
196 : // rule2's rule text omits the stuff in brackets: initalize
197 : // its rule text and substitutions accordingly
198 0 : sbuf.append(description, 0, brack1);
199 0 : if (brack2 + 1 < description.length()) {
200 0 : sbuf.append(description, brack2 + 1, description.length() - brack2 - 1);
201 : }
202 0 : rule2->extractSubstitutions(owner, sbuf, predecessor, status);
203 : }
204 :
205 : // rule1's text includes the text in the brackets but omits
206 : // the brackets themselves: initialize _its_ rule text and
207 : // substitutions accordingly
208 0 : sbuf.setTo(description, 0, brack1);
209 0 : sbuf.append(description, brack1 + 1, brack2 - brack1 - 1);
210 0 : if (brack2 + 1 < description.length()) {
211 0 : sbuf.append(description, brack2 + 1, description.length() - brack2 - 1);
212 : }
213 0 : rule1->extractSubstitutions(owner, sbuf, predecessor, status);
214 :
215 : // if we only have one rule, return it; if we have two, return
216 : // a two-element array containing them (notice that rule2 goes
217 : // BEFORE rule1 in the list: in all cases, rule2 OMITS the
218 : // material in the brackets and rule1 INCLUDES the material
219 : // in the brackets)
220 0 : if (rule2 != NULL) {
221 0 : if (rule2->baseValue >= kNoBase) {
222 0 : rules.add(rule2);
223 : }
224 : else {
225 0 : owner->setNonNumericalRule(rule2);
226 : }
227 : }
228 : }
229 0 : if (rule1->baseValue >= kNoBase) {
230 0 : rules.add(rule1);
231 : }
232 : else {
233 0 : owner->setNonNumericalRule(rule1);
234 : }
235 : }
236 :
237 : /**
238 : * This function parses the rule's rule descriptor (i.e., the base
239 : * value and/or other tokens that precede the rule's rule text
240 : * in the description) and sets the rule's base value, radix, and
241 : * exponent according to the descriptor. (If the description doesn't
242 : * include a rule descriptor, then this function sets everything to
243 : * default values and the rule set sets the rule's real base value).
244 : * @param description The rule's description
245 : * @return If "description" included a rule descriptor, this is
246 : * "description" with the descriptor and any trailing whitespace
247 : * stripped off. Otherwise; it's "descriptor" unchangd.
248 : */
249 : void
250 0 : NFRule::parseRuleDescriptor(UnicodeString& description, UErrorCode& status)
251 : {
252 : // the description consists of a rule descriptor and a rule body,
253 : // separated by a colon. The rule descriptor is optional. If
254 : // it's omitted, just set the base value to 0.
255 0 : int32_t p = description.indexOf(gColon);
256 0 : if (p != -1) {
257 : // copy the descriptor out into its own string and strip it,
258 : // along with any trailing whitespace, out of the original
259 : // description
260 0 : UnicodeString descriptor;
261 0 : descriptor.setTo(description, 0, p);
262 :
263 0 : ++p;
264 0 : while (p < description.length() && PatternProps::isWhiteSpace(description.charAt(p))) {
265 0 : ++p;
266 : }
267 0 : description.removeBetween(0, p);
268 :
269 : // check first to see if the rule descriptor matches the token
270 : // for one of the special rules. If it does, set the base
271 : // value to the correct identifier value
272 0 : int descriptorLength = descriptor.length();
273 0 : UChar firstChar = descriptor.charAt(0);
274 0 : UChar lastChar = descriptor.charAt(descriptorLength - 1);
275 0 : if (firstChar >= gZero && firstChar <= gNine && lastChar != gX) {
276 : // if the rule descriptor begins with a digit, it's a descriptor
277 : // for a normal rule
278 : // since we don't have Long.parseLong, and this isn't much work anyway,
279 : // just build up the value as we encounter the digits.
280 0 : int64_t val = 0;
281 0 : p = 0;
282 0 : UChar c = gSpace;
283 :
284 : // begin parsing the descriptor: copy digits
285 : // into "tempValue", skip periods, commas, and spaces,
286 : // stop on a slash or > sign (or at the end of the string),
287 : // and throw an exception on any other character
288 0 : int64_t ll_10 = 10;
289 0 : while (p < descriptorLength) {
290 0 : c = descriptor.charAt(p);
291 0 : if (c >= gZero && c <= gNine) {
292 0 : val = val * ll_10 + (int32_t)(c - gZero);
293 : }
294 0 : else if (c == gSlash || c == gGreaterThan) {
295 : break;
296 : }
297 0 : else if (PatternProps::isWhiteSpace(c) || c == gComma || c == gDot) {
298 : }
299 : else {
300 : // throw new IllegalArgumentException("Illegal character in rule descriptor");
301 0 : status = U_PARSE_ERROR;
302 0 : return;
303 : }
304 0 : ++p;
305 : }
306 :
307 : // we have the base value, so set it
308 0 : setBaseValue(val, status);
309 :
310 : // if we stopped the previous loop on a slash, we're
311 : // now parsing the rule's radix. Again, accumulate digits
312 : // in tempValue, skip punctuation, stop on a > mark, and
313 : // throw an exception on anything else
314 0 : if (c == gSlash) {
315 0 : val = 0;
316 0 : ++p;
317 0 : int64_t ll_10 = 10;
318 0 : while (p < descriptorLength) {
319 0 : c = descriptor.charAt(p);
320 0 : if (c >= gZero && c <= gNine) {
321 0 : val = val * ll_10 + (int32_t)(c - gZero);
322 : }
323 0 : else if (c == gGreaterThan) {
324 0 : break;
325 : }
326 0 : else if (PatternProps::isWhiteSpace(c) || c == gComma || c == gDot) {
327 : }
328 : else {
329 : // throw new IllegalArgumentException("Illegal character is rule descriptor");
330 0 : status = U_PARSE_ERROR;
331 0 : return;
332 : }
333 0 : ++p;
334 : }
335 :
336 : // tempValue now contain's the rule's radix. Set it
337 : // accordingly, and recalculate the rule's exponent
338 0 : radix = (int32_t)val;
339 0 : if (radix == 0) {
340 : // throw new IllegalArgumentException("Rule can't have radix of 0");
341 0 : status = U_PARSE_ERROR;
342 : }
343 :
344 0 : exponent = expectedExponent();
345 : }
346 :
347 : // if we stopped the previous loop on a > sign, then continue
348 : // for as long as we still see > signs. For each one,
349 : // decrement the exponent (unless the exponent is already 0).
350 : // If we see another character before reaching the end of
351 : // the descriptor, that's also a syntax error.
352 0 : if (c == gGreaterThan) {
353 0 : while (p < descriptor.length()) {
354 0 : c = descriptor.charAt(p);
355 0 : if (c == gGreaterThan && exponent > 0) {
356 0 : --exponent;
357 : } else {
358 : // throw new IllegalArgumentException("Illegal character in rule descriptor");
359 0 : status = U_PARSE_ERROR;
360 0 : return;
361 : }
362 0 : ++p;
363 : }
364 0 : }
365 : }
366 0 : else if (0 == descriptor.compare(gMinusX, 2)) {
367 0 : setType(kNegativeNumberRule);
368 : }
369 0 : else if (descriptorLength == 3) {
370 0 : if (firstChar == gZero && lastChar == gX) {
371 0 : setBaseValue(kProperFractionRule, status);
372 0 : decimalPoint = descriptor.charAt(1);
373 : }
374 0 : else if (firstChar == gX && lastChar == gX) {
375 0 : setBaseValue(kImproperFractionRule, status);
376 0 : decimalPoint = descriptor.charAt(1);
377 : }
378 0 : else if (firstChar == gX && lastChar == gZero) {
379 0 : setBaseValue(kMasterRule, status);
380 0 : decimalPoint = descriptor.charAt(1);
381 : }
382 0 : else if (descriptor.compare(gNaN, 3) == 0) {
383 0 : setBaseValue(kNaNRule, status);
384 : }
385 0 : else if (descriptor.compare(gInf, 3) == 0) {
386 0 : setBaseValue(kInfinityRule, status);
387 : }
388 : }
389 : }
390 : // else use the default base value for now.
