Line data Source code
1 : // © 2016 and later: Unicode, Inc. and others.
2 : // License & terms of use: http://www.unicode.org/copyright.html
3 : /*
4 : **********************************************************************
5 : * Copyright (c) 2003-2013, International Business Machines
6 : * Corporation and others. All Rights Reserved.
7 : **********************************************************************
8 : * Author: Alan Liu
9 : * Created: July 21 2003
10 : * Since: ICU 2.8
11 : **********************************************************************
12 : */
13 :
14 : #include "utypeinfo.h" // for 'typeid' to work
15 :
16 : #include "olsontz.h"
17 :
18 : #if !UCONFIG_NO_FORMATTING
19 :
20 : #include "unicode/ures.h"
21 : #include "unicode/simpletz.h"
22 : #include "unicode/gregocal.h"
23 : #include "gregoimp.h"
24 : #include "cmemory.h"
25 : #include "uassert.h"
26 : #include "uvector.h"
27 : #include <float.h> // DBL_MAX
28 : #include "uresimp.h" // struct UResourceBundle
29 : #include "zonemeta.h"
30 : #include "umutex.h"
31 :
32 : #ifdef U_DEBUG_TZ
33 : # include <stdio.h>
34 : # include "uresimp.h" // for debugging
35 :
36 : static void debug_tz_loc(const char *f, int32_t l)
37 : {
38 : fprintf(stderr, "%s:%d: ", f, l);
39 : }
40 :
41 : static void debug_tz_msg(const char *pat, ...)
42 : {
43 : va_list ap;
44 : va_start(ap, pat);
45 : vfprintf(stderr, pat, ap);
46 : fflush(stderr);
47 : }
48 : // must use double parens, i.e.: U_DEBUG_TZ_MSG(("four is: %d",4));
49 : #define U_DEBUG_TZ_MSG(x) {debug_tz_loc(__FILE__,__LINE__);debug_tz_msg x;}
50 : #else
51 : #define U_DEBUG_TZ_MSG(x)
52 : #endif
53 :
54 0 : static UBool arrayEqual(const void *a1, const void *a2, int32_t size) {
55 0 : if (a1 == NULL && a2 == NULL) {
56 0 : return TRUE;
57 : }
58 0 : if ((a1 != NULL && a2 == NULL) || (a1 == NULL && a2 != NULL)) {
59 0 : return FALSE;
60 : }
61 0 : if (a1 == a2) {
62 0 : return TRUE;
63 : }
64 :
65 0 : return (uprv_memcmp(a1, a2, size) == 0);
66 : }
67 :
68 : U_NAMESPACE_BEGIN
69 :
70 : #define kTRANS "trans"
71 : #define kTRANSPRE32 "transPre32"
72 : #define kTRANSPOST32 "transPost32"
73 : #define kTYPEOFFSETS "typeOffsets"
74 : #define kTYPEMAP "typeMap"
75 : #define kLINKS "links"
76 : #define kFINALRULE "finalRule"
77 : #define kFINALRAW "finalRaw"
78 : #define kFINALYEAR "finalYear"
79 :
80 : #define SECONDS_PER_DAY (24*60*60)
81 :
82 : static const int32_t ZEROS[] = {0,0};
83 :
84 0 : UOBJECT_DEFINE_RTTI_IMPLEMENTATION(OlsonTimeZone)
85 :
86 : /**
87 : * Default constructor. Creates a time zone with an empty ID and
88 : * a fixed GMT offset of zero.
89 : */
90 : /*OlsonTimeZone::OlsonTimeZone() : finalYear(INT32_MAX), finalMillis(DBL_MAX), finalZone(0), transitionRulesInitialized(FALSE) {
91 : clearTransitionRules();
92 : constructEmpty();
93 : }*/
94 :
95 : /**
96 : * Construct a GMT+0 zone with no transitions. This is done when a
97 : * constructor fails so the resultant object is well-behaved.
98 : */
99 0 : void OlsonTimeZone::constructEmpty() {
100 0 : canonicalID = NULL;
101 :
102 0 : transitionCountPre32 = transitionCount32 = transitionCountPost32 = 0;
103 0 : transitionTimesPre32 = transitionTimes32 = transitionTimesPost32 = NULL;
104 :
105 0 : typeMapData = NULL;
106 :
107 0 : typeCount = 1;
108 0 : typeOffsets = ZEROS;
109 :
110 0 : finalZone = NULL;
111 0 : }
112 :
113 : /**
114 : * Construct from a resource bundle
115 : * @param top the top-level zoneinfo resource bundle. This is used
116 : * to lookup the rule that `res' may refer to, if there is one.