391 :
392 : // finally, if the rule body begins with an apostrophe, strip it off
393 : // (this is generally used to put whitespace at the beginning of
394 : // a rule's rule text)
395 0 : if (description.length() > 0 && description.charAt(0) == gTick) {
396 0 : description.removeBetween(0, 1);
397 : }
398 :
399 : // return the description with all the stuff we've just waded through
400 : // stripped off the front. It now contains just the rule body.
401 : // return description;
402 : }
403 :
404 : /**
405 : * Searches the rule's rule text for the substitution tokens,
406 : * creates the substitutions, and removes the substitution tokens
407 : * from the rule's rule text.
408 : * @param owner The rule set containing this rule
409 : * @param predecessor The rule preseding this one in "owners" rule list
410 : * @param ownersOwner The RuleBasedFormat that owns this rule
411 : */
412 : void
413 0 : NFRule::extractSubstitutions(const NFRuleSet* ruleSet,
414 : const UnicodeString &ruleText,
415 : const NFRule* predecessor,
416 : UErrorCode& status)
417 : {
418 0 : if (U_FAILURE(status)) {
419 0 : return;
420 : }
421 0 : this->ruleText = ruleText;
422 0 : sub1 = extractSubstitution(ruleSet, predecessor, status);
423 0 : if (sub1 == NULL) {
424 : // Small optimization. There is no need to create a redundant NullSubstitution.
425 0 : sub2 = NULL;
426 : }
427 : else {
428 0 : sub2 = extractSubstitution(ruleSet, predecessor, status);
429 : }
430 0 : int32_t pluralRuleStart = this->ruleText.indexOf(gDollarOpenParenthesis, -1, 0);
431 0 : int32_t pluralRuleEnd = (pluralRuleStart >= 0 ? this->ruleText.indexOf(gClosedParenthesisDollar, -1, pluralRuleStart) : -1);
432 0 : if (pluralRuleEnd >= 0) {
433 0 : int32_t endType = this->ruleText.indexOf(gComma, pluralRuleStart);
434 0 : if (endType < 0) {
435 0 : status = U_PARSE_ERROR;
436 0 : return;
437 : }
438 0 : UnicodeString type(this->ruleText.tempSubString(pluralRuleStart + 2, endType - pluralRuleStart - 2));
439 : UPluralType pluralType;
440 0 : if (type.startsWith(UNICODE_STRING_SIMPLE("cardinal"))) {
441 0 : pluralType = UPLURAL_TYPE_CARDINAL;
442 : }
443 0 : else if (type.startsWith(UNICODE_STRING_SIMPLE("ordinal"))) {
444 0 : pluralType = UPLURAL_TYPE_ORDINAL;
445 : }
446 : else {
447 0 : status = U_ILLEGAL_ARGUMENT_ERROR;
448 0 : return;
449 : }
450 0 : rulePatternFormat = formatter->createPluralFormat(pluralType,
451 0 : this->ruleText.tempSubString(endType + 1, pluralRuleEnd - endType - 1), status);
452 : }
453 : }
454 :
455 : /**
456 : * Searches the rule's rule text for the first substitution token,
457 : * creates a substitution based on it, and removes the token from
458 : * the rule's rule text.
459 : * @param owner The rule set containing this rule
460 : * @param predecessor The rule preceding this one in the rule set's
461 : * rule list
462 : * @param ownersOwner The RuleBasedNumberFormat that owns this rule
463 : * @return The newly-created substitution. This is never null; if
464 : * the rule text doesn't contain any substitution tokens, this will
465 : * be a NullSubstitution.
466 : */
467 : NFSubstitution *
468 0 : NFRule::extractSubstitution(const NFRuleSet* ruleSet,
469 : const NFRule* predecessor,
470 : UErrorCode& status)
471 : {
472 0 : NFSubstitution* result = NULL;
473 :
474 : // search the rule's rule text for the first two characters of
475 : // a substitution token
476 0 : int32_t subStart = indexOfAnyRulePrefix();
477 0 : int32_t subEnd = subStart;
478 :
479 : // if we didn't find one, create a null substitution positioned
480 : // at the end of the rule text
481 0 : if (subStart == -1) {
482 0 : return NULL;
483 : }
484 :
485 : // special-case the ">>>" token, since searching for the > at the
486 : // end will actually find the > in the middle
487 0 : if (ruleText.indexOf(gGreaterGreaterGreater, 3, 0) == subStart) {
488 0 : subEnd = subStart + 2;
489 :
490 : // otherwise the substitution token ends with the same character
491 : // it began with
492 : } else {
493 0 : UChar c = ruleText.charAt(subStart);
494 0 : subEnd = ruleText.indexOf(c, subStart + 1);
495 : // special case for '<%foo<<'
496 0 : if (c == gLessThan && subEnd != -1 && subEnd < ruleText.length() - 1 && ruleText.charAt(subEnd+1) == c) {
497 : // ordinals use "=#,##0==%abbrev=" as their rule. Notice that the '==' in the middle
498 : // occurs because of the juxtaposition of two different rules. The check for '<' is a hack
499 : // to get around this. Having the duplicate at the front would cause problems with
500 : // rules like "<<%" to format, say, percents...
501 0 : ++subEnd;
502 : }
503 : }
504 :
505 : // if we don't find the end of the token (i.e., if we're on a single,
506 : // unmatched token character), create a null substitution positioned
507 : // at the end of the rule
508 0 : if (subEnd == -1) {
509 0 : return NULL;
510 : }
511 :
512 : // if we get here, we have a real substitution token (or at least
513 : // some text bounded by substitution token characters). Use
514 : // makeSubstitution() to create the right kind of substitution
515 0 : UnicodeString subToken;
516 0 : subToken.setTo(ruleText, subStart, subEnd + 1 - subStart);
517 0 : result = NFSubstitution::makeSubstitution(subStart, this, predecessor, ruleSet,
518 0 : this->formatter, subToken, status);
519 :
520 : // remove the substitution from the rule text
521 0 : ruleText.removeBetween(subStart, subEnd+1);
522 :
523 0 : return result;
524 : }
525 :
526 : /**
527 : * Sets the rule's base value, and causes the radix and exponent
528 : * to be recalculated. This is used during construction when we
529 : * don't know the rule's base value until after it's been
530 : * constructed. It should be used at any other time.
531 : * @param The new base value for the rule.
532 : */
533 : void
534 0 : NFRule::setBaseValue(int64_t newBaseValue, UErrorCode& status)
535 : {
536 : // set the base value
537 0 : baseValue = newBaseValue;
538 0 : radix = 10;
539 :
540 : // if this isn't a special rule, recalculate the radix and exponent
541 : // (the radix always defaults to 10; if it's supposed to be something
542 : // else, it's cleaned up by the caller and the exponent is
543 : // recalculated again-- the only function that does this is
544 : // NFRule.parseRuleDescriptor() )
545 0 : if (baseValue >= 1) {
546 0 : exponent = expectedExponent();
547 :
548 : // this function gets called on a fully-constructed rule whose
549 : // description didn't specify a base value. This means it
550 : // has substitutions, and some substitutions hold on to copies
551 : // of the rule's divisor. Fix their copies of the divisor.
552 0 : if (sub1 != NULL) {
553 0 : sub1->setDivisor(radix, exponent, status);
554 : }
555 0 : if (sub2 != NULL) {
556 0 : sub2->setDivisor(radix, exponent, status);
557 : }
558 :
559 : // if this is a special rule, its radix and exponent are basically
560 : // ignored. Set them to "safe" default values
561 : } else {
562 0 : exponent = 0;
563 : }
564 0 : }
565 :
566 : /**
567 : * This calculates the rule's exponent based on its radix and base
568 : * value. This will be the highest power the radix can be raised to
569 : * and still produce a result less than or equal to the base value.
570 : */
571 : int16_t
572 0 : NFRule::expectedExponent() const
573 : {
574 : // since the log of 0, or the log base 0 of something, causes an
575 : // error, declare the exponent in these cases to be 0 (we also
576 : // deal with the special-rule identifiers here)
577 0 : if (radix == 0 || baseValue < 1) {
578 0 : return 0;
579 : }
580 :
581 : // we get rounding error in some cases-- for example, log 1000 / log 10
582 : // gives us 1.9999999996 instead of 2. The extra logic here is to take
583 : // that into account
584 0 : int16_t tempResult = (int16_t)(uprv_log((double)baseValue) / uprv_log((double)radix));
585 0 : int64_t temp = util64_pow(radix, tempResult + 1);
586 0 : if (temp <= baseValue) {
587 0 : tempResult += 1;
588 : }
589 0 : return tempResult;
590 : }
591 :
592 : /**
593 : * Searches the rule's rule text for any of the specified strings.
594 : * @return The index of the first match in the rule's rule text
595 : * (i.e., the first substring in the rule's rule text that matches
596 : * _any_ of the strings in "strings"). If none of the strings in
597 : * "strings" is found in the rule's rule text, returns -1.
598 : */
599 : int32_t
600 0 : NFRule::indexOfAnyRulePrefix() const
601 : {
602 0 : int result = -1;
603 0 : for (int i = 0; RULE_PREFIXES[i]; i++) {
604 0 : int32_t pos = ruleText.indexOf(*RULE_PREFIXES[i]);
605 0 : if (pos != -1 && (result == -1 || pos < result)) {
606 0 : result = pos;
607 : }
608 : }
609 0 : return result;
610 : }
611 :
612 : //-----------------------------------------------------------------------
613 : // boilerplate
614 : //-----------------------------------------------------------------------
615 :
616 : static UBool
617 0 : util_equalSubstitutions(const NFSubstitution* sub1, const NFSubstitution* sub2)
618 : {
619 0 : if (sub1) {
620 0 : if (sub2) {
621 0 : return *sub1 == *sub2;
622 : }
623 0 : } else if (!sub2) {
624 0 : return TRUE;
625 : }
626 0 : return FALSE;
627 : }
628 :
629 : /**
630 : * Tests two rules for equality.
631 : * @param that The rule to compare this one against
632 : * @return True is the two rules are functionally equivalent
633 : */
634 : UBool
635 0 : NFRule::operator==(const NFRule& rhs) const
636 : {
637 0 : return baseValue == rhs.baseValue
638 0 : && radix == rhs.radix
639 0 : && exponent == rhs.exponent
640 0 : && ruleText == rhs.ruleText
641 0 : && util_equalSubstitutions(sub1, rhs.sub1)
642 0 : && util_equalSubstitutions(sub2, rhs.sub2);
643 : }
644 :
645 : /**
646 : * Returns a textual representation of the rule. This won't
647 : * necessarily be the same as the description that this rule
648 : * was created with, but it will produce the same result.
649 : * @return A textual description of the rule
650 : */
651 0 : static void util_append64(UnicodeString& result, int64_t n)
652 : {
653 : UChar buffer[256];
654 0 : int32_t len = util64_tou(n, buffer, sizeof(buffer));
655 0 : UnicodeString temp(buffer, len);
656 0 : result.append(temp);
657 0 : }
658 :
659 : void
660 0 : NFRule::_appendRuleText(UnicodeString& result) const
661 : {
662 0 : switch (getType()) {
663 0 : case kNegativeNumberRule: result.append(gMinusX, 2); break;
664 0 : case kImproperFractionRule: result.append(gX).append(decimalPoint == 0 ? gDot : decimalPoint).append(gX); break;
665 0 : case kProperFractionRule: result.append(gZero).append(decimalPoint == 0 ? gDot : decimalPoint).append(gX); break;
666 0 : case kMasterRule: result.append(gX).append(decimalPoint == 0 ? gDot : decimalPoint).append(gZero); break;
667 0 : case kInfinityRule: result.append(gInf, 3); break;
668 0 : case kNaNRule: result.append(gNaN, 3); break;
669 : default:
670 : // for a normal rule, write out its base value, and if the radix is
671 : // something other than 10, write out the radix (with the preceding
672 : // slash, of course). Then calculate the expected exponent and if
673 : // if isn't the same as the actual exponent, write an appropriate
674 : // number of > signs. Finally, terminate the whole thing with
675 : // a colon.
676 0 : util_append64(result, baseValue);
677 0 : if (radix != 10) {
678 0 : result.append(gSlash);
679 0 : util_append64(result, radix);
680 : }
681 0 : int numCarets = expectedExponent() - exponent;
682 0 : for (int i = 0; i < numCarets; i++) {
683 0 : result.append(gGreaterThan);
684 : }
685 0 : break;
686 : }
687 0 : result.append(gColon);
688 0 : result.append(gSpace);
689 :
690 : // if the rule text begins with a space, write an apostrophe
691 : // (whitespace after the rule descriptor is ignored; the
692 : // apostrophe is used to make the whitespace significant)
693 0 : if (ruleText.charAt(0) == gSpace && (sub1 == NULL || sub1->getPos() != 0)) {
694 0 : result.append(gTick);
695 : }
696 :
697 : // now, write the rule's rule text, inserting appropriate
698 : // substitution tokens in the appropriate places
699 0 : UnicodeString ruleTextCopy;
700 0 : ruleTextCopy.setTo(ruleText);
701 :
702 0 : UnicodeString temp;
703 0 : if (sub2 != NULL) {
704 0 : sub2->toString(temp);
705 0 : ruleTextCopy.insert(sub2->getPos(), temp);
706 : }
707 0 : if (sub1 != NULL) {
708 0 : sub1->toString(temp);
709 0 : ruleTextCopy.insert(sub1->getPos(), temp);
710 : }
711 :
712 0 : result.append(ruleTextCopy);
713 :
714 : // and finally, top the whole thing off with a semicolon and
715 : // return the result
716 0 : result.append(gSemicolon);
717 0 : }
718 :
719 0 : int64_t NFRule::getDivisor() const
720 : {
721 0 : return util64_pow(radix, exponent);
722 : }
723 :
724 :
725 : //-----------------------------------------------------------------------
726 : // formatting
727 : //-----------------------------------------------------------------------
728 :
729 : /**
730 : * Formats the number, and inserts the resulting text into
731 : * toInsertInto.