117 : * @param res the resource bundle of the zone to be constructed
118 : * @param ec input-output error code
119 : */
120 0 : OlsonTimeZone::OlsonTimeZone(const UResourceBundle* top,
121 : const UResourceBundle* res,
122 : const UnicodeString& tzid,
123 0 : UErrorCode& ec) :
124 0 : BasicTimeZone(tzid), finalZone(NULL)
125 : {
126 0 : clearTransitionRules();
127 : U_DEBUG_TZ_MSG(("OlsonTimeZone(%s)\n", ures_getKey((UResourceBundle*)res)));
128 0 : if ((top == NULL || res == NULL) && U_SUCCESS(ec)) {
129 0 : ec = U_ILLEGAL_ARGUMENT_ERROR;
130 : }
131 0 : if (U_SUCCESS(ec)) {
132 : // TODO -- clean up -- Doesn't work if res points to an alias
133 : // // TODO remove nonconst casts below when ures_* API is fixed
134 : // setID(ures_getKey((UResourceBundle*) res)); // cast away const
135 :
136 : int32_t len;
137 : UResourceBundle r;
138 0 : ures_initStackObject(&r);
139 :
140 : // Pre-32bit second transitions
141 0 : ures_getByKey(res, kTRANSPRE32, &r, &ec);
142 0 : transitionTimesPre32 = ures_getIntVector(&r, &len, &ec);
143 0 : transitionCountPre32 = len >> 1;
144 0 : if (ec == U_MISSING_RESOURCE_ERROR) {
145 : // No pre-32bit transitions
146 0 : transitionTimesPre32 = NULL;
147 0 : transitionCountPre32 = 0;
148 0 : ec = U_ZERO_ERROR;
149 0 : } else if (U_SUCCESS(ec) && (len < 0 || len > 0x7FFF || (len & 1) != 0) /* len must be even */) {
150 0 : ec = U_INVALID_FORMAT_ERROR;
151 : }
152 :
153 : // 32bit second transitions
154 0 : ures_getByKey(res, kTRANS, &r, &ec);
155 0 : transitionTimes32 = ures_getIntVector(&r, &len, &ec);
156 0 : transitionCount32 = len;
157 0 : if (ec == U_MISSING_RESOURCE_ERROR) {
158 : // No 32bit transitions
159 0 : transitionTimes32 = NULL;
160 0 : transitionCount32 = 0;
161 0 : ec = U_ZERO_ERROR;
162 0 : } else if (U_SUCCESS(ec) && (len < 0 || len > 0x7FFF)) {
163 0 : ec = U_INVALID_FORMAT_ERROR;
164 : }
165 :
166 : // Post-32bit second transitions
167 0 : ures_getByKey(res, kTRANSPOST32, &r, &ec);
168 0 : transitionTimesPost32 = ures_getIntVector(&r, &len, &ec);
169 0 : transitionCountPost32 = len >> 1;
170 0 : if (ec == U_MISSING_RESOURCE_ERROR) {
171 : // No pre-32bit transitions
172 0 : transitionTimesPost32 = NULL;
173 0 : transitionCountPost32 = 0;
174 0 : ec = U_ZERO_ERROR;
175 0 : } else if (U_SUCCESS(ec) && (len < 0 || len > 0x7FFF || (len & 1) != 0) /* len must be even */) {
176 0 : ec = U_INVALID_FORMAT_ERROR;
177 : }
178 :
179 : // Type offsets list must be of even size, with size >= 2
180 0 : ures_getByKey(res, kTYPEOFFSETS, &r, &ec);
181 0 : typeOffsets = ures_getIntVector(&r, &len, &ec);
182 0 : if (U_SUCCESS(ec) && (len < 2 || len > 0x7FFE || (len & 1) != 0)) {
183 0 : ec = U_INVALID_FORMAT_ERROR;
184 : }
185 0 : typeCount = (int16_t) len >> 1;
186 :
187 : // Type map data must be of the same size as the transition count
188 0 : typeMapData = NULL;
189 0 : if (transitionCount() > 0) {
190 0 : ures_getByKey(res, kTYPEMAP, &r, &ec);
191 0 : typeMapData = ures_getBinary(&r, &len, &ec);
192 0 : if (ec == U_MISSING_RESOURCE_ERROR) {
193 : // no type mapping data
194 0 : ec = U_INVALID_FORMAT_ERROR;
195 0 : } else if (U_SUCCESS(ec) && len != transitionCount()) {
196 0 : ec = U_INVALID_FORMAT_ERROR;
197 : }
198 : }
199 :
200 : // Process final rule and data, if any
201 0 : const UChar *ruleIdUStr = ures_getStringByKey(res, kFINALRULE, &len, &ec);
202 0 : ures_getByKey(res, kFINALRAW, &r, &ec);
203 0 : int32_t ruleRaw = ures_getInt(&r, &ec);