732 : * @param number The number being formatted
733 : * @param toInsertInto The string where the resultant text should
734 : * be inserted
735 : * @param pos The position in toInsertInto where the resultant text
736 : * should be inserted
737 : */
738 : void
739 0 : NFRule::doFormat(int64_t number, UnicodeString& toInsertInto, int32_t pos, int32_t recursionCount, UErrorCode& status) const
740 : {
741 : // first, insert the rule's rule text into toInsertInto at the
742 : // specified position, then insert the results of the substitutions
743 : // into the right places in toInsertInto (notice we do the
744 : // substitutions in reverse order so that the offsets don't get
745 : // messed up)
746 0 : int32_t pluralRuleStart = ruleText.length();
747 0 : int32_t lengthOffset = 0;
748 0 : if (!rulePatternFormat) {
749 0 : toInsertInto.insert(pos, ruleText);
750 : }
751 : else {
752 0 : pluralRuleStart = ruleText.indexOf(gDollarOpenParenthesis, -1, 0);
753 0 : int pluralRuleEnd = ruleText.indexOf(gClosedParenthesisDollar, -1, pluralRuleStart);
754 0 : int initialLength = toInsertInto.length();
755 0 : if (pluralRuleEnd < ruleText.length() - 1) {
756 0 : toInsertInto.insert(pos, ruleText.tempSubString(pluralRuleEnd + 2));
757 : }
758 : toInsertInto.insert(pos,
759 0 : rulePatternFormat->format((int32_t)(number/util64_pow(radix, exponent)), status));
760 0 : if (pluralRuleStart > 0) {
761 0 : toInsertInto.insert(pos, ruleText.tempSubString(0, pluralRuleStart));
762 : }
763 0 : lengthOffset = ruleText.length() - (toInsertInto.length() - initialLength);
764 : }
765 :
766 0 : if (sub2 != NULL) {
767 0 : sub2->doSubstitution(number, toInsertInto, pos - (sub2->getPos() > pluralRuleStart ? lengthOffset : 0), recursionCount, status);
768 : }
769 0 : if (sub1 != NULL) {
770 0 : sub1->doSubstitution(number, toInsertInto, pos - (sub1->getPos() > pluralRuleStart ? lengthOffset : 0), recursionCount, status);
771 : }
772 0 : }
773 :
774 : /**
775 : * Formats the number, and inserts the resulting text into
776 : * toInsertInto.
777 : * @param number The number being formatted
778 : * @param toInsertInto The string where the resultant text should
779 : * be inserted
780 : * @param pos The position in toInsertInto where the resultant text
781 : * should be inserted
782 : */
783 : void
784 0 : NFRule::doFormat(double number, UnicodeString& toInsertInto, int32_t pos, int32_t recursionCount, UErrorCode& status) const
785 : {
786 : // first, insert the rule's rule text into toInsertInto at the
787 : // specified position, then insert the results of the substitutions
788 : // into the right places in toInsertInto
789 : // [again, we have two copies of this routine that do the same thing
790 : // so that we don't sacrifice precision in a long by casting it
791 : // to a double]
792 0 : int32_t pluralRuleStart = ruleText.length();
793 0 : int32_t lengthOffset = 0;
794 0 : if (!rulePatternFormat) {
795 0 : toInsertInto.insert(pos, ruleText);
796 : }
797 : else {
798 0 : pluralRuleStart = ruleText.indexOf(gDollarOpenParenthesis, -1, 0);
799 0 : int pluralRuleEnd = ruleText.indexOf(gClosedParenthesisDollar, -1, pluralRuleStart);
800 0 : int initialLength = toInsertInto.length();
801 0 : if (pluralRuleEnd < ruleText.length() - 1) {
802 0 : toInsertInto.insert(pos, ruleText.tempSubString(pluralRuleEnd + 2));
803 : }
804 0 : double pluralVal = number;
805 0 : if (0 <= pluralVal && pluralVal < 1) {
806 : // We're in a fractional rule, and we have to match the NumeratorSubstitution behavior.
807 : // 2.3 can become 0.2999999999999998 for the fraction due to rounding errors.
808 0 : pluralVal = uprv_round(pluralVal * util64_pow(radix, exponent));
809 : }
810 : else {
811 0 : pluralVal = pluralVal / util64_pow(radix, exponent);
812 : }
813 0 : toInsertInto.insert(pos, rulePatternFormat->format((int32_t)(pluralVal), status));
814 0 : if (pluralRuleStart > 0) {
815 0 : toInsertInto.insert(pos, ruleText.tempSubString(0, pluralRuleStart));
816 : }
817 0 : lengthOffset = ruleText.length() - (toInsertInto.length() - initialLength);
818 : }
819 :
820 0 : if (sub2 != NULL) {
821 0 : sub2->doSubstitution(number, toInsertInto, pos - (sub2->getPos() > pluralRuleStart ? lengthOffset : 0), recursionCount, status);
822 : }
823 0 : if (sub1 != NULL) {
824 0 : sub1->doSubstitution(number, toInsertInto, pos - (sub1->getPos() > pluralRuleStart ? lengthOffset : 0), recursionCount, status);
825 : }
826 0 : }
827 :
828 : /**
829 : * Used by the owning rule set to determine whether to invoke the
830 : * rollback rule (i.e., whether this rule or the one that precedes
831 : * it in the rule set's list should be used to format the number)
832 : * @param The number being formatted
833 : * @return True if the rule set should use the rule that precedes
834 : * this one in its list; false if it should use this rule
835 : */
836 : UBool
837 0 : NFRule::shouldRollBack(int64_t number) const
838 : {
839 : // we roll back if the rule contains a modulus substitution,
840 : // the number being formatted is an even multiple of the rule's
841 : // divisor, and the rule's base value is NOT an even multiple
842 : // of its divisor
843 : // In other words, if the original description had
844 : // 100: << hundred[ >>];
845 : // that expands into
846 : // 100: << hundred;
847 : // 101: << hundred >>;
848 : // internally. But when we're formatting 200, if we use the rule
849 : // at 101, which would normally apply, we get "two hundred zero".
850 : // To prevent this, we roll back and use the rule at 100 instead.
851 : // This is the logic that makes this happen: the rule at 101 has
852 : // a modulus substitution, its base value isn't an even multiple
853 : // of 100, and the value we're trying to format _is_ an even
854 : // multiple of 100. This is called the "rollback rule."
855 0 : if ((sub1 != NULL && sub1->isModulusSubstitution()) || (sub2 != NULL && sub2->isModulusSubstitution())) {
856 0 : int64_t re = util64_pow(radix, exponent);
857 0 : return (number % re) == 0 && (baseValue % re) != 0;
858 : }
859 0 : return FALSE;
860 : }
861 :
862 : //-----------------------------------------------------------------------
863 : // parsing
864 : //-----------------------------------------------------------------------
865 :
866 : /**
867 : * Attempts to parse the string with this rule.
868 : * @param text The string being parsed
869 : * @param parsePosition On entry, the value is ignored and assumed to
870 : * be 0. On exit, this has been updated with the position of the first
871 : * character not consumed by matching the text against this rule
872 : * (if this rule doesn't match the text at all, the parse position
873 : * if left unchanged (presumably at 0) and the function returns
874 : * new Long(0)).
875 : * @param isFractionRule True if this rule is contained within a
876 : * fraction rule set. This is only used if the rule has no
877 : * substitutions.
878 : * @return If this rule matched the text, this is the rule's base value
879 : * combined appropriately with the results of parsing the substitutions.
880 : * If nothing matched, this is new Long(0) and the parse position is
881 : * left unchanged. The result will be an instance of Long if the
882 : * result is an integer and Double otherwise. The result is never null.