204 0 : ures_getByKey(res, kFINALYEAR, &r, &ec);
205 0 : int32_t ruleYear = ures_getInt(&r, &ec);
206 0 : if (U_SUCCESS(ec)) {
207 0 : UnicodeString ruleID(TRUE, ruleIdUStr, len);
208 0 : UResourceBundle *rule = TimeZone::loadRule(top, ruleID, NULL, ec);
209 0 : const int32_t *ruleData = ures_getIntVector(rule, &len, &ec);
210 0 : if (U_SUCCESS(ec) && len == 11) {
211 0 : UnicodeString emptyStr;
212 0 : finalZone = new SimpleTimeZone(
213 : ruleRaw * U_MILLIS_PER_SECOND,
214 : emptyStr,
215 0 : (int8_t)ruleData[0], (int8_t)ruleData[1], (int8_t)ruleData[2],
216 0 : ruleData[3] * U_MILLIS_PER_SECOND,
217 0 : (SimpleTimeZone::TimeMode) ruleData[4],
218 0 : (int8_t)ruleData[5], (int8_t)ruleData[6], (int8_t)ruleData[7],
219 0 : ruleData[8] * U_MILLIS_PER_SECOND,
220 0 : (SimpleTimeZone::TimeMode) ruleData[9],
221 0 : ruleData[10] * U_MILLIS_PER_SECOND, ec);
222 0 : if (finalZone == NULL) {
223 0 : ec = U_MEMORY_ALLOCATION_ERROR;
224 : } else {
225 0 : finalStartYear = ruleYear;
226 :
227 : // Note: Setting finalStartYear to the finalZone is problematic. When a date is around
228 : // year boundary, SimpleTimeZone may return false result when DST is observed at the
229 : // beginning of year. We could apply safe margin (day or two), but when one of recurrent
230 : // rules falls around year boundary, it could return false result. Without setting the
231 : // start year, finalZone works fine around the year boundary of the start year.
232 :
233 : // finalZone->setStartYear(finalStartYear);
234 :
235 :
236 : // Compute the millis for Jan 1, 0:00 GMT of the finalYear
237 :
238 : // Note: finalStartMillis is used for detecting either if
239 : // historic transition data or finalZone to be used. In an
240 : // extreme edge case - for example, two transitions fall into
241 : // small windows of time around the year boundary, this may
242 : // result incorrect offset computation. But I think it will
243 : // never happen practically. Yoshito - Feb 20, 2010
244 0 : finalStartMillis = Grego::fieldsToDay(finalStartYear, 0, 1) * U_MILLIS_PER_DAY;
245 : }
246 : } else {
247 0 : ec = U_INVALID_FORMAT_ERROR;
248 : }
249 0 : ures_close(rule);
250 0 : } else if (ec == U_MISSING_RESOURCE_ERROR) {
251 : // No final zone
252 0 : ec = U_ZERO_ERROR;
253 : }
254 0 : ures_close(&r);
255 :
256 : // initialize canonical ID
257 0 : canonicalID = ZoneMeta::getCanonicalCLDRID(tzid, ec);
258 : }
259 :
260 0 : if (U_FAILURE(ec)) {
261 0 : constructEmpty();
262 : }
263 0 : }
264 :
265 : /**
266 : * Copy constructor
267 : */
268 0 : OlsonTimeZone::OlsonTimeZone(const OlsonTimeZone& other) :
269 0 : BasicTimeZone(other), finalZone(0) {
270 0 : *this = other;
271 0 : }
272 :
273 : /**
274 : * Assignment operator
275 : */
276 0 : OlsonTimeZone& OlsonTimeZone::operator=(const OlsonTimeZone& other) {
277 0 : canonicalID = other.canonicalID;
278 :
279 0 : transitionTimesPre32 = other.transitionTimesPre32;
280 0 : transitionTimes32 = other.transitionTimes32;
281 0 : transitionTimesPost32 = other.transitionTimesPost32;
282 :
283 0 : transitionCountPre32 = other.transitionCountPre32;
284 0 : transitionCount32 = other.transitionCount32;
285 0 : transitionCountPost32 = other.transitionCountPost32;
286 :
287 0 : typeCount = other.typeCount;
288 0 : typeOffsets = other.typeOffsets;
289 0 : typeMapData = other.typeMapData;
290 :
291 0 : delete finalZone;
292 0 : finalZone = (other.finalZone != 0) ?