883 : */
884 : #ifdef RBNF_DEBUG
885 : #include <stdio.h>
886 :
887 : static void dumpUS(FILE* f, const UnicodeString& us) {
888 : int len = us.length();
889 : char* buf = (char *)uprv_malloc((len+1)*sizeof(char)); //new char[len+1];
890 : if (buf != NULL) {
891 : us.extract(0, len, buf);
892 : buf[len] = 0;
893 : fprintf(f, "%s", buf);
894 : uprv_free(buf); //delete[] buf;
895 : }
896 : }
897 : #endif
898 : UBool
899 0 : NFRule::doParse(const UnicodeString& text,
900 : ParsePosition& parsePosition,
901 : UBool isFractionRule,
902 : double upperBound,
903 : Formattable& resVal) const
904 : {
905 : // internally we operate on a copy of the string being parsed
906 : // (because we're going to change it) and use our own ParsePosition
907 0 : ParsePosition pp;
908 0 : UnicodeString workText(text);
909 :
910 0 : int32_t sub1Pos = sub1 != NULL ? sub1->getPos() : ruleText.length();
911 0 : int32_t sub2Pos = sub2 != NULL ? sub2->getPos() : ruleText.length();
912 :
913 : // check to see whether the text before the first substitution
914 : // matches the text at the beginning of the string being
915 : // parsed. If it does, strip that off the front of workText;
916 : // otherwise, dump out with a mismatch
917 0 : UnicodeString prefix;
918 0 : prefix.setTo(ruleText, 0, sub1Pos);
919 :
920 : #ifdef RBNF_DEBUG
921 : fprintf(stderr, "doParse %p ", this);
922 : {
923 : UnicodeString rt;
924 : _appendRuleText(rt);
925 : dumpUS(stderr, rt);
926 : }
927 :
928 : fprintf(stderr, " text: '");
929 : dumpUS(stderr, text);
930 : fprintf(stderr, "' prefix: '");
931 : dumpUS(stderr, prefix);
932 : #endif
933 0 : stripPrefix(workText, prefix, pp);
934 0 : int32_t prefixLength = text.length() - workText.length();
935 :
936 : #ifdef RBNF_DEBUG
937 : fprintf(stderr, "' pl: %d ppi: %d s1p: %d\n", prefixLength, pp.getIndex(), sub1Pos);
938 : #endif
939 :
940 0 : if (pp.getIndex() == 0 && sub1Pos != 0) {
941 : // commented out because ParsePosition doesn't have error index in 1.1.x
942 : // restored for ICU4C port
943 0 : parsePosition.setErrorIndex(pp.getErrorIndex());
944 0 : resVal.setLong(0);
945 0 : return TRUE;
946 : }
947 0 : if (baseValue == kInfinityRule) {
948 : // If you match this, don't try to perform any calculations on it.
949 0 : parsePosition.setIndex(pp.getIndex());
950 0 : resVal.setDouble(uprv_getInfinity());
951 0 : return TRUE;
952 : }
953 0 : if (baseValue == kNaNRule) {
954 : // If you match this, don't try to perform any calculations on it.
955 0 : parsePosition.setIndex(pp.getIndex());
956 0 : resVal.setDouble(uprv_getNaN());
957 0 : return TRUE;
958 : }
959 :
960 : // this is the fun part. The basic guts of the rule-matching
961 : // logic is matchToDelimiter(), which is called twice. The first
962 : // time it searches the input string for the rule text BETWEEN
963 : // the substitutions and tries to match the intervening text
964 : // in the input string with the first substitution. If that
965 : // succeeds, it then calls it again, this time to look for the
966 : // rule text after the second substitution and to match the
967 : // intervening input text against the second substitution.
968 : //
969 : // For example, say we have a rule that looks like this:
970 : // first << middle >> last;
971 : // and input text that looks like this:
972 : // first one middle two last
973 : // First we use stripPrefix() to match "first " in both places and
974 : // strip it off the front, leaving
975 : // one middle two last
976 : // Then we use matchToDelimiter() to match " middle " and try to
977 : // match "one" against a substitution. If it's successful, we now
978 : // have
979 : // two last
980 : // We use matchToDelimiter() a second time to match " last" and
981 : // try to match "two" against a substitution. If "two" matches
982 : // the substitution, we have a successful parse.
983 : //
984 : // Since it's possible in many cases to find multiple instances
985 : // of each of these pieces of rule text in the input string,
986 : // we need to try all the possible combinations of these
987 : // locations. This prevents us from prematurely declaring a mismatch,
988 : // and makes sure we match as much input text as we can.
989 0 : int highWaterMark = 0;
990 0 : double result = 0;
991 0 : int start = 0;
992 0 : double tempBaseValue = (double)(baseValue <= 0 ? 0 : baseValue);
993 :
994 0 : UnicodeString temp;
995 0 : do {
996 : // our partial parse result starts out as this rule's base
997 : // value. If it finds a successful match, matchToDelimiter()
998 : // will compose this in some way with what it gets back from
999 : // the substitution, giving us a new partial parse result
1000 0 : pp.setIndex(0);
1001 :
1002 0 : temp.setTo(ruleText, sub1Pos, sub2Pos - sub1Pos);
1003 : double partialResult = matchToDelimiter(workText, start, tempBaseValue,
1004 0 : temp, pp, sub1,
1005 0 : upperBound);
1006 :
1007 : // if we got a successful match (or were trying to match a
1008 : // null substitution), pp is now pointing at the first unmatched
1009 : // character. Take note of that, and try matchToDelimiter()
1010 : // on the input text again
1011 0 : if (pp.getIndex() != 0 || sub1 == NULL) {
1012 0 : start = pp.getIndex();
1013 :
1014 0 : UnicodeString workText2;
1015 0 : workText2.setTo(workText, pp.getIndex(), workText.length() - pp.getIndex());
1016 0 : ParsePosition pp2;
1017 :
1018 : // the second matchToDelimiter() will compose our previous
1019 : // partial result with whatever it gets back from its
1020 : // substitution if there's a successful match, giving us
1021 : // a real result
1022 0 : temp.setTo(ruleText, sub2Pos, ruleText.length() - sub2Pos);
1023 : partialResult = matchToDelimiter(workText2, 0, partialResult,
1024 0 : temp, pp2, sub2,
1025 0 : upperBound);
1026 :
1027 : // if we got a successful match on this second
1028 : // matchToDelimiter() call, update the high-water mark
1029 : // and result (if necessary)
1030 0 : if (pp2.getIndex() != 0 || sub2 == NULL) {
1031 0 : if (prefixLength + pp.getIndex() + pp2.getIndex() > highWaterMark) {
1032 0 : highWaterMark = prefixLength + pp.getIndex() + pp2.getIndex();
1033 0 : result = partialResult;
1034 : }
1035 : }
1036 : else {
1037 : // commented out because ParsePosition doesn't have error index in 1.1.x
1038 : // restored for ICU4C port
1039 0 : int32_t temp = pp2.getErrorIndex() + sub1Pos + pp.getIndex();
1040 0 : if (temp> parsePosition.getErrorIndex()) {
1041 0 : parsePosition.setErrorIndex(temp);
1042 : }
1043 : }
1044 : }
1045 : else {
1046 : // commented out because ParsePosition doesn't have error index in 1.1.x
1047 : // restored for ICU4C port
1048 0 : int32_t temp = sub1Pos + pp.getErrorIndex();
1049 0 : if (temp > parsePosition.getErrorIndex()) {
1050 0 : parsePosition.setErrorIndex(temp);
1051 : }
1052 : }
1053 : // keep trying to match things until the outer matchToDelimiter()
1054 : // call fails to make a match (each time, it picks up where it
1055 : // left off the previous time)
1056 : } while (sub1Pos != sub2Pos
1057 0 : && pp.getIndex() > 0
1058 0 : && pp.getIndex() < workText.length()
1059 0 : && pp.getIndex() != start);
1060 :
1061 : // update the caller's ParsePosition with our high-water mark
1062 : // (i.e., it now points at the first character this function
1063 : // didn't match-- the ParsePosition is therefore unchanged if
1064 : // we didn't match anything)
1065 0 : parsePosition.setIndex(highWaterMark);
1066 : // commented out because ParsePosition doesn't have error index in 1.1.x
1067 : // restored for ICU4C port
1068 0 : if (highWaterMark > 0) {
1069 0 : parsePosition.setErrorIndex(0);
1070 : }
1071 :
1072 : // this is a hack for one unusual condition: Normally, whether this
1073 : // rule belong to a fraction rule set or not is handled by its
1074 : // substitutions. But if that rule HAS NO substitutions, then
1075 : // we have to account for it here. By definition, if the matching
1076 : // rule in a fraction rule set has no substitutions, its numerator
1077 : // is 1, and so the result is the reciprocal of its base value.
1078 0 : if (isFractionRule && highWaterMark > 0 && sub1 == NULL) {
1079 0 : result = 1 / result;
1080 : }
1081 :
1082 0 : resVal.setDouble(result);
1083 0 : return TRUE; // ??? do we need to worry if it is a long or a double?
1084 : }
1085 :
1086 : /**
1087 : * This function is used by parse() to match the text being parsed
1088 : * against a possible prefix string. This function
1089 : * matches characters from the beginning of the string being parsed
1090 : * to characters from the prospective prefix. If they match, pp is
1091 : * updated to the first character not matched, and the result is
1092 : * the unparsed part of the string. If they don't match, the whole
1093 : * string is returned, and pp is left unchanged.
1094 : * @param text The string being parsed
1095 : * @param prefix The text to match against
1096 : * @param pp On entry, ignored and assumed to be 0. On exit, points
1097 : * to the first unmatched character (assuming the whole prefix matched),
1098 : * or is unchanged (if the whole prefix didn't match).
1099 : * @return If things match, this is the unparsed part of "text";
1100 : * if they didn't match, this is "text".
1101 : */
1102 : void
1103 0 : NFRule::stripPrefix(UnicodeString& text, const UnicodeString& prefix, ParsePosition& pp) const
1104 : {
1105 : // if the prefix text is empty, dump out without doing anything
1106 0 : if (prefix.length() != 0) {
1107 0 : UErrorCode status = U_ZERO_ERROR;
1108 : // use prefixLength() to match the beginning of
1109 : // "text" against "prefix". This function returns the
1110 : // number of characters from "text" that matched (or 0 if
1111 : // we didn't match the whole prefix)
1112 0 : int32_t pfl = prefixLength(text, prefix, status);
1113 0 : if (U_FAILURE(status)) { // Memory allocation error.
1114 0 : return;
1115 : }
1116 0 : if (pfl != 0) {
1117 : // if we got a successful match, update the parse position
1118 : // and strip the prefix off of "text"
1119 0 : pp.setIndex(pp.getIndex() + pfl);
1120 0 : text.remove(0, pfl);
1121 : }
1122 : }
1123 : }
1124 :
1125 : /**
1126 : * Used by parse() to match a substitution and any following text.
1127 : * "text" is searched for instances of "delimiter". For each instance
1128 : * of delimiter, the intervening text is tested to see whether it
1129 : * matches the substitution. The longest match wins.
1130 : * @param text The string being parsed
1131 : * @param startPos The position in "text" where we should start looking
1132 : * for "delimiter".
1133 : * @param baseValue A partial parse result (often the rule's base value),
1134 : * which is combined with the result from matching the substitution
1135 : * @param delimiter The string to search "text" for.
1136 : * @param pp Ignored and presumed to be 0 on entry. If there's a match,
1137 : * on exit this will point to the first unmatched character.
1138 : * @param sub If we find "delimiter" in "text", this substitution is used
1139 : * to match the text between the beginning of the string and the
1140 : * position of "delimiter." (If "delimiter" is the empty string, then
1141 : * this function just matches against this substitution and updates
1142 : * everything accordingly.)
1143 : * @param upperBound When matching the substitution, it will only
1144 : * consider rules with base values lower than this value.
1145 : * @return If there's a match, this is the result of composing
1146 : * baseValue with the result of matching the substitution. Otherwise,
1147 : * this is new Long(0). It's never null. If the result is an integer,
1148 : * this will be an instance of Long; otherwise, it's an instance of
1149 : * Double.
1150 : *
1151 : * !!! note {dlf} in point of fact, in the java code the caller always converts
1152 : * the result to a double, so we might as well return one.
1153 : */
1154 : double
1155 0 : NFRule::matchToDelimiter(const UnicodeString& text,
1156 : int32_t startPos,
1157 : double _baseValue,
1158 : const UnicodeString& delimiter,
1159 : ParsePosition& pp,
1160 : const NFSubstitution* sub,
1161 : double upperBound) const
1162 : {
1163 0 : UErrorCode status = U_ZERO_ERROR;
1164 : // if "delimiter" contains real (i.e., non-ignorable) text, search
1165 : // it for "delimiter" beginning at "start". If that succeeds, then
1166 : // use "sub"'s doParse() method to match the text before the
1167 : // instance of "delimiter" we just found.
1168 0 : if (!allIgnorable(delimiter, status)) {
1169 0 : if (U_FAILURE(status)) { //Memory allocation error.
1170 0 : return 0;
1171 : }
1172 0 : ParsePosition tempPP;
1173 0 : Formattable result;
1174 :
1175 : // use findText() to search for "delimiter". It returns a two-
1176 : // element array: element 0 is the position of the match, and
1177 : // element 1 is the number of characters that matched
1178 : // "delimiter".
1179 : int32_t dLen;
1180 0 : int32_t dPos = findText(text, delimiter, startPos, &dLen);
1181 :
1182 : // if findText() succeeded, isolate the text preceding the
1183 : // match, and use "sub" to match that text
1184 0 : while (dPos >= 0) {
1185 0 : UnicodeString subText;
1186 0 : subText.setTo(text, 0, dPos);
1187 0 : if (subText.length() > 0) {
1188 0 : UBool success = sub->doParse(subText, tempPP, _baseValue, upperBound,
1189 : #if UCONFIG_NO_COLLATION
1190 : FALSE,
1191 : #else
1192 0 : formatter->isLenient(),
1193 : #endif
1194 0 : result);
1195 :
1196 : // if the substitution could match all the text up to
1197 : // where we found "delimiter", then this function has
1198 : // a successful match. Bump the caller's parse position
1199 : // to point to the first character after the text
1200 : // that matches "delimiter", and return the result
1201 : // we got from parsing the substitution.
1202 0 : if (success && tempPP.getIndex() == dPos) {
1203 0 : pp.setIndex(dPos + dLen);
1204 0 : return result.getDouble();
1205 : }
1206 : else {
1207 : // commented out because ParsePosition doesn't have error index in 1.1.x
1208 : // restored for ICU4C port
1209 0 : if (tempPP.getErrorIndex() > 0) {
1210 0 : pp.setErrorIndex(tempPP.getErrorIndex());
1211 : } else {
1212 0 : pp.setErrorIndex(tempPP.getIndex());
1213 : }
1214 : }
1215 : }
1216 :
1217 : // if we didn't match the substitution, search for another
1218 : // copy of "delimiter" in "text" and repeat the loop if
1219 : // we find it
1220 0 : tempPP.setIndex(0);
1221 0 : dPos = findText(text, delimiter, dPos + dLen, &dLen);
1222 : }
1223 : // if we make it here, this was an unsuccessful match, and we
1224 : // leave pp unchanged and return 0
1225 0 : pp.setIndex(0);
1226 0 : return 0;
1227 :
1228 : // if "delimiter" is empty, or consists only of ignorable characters
1229 : // (i.e., is semantically empty), thwe we obviously can't search
1230 : // for "delimiter". Instead, just use "sub" to parse as much of
1231 : // "text" as possible.
1232 : }
1233 0 : else if (sub == NULL) {
1234 0 : return _baseValue;
1235 : }
1236 : else {
1237 0 : ParsePosition tempPP;
1238 0 : Formattable result;
1239 :
1240 : // try to match the whole string against the substitution
1241 0 : UBool success = sub->doParse(text, tempPP, _baseValue, upperBound,
1242 : #if UCONFIG_NO_COLLATION
1243 : FALSE,
1244 : #else
1245 0 : formatter->isLenient(),
1246 : #endif
1247 0 : result);
1248 0 : if (success && (tempPP.getIndex() != 0)) {
1249 : // if there's a successful match (or it's a null
1250 : // substitution), update pp to point to the first
1251 : // character we didn't match, and pass the result from
1252 : // sub.doParse() on through to the caller
1253 0 : pp.setIndex(tempPP.getIndex());
1254 0 : return result.getDouble();
1255 : }
1256 : else {
1257 : // commented out because ParsePosition doesn't have error index in 1.1.x
1258 : // restored for ICU4C port
1259 0 : pp.setErrorIndex(tempPP.getErrorIndex());
1260 : }
1261 :
1262 : // and if we get to here, then nothing matched, so we return
1263 : // 0 and leave pp alone
1264 0 : return 0;
1265 : }
1266 : }
1267 :
1268 : /**
1269 : * Used by stripPrefix() to match characters. If lenient parse mode
1270 : * is off, this just calls startsWith(). If lenient parse mode is on,
1271 : * this function uses CollationElementIterators to match characters in
1272 : * the strings (only primary-order differences are significant in
1273 : * determining whether there's a match).