293 0 : (SimpleTimeZone*) other.finalZone->clone() : 0;
294 :
295 0 : finalStartYear = other.finalStartYear;
296 0 : finalStartMillis = other.finalStartMillis;
297 :
298 0 : clearTransitionRules();
299 :
300 0 : return *this;
301 : }
302 :
303 : /**
304 : * Destructor
305 : */
306 0 : OlsonTimeZone::~OlsonTimeZone() {
307 0 : deleteTransitionRules();
308 0 : delete finalZone;
309 0 : }
310 :
311 : /**
312 : * Returns true if the two TimeZone objects are equal.
313 : */
314 0 : UBool OlsonTimeZone::operator==(const TimeZone& other) const {
315 0 : return ((this == &other) ||
316 0 : (typeid(*this) == typeid(other) &&
317 0 : TimeZone::operator==(other) &&
318 0 : hasSameRules(other)));
319 : }
320 :
321 : /**
322 : * TimeZone API.
323 : */
324 0 : TimeZone* OlsonTimeZone::clone() const {
325 0 : return new OlsonTimeZone(*this);
326 : }
327 :
328 : /**
329 : * TimeZone API.
330 : */
331 0 : int32_t OlsonTimeZone::getOffset(uint8_t era, int32_t year, int32_t month,
332 : int32_t dom, uint8_t dow,
333 : int32_t millis, UErrorCode& ec) const {
334 0 : if (month < UCAL_JANUARY || month > UCAL_DECEMBER) {
335 0 : if (U_SUCCESS(ec)) {
336 0 : ec = U_ILLEGAL_ARGUMENT_ERROR;
337 : }
338 0 : return 0;
339 : } else {
340 0 : return getOffset(era, year, month, dom, dow, millis,
341 0 : Grego::monthLength(year, month),
342 0 : ec);
343 : }
344 : }
345 :
346 : /**
347 : * TimeZone API.
348 : */
349 0 : int32_t OlsonTimeZone::getOffset(uint8_t era, int32_t year, int32_t month,
350 : int32_t dom, uint8_t dow,
351 : int32_t millis, int32_t monthLength,
352 : UErrorCode& ec) const {
353 0 : if (U_FAILURE(ec)) {
354 0 : return 0;
355 : }
356 :
357 0 : if ((era != GregorianCalendar::AD && era != GregorianCalendar::BC)
358 0 : || month < UCAL_JANUARY
359 0 : || month > UCAL_DECEMBER
360 0 : || dom < 1
361 0 : || dom > monthLength
362 0 : || dow < UCAL_SUNDAY
363 0 : || dow > UCAL_SATURDAY
364 0 : || millis < 0
365 0 : || millis >= U_MILLIS_PER_DAY
366 0 : || monthLength < 28
367 0 : || monthLength > 31) {
368 0 : ec = U_ILLEGAL_ARGUMENT_ERROR;
369 0 : return 0;
370 : }
371 :
372 0 : if (era == GregorianCalendar::BC) {
373 0 : year = -year;
374 : }
375 :
376 0 : if (finalZone != NULL && year >= finalStartYear) {
377 0 : return finalZone->getOffset(era, year, month, dom, dow,
378 0 : millis, monthLength, ec);
379 : }
380 :
381 : // Compute local epoch millis from input fields
382 0 : UDate date = (UDate)(Grego::fieldsToDay(year, month, dom) * U_MILLIS_PER_DAY + millis);
383 : int32_t rawoff, dstoff;
384 0 : getHistoricalOffset(date, TRUE, kDaylight, kStandard, rawoff, dstoff);
385 0 : return rawoff + dstoff;
386 : }
387 :
388 : /**
389 : * TimeZone API.