1274 : * @param str The string being tested
1275 : * @param prefix The text we're hoping to see at the beginning
1276 : * of "str"
1277 : * @return If "prefix" is found at the beginning of "str", this
1278 : * is the number of characters in "str" that were matched (this
1279 : * isn't necessarily the same as the length of "prefix" when matching
1280 : * text with a collator). If there's no match, this is 0.
1281 : */
1282 : int32_t
1283 0 : NFRule::prefixLength(const UnicodeString& str, const UnicodeString& prefix, UErrorCode& status) const
1284 : {
1285 : // if we're looking for an empty prefix, it obviously matches
1286 : // zero characters. Just go ahead and return 0.
1287 0 : if (prefix.length() == 0) {
1288 0 : return 0;
1289 : }
1290 :
1291 : #if !UCONFIG_NO_COLLATION
1292 : // go through all this grief if we're in lenient-parse mode
1293 0 : if (formatter->isLenient()) {
1294 : // get the formatter's collator and use it to create two
1295 : // collation element iterators, one over the target string
1296 : // and another over the prefix (right now, we'll throw an
1297 : // exception if the collator we get back from the formatter
1298 : // isn't a RuleBasedCollator, because RuleBasedCollator defines
1299 : // the CollationElementIterator protocol. Hopefully, this
1300 : // will change someday.)
1301 0 : const RuleBasedCollator* collator = formatter->getCollator();
1302 0 : if (collator == NULL) {
1303 0 : status = U_MEMORY_ALLOCATION_ERROR;
1304 0 : return 0;
1305 : }
1306 0 : LocalPointer<CollationElementIterator> strIter(collator->createCollationElementIterator(str));
1307 0 : LocalPointer<CollationElementIterator> prefixIter(collator->createCollationElementIterator(prefix));
1308 : // Check for memory allocation error.
1309 0 : if (strIter.isNull() || prefixIter.isNull()) {
1310 0 : status = U_MEMORY_ALLOCATION_ERROR;
1311 0 : return 0;
1312 : }
1313 :
1314 0 : UErrorCode err = U_ZERO_ERROR;
1315 :
1316 : // The original code was problematic. Consider this match:
1317 : // prefix = "fifty-"
1318 : // string = " fifty-7"
1319 : // The intent is to match string up to the '7', by matching 'fifty-' at position 1
1320 : // in the string. Unfortunately, we were getting a match, and then computing where
1321 : // the match terminated by rematching the string. The rematch code was using as an
1322 : // initial guess the substring of string between 0 and prefix.length. Because of
1323 : // the leading space and trailing hyphen (both ignorable) this was succeeding, leaving
1324 : // the position before the hyphen in the string. Recursing down, we then parsed the
1325 : // remaining string '-7' as numeric. The resulting number turned out as 43 (50 - 7).
1326 : // This was not pretty, especially since the string "fifty-7" parsed just fine.
1327 : //
1328 : // We have newer APIs now, so we can use calls on the iterator to determine what we
1329 : // matched up to. If we terminate because we hit the last element in the string,
1330 : // our match terminates at this length. If we terminate because we hit the last element
1331 : // in the target, our match terminates at one before the element iterator position.
1332 :
1333 : // match collation elements between the strings
1334 0 : int32_t oStr = strIter->next(err);
1335 0 : int32_t oPrefix = prefixIter->next(err);
1336 :
1337 0 : while (oPrefix != CollationElementIterator::NULLORDER) {
1338 : // skip over ignorable characters in the target string
1339 0 : while (CollationElementIterator::primaryOrder(oStr) == 0
1340 0 : && oStr != CollationElementIterator::NULLORDER) {
1341 0 : oStr = strIter->next(err);
1342 : }
1343 :
1344 : // skip over ignorable characters in the prefix
1345 0 : while (CollationElementIterator::primaryOrder(oPrefix) == 0
1346 0 : && oPrefix != CollationElementIterator::NULLORDER) {
1347 0 : oPrefix = prefixIter->next(err);
1348 : }
1349 :
1350 : // dlf: move this above following test, if we consume the
1351 : // entire target, aren't we ok even if the source was also
1352 : // entirely consumed?
1353 :
1354 : // if skipping over ignorables brought to the end of
1355 : // the prefix, we DID match: drop out of the loop
1356 0 : if (oPrefix == CollationElementIterator::NULLORDER) {
1357 0 : break;
1358 : }
1359 :
1360 : // if skipping over ignorables brought us to the end
1361 : // of the target string, we didn't match and return 0
1362 0 : if (oStr == CollationElementIterator::NULLORDER) {
1363 0 : return 0;
1364 : }
1365 :
1366 : // match collation elements from the two strings
1367 : // (considering only primary differences). If we
1368 : // get a mismatch, dump out and return 0
1369 0 : if (CollationElementIterator::primaryOrder(oStr)
1370 0 : != CollationElementIterator::primaryOrder(oPrefix)) {
1371 0 : return 0;
1372 :
1373 : // otherwise, advance to the next character in each string
1374 : // and loop (we drop out of the loop when we exhaust
1375 : // collation elements in the prefix)
1376 : } else {
1377 0 : oStr = strIter->next(err);
1378 0 : oPrefix = prefixIter->next(err);
1379 : }
1380 : }
1381 :
1382 0 : int32_t result = strIter->getOffset();
1383 0 : if (oStr != CollationElementIterator::NULLORDER) {
1384 0 : --result; // back over character that we don't want to consume;
1385 : }
1386 :
1387 : #ifdef RBNF_DEBUG
1388 : fprintf(stderr, "prefix length: %d\n", result);
1389 : #endif
1390 0 : return result;
1391 : #if 0
1392 : //----------------------------------------------------------------
1393 : // JDK 1.2-specific API call
1394 : // return strIter.getOffset();
1395 : //----------------------------------------------------------------
1396 : // JDK 1.1 HACK (take out for 1.2-specific code)
1397 :
1398 : // if we make it to here, we have a successful match. Now we
1399 : // have to find out HOW MANY characters from the target string
1400 : // matched the prefix (there isn't necessarily a one-to-one
1401 : // mapping between collation elements and characters).
1402 : // In JDK 1.2, there's a simple getOffset() call we can use.
1403 : // In JDK 1.1, on the other hand, we have to go through some
1404 : // ugly contortions. First, use the collator to compare the
1405 : // same number of characters from the prefix and target string.
1406 : // If they're equal, we're done.
1407 : collator->setStrength(Collator::PRIMARY);
1408 : if (str.length() >= prefix.length()) {
1409 : UnicodeString temp;
1410 : temp.setTo(str, 0, prefix.length());
1411 : if (collator->equals(temp, prefix)) {
1412 : #ifdef RBNF_DEBUG
1413 : fprintf(stderr, "returning: %d\n", prefix.length());
1414 : #endif
1415 : return prefix.length();
1416 : }
1417 : }
1418 :
1419 : // if they're not equal, then we have to compare successively
1420 : // larger and larger substrings of the target string until we
1421 : // get to one that matches the prefix. At that point, we know
1422 : // how many characters matched the prefix, and we can return.
1423 : int32_t p = 1;
1424 : while (p <= str.length()) {
1425 : UnicodeString temp;
1426 : temp.setTo(str, 0, p);
1427 : if (collator->equals(temp, prefix)) {
1428 : return p;
1429 : } else {
1430 : ++p;
1431 : }
1432 : }
1433 :
1434 : // SHOULD NEVER GET HERE!!!
1435 : return 0;
1436 : //----------------------------------------------------------------
1437 : #endif
1438 :
1439 : // If lenient parsing is turned off, forget all that crap above.
1440 : // Just use String.startsWith() and be done with it.
1441 : } else
1442 : #endif
1443 : {
1444 0 : if (str.startsWith(prefix)) {
1445 0 : return prefix.length();
1446 : } else {
1447 0 : return 0;
1448 : }
1449 : }
1450 : }
1451 :
1452 : /**
1453 : * Searches a string for another string. If lenient parsing is off,
1454 : * this just calls indexOf(). If lenient parsing is on, this function
1455 : * uses CollationElementIterator to match characters, and only
1456 : * primary-order differences are significant in determining whether
1457 : * there's a match.
1458 : * @param str The string to search
1459 : * @param key The string to search "str" for
1460 : * @param startingAt The index into "str" where the search is to
1461 : * begin
1462 : * @return A two-element array of ints. Element 0 is the position
1463 : * of the match, or -1 if there was no match. Element 1 is the
1464 : * number of characters in "str" that matched (which isn't necessarily
1465 : * the same as the length of "key")
1466 : */
1467 : int32_t
1468 0 : NFRule::findText(const UnicodeString& str,
1469 : const UnicodeString& key,
1470 : int32_t startingAt,
1471 : int32_t* length) const
1472 : {
1473 0 : if (rulePatternFormat) {
1474 0 : Formattable result;
1475 0 : FieldPosition position(UNUM_INTEGER_FIELD);
1476 0 : position.setBeginIndex(startingAt);
1477 0 : rulePatternFormat->parseType(str, this, result, position);
1478 0 : int start = position.getBeginIndex();
1479 0 : if (start >= 0) {
1480 0 : int32_t pluralRuleStart = ruleText.indexOf(gDollarOpenParenthesis, -1, 0);
1481 0 : int32_t pluralRuleSuffix = ruleText.indexOf(gClosedParenthesisDollar, -1, pluralRuleStart) + 2;
1482 0 : int32_t matchLen = position.getEndIndex() - start;
1483 0 : UnicodeString prefix(ruleText.tempSubString(0, pluralRuleStart));
1484 0 : UnicodeString suffix(ruleText.tempSubString(pluralRuleSuffix));
1485 0 : if (str.compare(start - prefix.length(), prefix.length(), prefix, 0, prefix.length()) == 0
1486 0 : && str.compare(start + matchLen, suffix.length(), suffix, 0, suffix.length()) == 0)
1487 : {
1488 0 : *length = matchLen + prefix.length() + suffix.length();
1489 0 : return start - prefix.length();
1490 : }
1491 : }
1492 0 : *length = 0;
1493 0 : return -1;
1494 : }
1495 0 : if (!formatter->isLenient()) {
1496 : // if lenient parsing is turned off, this is easy: just call
1497 : // String.indexOf() and we're done
1498 0 : *length = key.length();
1499 0 : return str.indexOf(key, startingAt);
1500 : }
1501 : else {
1502 : // but if lenient parsing is turned ON, we've got some work
1503 : // ahead of us
1504 0 : return findTextLenient(str, key, startingAt, length);
1505 : }
1506 : }
1507 :
1508 : int32_t
1509 0 : NFRule::findTextLenient(const UnicodeString& str,
1510 : const UnicodeString& key,
1511 : int32_t startingAt,
1512 : int32_t* length) const
1513 : {
1514 : //----------------------------------------------------------------
1515 : // JDK 1.1 HACK (take out of 1.2-specific code)
1516 :
1517 : // in JDK 1.2, CollationElementIterator provides us with an
1518 : // API to map between character offsets and collation elements
1519 : // and we can do this by marching through the string comparing
1520 : // collation elements. We can't do that in JDK 1.1. Insted,
1521 : // we have to go through this horrible slow mess:
1522 0 : int32_t p = startingAt;
1523 0 : int32_t keyLen = 0;
1524 :
1525 : // basically just isolate smaller and smaller substrings of
1526 : // the target string (each running to the end of the string,
1527 : // and with the first one running from startingAt to the end)
1528 : // and then use prefixLength() to see if the search key is at
1529 : // the beginning of each substring. This is excruciatingly
1530 : // slow, but it will locate the key and tell use how long the
1531 : // matching text was.
1532 0 : UnicodeString temp;
1533 0 : UErrorCode status = U_ZERO_ERROR;
1534 0 : while (p < str.length() && keyLen == 0) {
1535 0 : temp.setTo(str, p, str.length() - p);
1536 0 : keyLen = prefixLength(temp, key, status);
1537 0 : if (U_FAILURE(status)) {
1538 0 : break;
1539 : }
1540 0 : if (keyLen != 0) {
1541 0 : *length = keyLen;
1542 0 : return p;
1543 : }
1544 0 : ++p;
1545 : }
1546 : // if we make it to here, we didn't find it. Return -1 for the
1547 : // location. The length should be ignored, but set it to 0,
1548 : // which should be "safe"
1549 0 : *length = 0;
1550 0 : return -1;
1551 : }
1552 :
1553 : /**
1554 : * Checks to see whether a string consists entirely of ignorable
1555 : * characters.
1556 : * @param str The string to test.
1557 : * @return true if the string is empty of consists entirely of
1558 : * characters that the number formatter's collator says are
1559 : * ignorable at the primary-order level. false otherwise.
1560 : */
1561 : UBool
1562 0 : NFRule::allIgnorable(const UnicodeString& str, UErrorCode& status) const
1563 : {
1564 : // if the string is empty, we can just return true
1565 0 : if (str.length() == 0) {
1566 0 : return TRUE;
1567 : }
1568 :
1569 : #if !UCONFIG_NO_COLLATION
1570 : // if lenient parsing is turned on, walk through the string with
1571 : // a collation element iterator and make sure each collation
1572 : // element is 0 (ignorable) at the primary level
1573 0 : if (formatter->isLenient()) {
1574 0 : const RuleBasedCollator* collator = formatter->getCollator();
1575 0 : if (collator == NULL) {
1576 0 : status = U_MEMORY_ALLOCATION_ERROR;
1577 0 : return FALSE;
1578 : }
1579 0 : LocalPointer<CollationElementIterator> iter(collator->createCollationElementIterator(str));
1580 :
1581 : // Memory allocation error check.
1582 0 : if (iter.isNull()) {
1583 0 : status = U_MEMORY_ALLOCATION_ERROR;
1584 0 : return FALSE;
1585 : }
1586 :
1587 0 : UErrorCode err = U_ZERO_ERROR;
1588 0 : int32_t o = iter->next(err);
1589 0 : while (o != CollationElementIterator::NULLORDER
1590 0 : && CollationElementIterator::primaryOrder(o) == 0) {
1591 0 : o = iter->next(err);
1592 : }
1593 :
1594 0 : return o == CollationElementIterator::NULLORDER;
1595 : }
1596 : #endif
1597 :
1598 : // if lenient parsing is turned off, there is no such thing as
1599 : // an ignorable character: return true only if the string is empty
1600 0 : return FALSE;
1601 : }
1602 :
1603 : void
1604 0 : NFRule::setDecimalFormatSymbols(const DecimalFormatSymbols& newSymbols, UErrorCode& status) {
1605 0 : if (sub1 != NULL) {
1606 0 : sub1->setDecimalFormatSymbols(newSymbols, status);
1607 : }
1608 0 : if (sub2 != NULL) {
1609 0 : sub2->setDecimalFormatSymbols(newSymbols, status);
1610 : }
1611 0 : }
1612 :
1613 : U_NAMESPACE_END
1614 :
1615 : /* U_HAVE_RBNF */
1616 : #endif
|