390 : */
391 0 : void OlsonTimeZone::getOffset(UDate date, UBool local, int32_t& rawoff,
392 : int32_t& dstoff, UErrorCode& ec) const {
393 0 : if (U_FAILURE(ec)) {
394 0 : return;
395 : }
396 0 : if (finalZone != NULL && date >= finalStartMillis) {
397 0 : finalZone->getOffset(date, local, rawoff, dstoff, ec);
398 : } else {
399 0 : getHistoricalOffset(date, local, kFormer, kLatter, rawoff, dstoff);
400 : }
401 : }
402 :
403 : void
404 0 : OlsonTimeZone::getOffsetFromLocal(UDate date, int32_t nonExistingTimeOpt, int32_t duplicatedTimeOpt,
405 : int32_t& rawoff, int32_t& dstoff, UErrorCode& ec) const {
406 0 : if (U_FAILURE(ec)) {
407 0 : return;
408 : }
409 0 : if (finalZone != NULL && date >= finalStartMillis) {
410 0 : finalZone->getOffsetFromLocal(date, nonExistingTimeOpt, duplicatedTimeOpt, rawoff, dstoff, ec);
411 : } else {
412 0 : getHistoricalOffset(date, TRUE, nonExistingTimeOpt, duplicatedTimeOpt, rawoff, dstoff);
413 : }
414 : }
415 :
416 :
417 : /**
418 : * TimeZone API.
419 : */
420 0 : void OlsonTimeZone::setRawOffset(int32_t /*offsetMillis*/) {
421 : // We don't support this operation, since OlsonTimeZones are
422 : // immutable (except for the ID, which is in the base class).
423 :
424 : // Nothing to do!
425 0 : }
426 :
427 : /**
428 : * TimeZone API.
429 : */
430 0 : int32_t OlsonTimeZone::getRawOffset() const {
431 0 : UErrorCode ec = U_ZERO_ERROR;
432 : int32_t raw, dst;
433 0 : getOffset((double) uprv_getUTCtime() * U_MILLIS_PER_SECOND,
434 0 : FALSE, raw, dst, ec);
435 0 : return raw;
436 : }
437 :
438 : #if defined U_DEBUG_TZ
439 : void printTime(double ms) {
440 : int32_t year, month, dom, dow;
441 : double millis=0;
442 : double days = ClockMath::floorDivide(((double)ms), (double)U_MILLIS_PER_DAY, millis);
443 :
444 : Grego::dayToFields(days, year, month, dom, dow);
445 : U_DEBUG_TZ_MSG((" getHistoricalOffset: time %.1f (%04d.%02d.%02d+%.1fh)\n", ms,
446 : year, month+1, dom, (millis/kOneHour)));
447 : }
448 : #endif
449 :
450 : int64_t
451 0 : OlsonTimeZone::transitionTimeInSeconds(int16_t transIdx) const {
452 0 : U_ASSERT(transIdx >= 0 && transIdx < transitionCount());
453 :
454 0 : if (transIdx < transitionCountPre32) {
455 0 : return (((int64_t)((uint32_t)transitionTimesPre32[transIdx << 1])) << 32)
456 0 : | ((int64_t)((uint32_t)transitionTimesPre32[(transIdx << 1) + 1]));
457 : }
458 :
459 0 : transIdx -= transitionCountPre32;
460 0 : if (transIdx < transitionCount32) {
461 0 : return (int64_t)transitionTimes32[transIdx];
462 : }
463 :
464 0 : transIdx -= transitionCount32;
465 0 : return (((int64_t)((uint32_t)transitionTimesPost32[transIdx << 1])) << 32)
466 0 : | ((int64_t)((uint32_t)transitionTimesPost32[(transIdx << 1) + 1]));
467 : }
468 :
469 : // Maximum absolute offset in seconds (86400 seconds = 1 day)
470 : // getHistoricalOffset uses this constant as safety margin of
471 : // quick zone transition checking.
472 : #define MAX_OFFSET_SECONDS 86400
473 :
474 : void
475 0 : OlsonTimeZone::getHistoricalOffset(UDate date, UBool local,
476 : int32_t NonExistingTimeOpt, int32_t DuplicatedTimeOpt,
477 : int32_t& rawoff, int32_t& dstoff) const {
478 : U_DEBUG_TZ_MSG(("getHistoricalOffset(%.1f, %s, %d, %d, raw, dst)\n",
479 : date, local?"T":"F", NonExistingTimeOpt, DuplicatedTimeOpt));
480 : #if defined U_DEBUG_TZ
481 : printTime(date*1000.0);
482 : #endif
483 0 : int16_t transCount = transitionCount();
484 :
485 0 : if (transCount > 0) {
486 0 : double sec = uprv_floor(date / U_MILLIS_PER_SECOND);
487 0 : if (!local && sec < transitionTimeInSeconds(0)) {
488 : // Before the first transition time
489 0 : rawoff = initialRawOffset() * U_MILLIS_PER_SECOND;
490 0 : dstoff = initialDstOffset() * U_MILLIS_PER_SECOND;
491 : } else {
492 : // Linear search from the end is the fastest approach, since
493 : // most lookups will happen at/near the end.
494 : int16_t transIdx;
495 0 : for (transIdx = transCount - 1; transIdx >= 0; transIdx--) {
496 0 : int64_t transition = transitionTimeInSeconds(transIdx);
497 :
498 0 : if (local && (sec >= (transition - MAX_OFFSET_SECONDS))) {
499 0 : int32_t offsetBefore = zoneOffsetAt(transIdx - 1);
500 0 : UBool dstBefore = dstOffsetAt(transIdx - 1) != 0;
501 :
502 0 : int32_t offsetAfter = zoneOffsetAt(transIdx);
503 0 : UBool dstAfter = dstOffsetAt(transIdx) != 0;
504 :
505 0 : UBool dstToStd = dstBefore && !dstAfter;
506 0 : UBool stdToDst = !dstBefore && dstAfter;
507 :
508 0 : if (offsetAfter - offsetBefore >= 0) {
509 : // Positive transition, which makes a non-existing local time range
510 0 : if (((NonExistingTimeOpt & kStdDstMask) == kStandard && dstToStd)
511 0 : || ((NonExistingTimeOpt & kStdDstMask) == kDaylight && stdToDst)) {
512 0 : transition += offsetBefore;
513 0 : } else if (((NonExistingTimeOpt & kStdDstMask) == kStandard && stdToDst)
514 0 : || ((NonExistingTimeOpt & kStdDstMask) == kDaylight && dstToStd)) {
515 0 : transition += offsetAfter;
516 0 : } else if ((NonExistingTimeOpt & kFormerLatterMask) == kLatter) {
517 0 : transition += offsetBefore;
518 : } else {
519 : // Interprets the time with rule before the transition,
520 : // default for non-existing time range
521 0 : transition += offsetAfter;
522 : }
523 : } else {
524 : // Negative transition, which makes a duplicated local time range
525 0 : if (((DuplicatedTimeOpt & kStdDstMask) == kStandard && dstToStd)
526 0 : || ((DuplicatedTimeOpt & kStdDstMask) == kDaylight && stdToDst)) {
527 0 : transition += offsetAfter;
528 0 : } else if (((DuplicatedTimeOpt & kStdDstMask) == kStandard && stdToDst)
529 0 : || ((DuplicatedTimeOpt & kStdDstMask) == kDaylight && dstToStd)) {
530 0 : transition += offsetBefore;
531 0 : } else if ((DuplicatedTimeOpt & kFormerLatterMask) == kFormer) {
532 0 : transition += offsetBefore;
533 : } else {
534 : // Interprets the time with rule after the transition,
535 : // default for duplicated local time range
536 0 : transition += offsetAfter;
537 : }
538 : }
539 : }
540 0 : if (sec >= transition) {
541 0 : break;
542 : }
543 : }
544 : // transIdx could be -1 when local=true
545 0 : rawoff = rawOffsetAt(transIdx) * U_MILLIS_PER_SECOND;
546 0 : dstoff = dstOffsetAt(transIdx) * U_MILLIS_PER_SECOND;
547 : }
548 : } else {
549 : // No transitions, single pair of offsets only
550 0 : rawoff = initialRawOffset() * U_MILLIS_PER_SECOND;
551 0 : dstoff = initialDstOffset() * U_MILLIS_PER_SECOND;
552 : }
553 : U_DEBUG_TZ_MSG(("getHistoricalOffset(%.1f, %s, %d, %d, raw, dst) - raw=%d, dst=%d\n",
554 : date, local?"T":"F", NonExistingTimeOpt, DuplicatedTimeOpt, rawoff, dstoff));
555 0 : }
556 :
557 : /**
558 : * TimeZone API.
559 : */
560 0 : UBool OlsonTimeZone::useDaylightTime() const {
561 : // If DST was observed in 1942 (for example) but has never been
562 : // observed from 1943 to the present, most clients will expect
563 : // this method to return FALSE. This method determines whether
564 : // DST is in use in the current year (at any point in the year)
565 : // and returns TRUE if so.
566 :
567 0 : UDate current = uprv_getUTCtime();
568 0 : if (finalZone != NULL && current >= finalStartMillis) {
569 0 : return finalZone->useDaylightTime();
570 : }
571 :
572 : int32_t year, month, dom, dow, doy, mid;
573 0 : Grego::timeToFields(current, year, month, dom, dow, doy, mid);
574 :
575 : // Find start of this year, and start of next year
576 0 : double start = Grego::fieldsToDay(year, 0, 1) * SECONDS_PER_DAY;
577 0 : double limit = Grego::fieldsToDay(year+1, 0, 1) * SECONDS_PER_DAY;
578 :
579 : // Return TRUE if DST is observed at any time during the current
580 : // year.
581 0 : for (int16_t i = 0; i < transitionCount(); ++i) {
582 0 : double transition = (double)transitionTimeInSeconds(i);
583 0 : if (transition >= limit) {
584 0 : break;
585 : }
586 0 : if ((transition >= start && dstOffsetAt(i) != 0)
587 0 : || (transition > start && dstOffsetAt(i - 1) != 0)) {
588 0 : return TRUE;
589 : }
590 : }
591 0 : return FALSE;
592 : }
593 : int32_t
594 0 : OlsonTimeZone::getDSTSavings() const{
595 0 : if (finalZone != NULL){
596 0 : return finalZone->getDSTSavings();
597 : }
598 0 : return TimeZone::getDSTSavings();
599 : }
600 : /**
601 : * TimeZone API.
602 : */
603 0 : UBool OlsonTimeZone::inDaylightTime(UDate date, UErrorCode& ec) const {
604 : int32_t raw, dst;
605 0 : getOffset(date, FALSE, raw, dst, ec);
606 0 : return dst != 0;
607 : }
608 :
609 : UBool
610 0 : OlsonTimeZone::hasSameRules(const TimeZone &other) const {
611 0 : if (this == &other) {
612 0 : return TRUE;
613 : }
614 0 : const OlsonTimeZone* z = dynamic_cast<const OlsonTimeZone*>(&other);
615 0 : if (z == NULL) {
616 0 : return FALSE;
617 : }
618 :
619 : // [sic] pointer comparison: typeMapData points into
620 : // memory-mapped or DLL space, so if two zones have the same
621 : // pointer, they are equal.
622 0 : if (typeMapData == z->typeMapData) {
623 0 : return TRUE;
624 : }
625 :
626 : // If the pointers are not equal, the zones may still
627 : // be equal if their rules and transitions are equal
628 0 : if ((finalZone == NULL && z->finalZone != NULL)
629 0 : || (finalZone != NULL && z->finalZone == NULL)
630 0 : || (finalZone != NULL && z->finalZone != NULL && *finalZone != *z->finalZone)) {
631 0 : return FALSE;
632 : }
633 :
634 0 : if (finalZone != NULL) {
635 0 : if (finalStartYear != z->finalStartYear || finalStartMillis != z->finalStartMillis) {
636 0 : return FALSE;
637 : }
638 : }
639 0 : if (typeCount != z->typeCount
640 0 : || transitionCountPre32 != z->transitionCountPre32
641 0 : || transitionCount32 != z->transitionCount32
642 0 : || transitionCountPost32 != z->transitionCountPost32) {
643 0 : return FALSE;
644 : }
645 :
646 : return
647 0 : arrayEqual(transitionTimesPre32, z->transitionTimesPre32, sizeof(transitionTimesPre32[0]) * transitionCountPre32 << 1)
648 0 : && arrayEqual(transitionTimes32, z->transitionTimes32, sizeof(transitionTimes32[0]) * transitionCount32)
649 0 : && arrayEqual(transitionTimesPost32, z->transitionTimesPost32, sizeof(transitionTimesPost32[0]) * transitionCountPost32 << 1)
650 0 : && arrayEqual(typeOffsets, z->typeOffsets, sizeof(typeOffsets[0]) * typeCount << 1)
651 0 : && arrayEqual(typeMapData, z->typeMapData, sizeof(typeMapData[0]) * transitionCount());
652 : }
653 :
654 : void
655 0 : OlsonTimeZone::clearTransitionRules(void) {
656 0 : initialRule = NULL;
657 0 : firstTZTransition = NULL;
658 0 : firstFinalTZTransition = NULL;
659 0 : historicRules = NULL;
660 0 : historicRuleCount = 0;
661 0 : finalZoneWithStartYear = NULL;
662 0 : firstTZTransitionIdx = 0;
663 0 : transitionRulesInitOnce.reset();
664 0 : }
665 :
666 : void
667 0 : OlsonTimeZone::deleteTransitionRules(void) {
668 0 : if (initialRule != NULL) {
669 0 : delete initialRule;
670 : }
671 0 : if (firstTZTransition != NULL) {
672 0 : delete firstTZTransition;
673 : }
674 0 : if (firstFinalTZTransition != NULL) {
675 0 : delete firstFinalTZTransition;
676 : }
677 0 : if (finalZoneWithStartYear != NULL) {
678 0 : delete finalZoneWithStartYear;
679 : }
680 0 : if (historicRules != NULL) {
681 0 : for (int i = 0; i < historicRuleCount; i++) {
682 0 : if (historicRules[i] != NULL) {
683 0 : delete historicRules[i];
684 : }
685 : }
686 0 : uprv_free(historicRules);
687 : }
688 0 : clearTransitionRules();
689 0 : }
690 :
691 : /*
692 : * Lazy transition rules initializer
693 : */
694 :
695 0 : static void U_CALLCONV initRules(OlsonTimeZone *This, UErrorCode &status) {
696 0 : This->initTransitionRules(status);
697 0 : }
698 :
699 : void
700 0 : OlsonTimeZone::checkTransitionRules(UErrorCode& status) const {
701 0 : OlsonTimeZone *ncThis = const_cast<OlsonTimeZone *>(this);
702 0 : umtx_initOnce(ncThis->transitionRulesInitOnce, &initRules, ncThis, status);
703 0 : }
704 :
705 : void
706 0 : OlsonTimeZone::initTransitionRules(UErrorCode& status) {
707 0 : if(U_FAILURE(status)) {
708 0 : return;
709 : }
710 0 : deleteTransitionRules();
711 0 : UnicodeString tzid;
712 0 : getID(tzid);
713 :
714 0 : UnicodeString stdName = tzid + UNICODE_STRING_SIMPLE("(STD)");
715 0 : UnicodeString dstName = tzid + UNICODE_STRING_SIMPLE("(DST)");
716 :
717 : int32_t raw, dst;
718 :
719 : // Create initial rule
720 0 : raw = initialRawOffset() * U_MILLIS_PER_SECOND;
721 0 : dst = initialDstOffset() * U_MILLIS_PER_SECOND;
722 0 : initialRule = new InitialTimeZoneRule((dst == 0 ? stdName : dstName), raw, dst);
723 : // Check to make sure initialRule was created
724 0 : if (initialRule == NULL) {
725 0 : status = U_MEMORY_ALLOCATION_ERROR;
726 0 : deleteTransitionRules();
727 0 : return;
728 : }
729 :
730 0 : int32_t transCount = transitionCount();
731 0 : if (transCount > 0) {
732 : int16_t transitionIdx, typeIdx;
733 :
734 : // We probably no longer need to check the first "real" transition
735 : // here, because the new tzcode remove such transitions already.
736 : // For now, keeping this code for just in case. Feb 19, 2010 Yoshito
737 0 : firstTZTransitionIdx = 0;
738 0 : for (transitionIdx = 0; transitionIdx < transCount; transitionIdx++) {
739 0 : if (typeMapData[transitionIdx] != 0) { // type 0 is the initial type
740 0 : break;
741 : }
742 0 : firstTZTransitionIdx++;
743 : }
744 0 : if (transitionIdx == transCount) {
745 : // Actually no transitions...
746 : } else {
747 : // Build historic rule array
748 0 : UDate* times = (UDate*)uprv_malloc(sizeof(UDate)*transCount); /* large enough to store all transition times */
749 0 : if (times == NULL) {
750 0 : status = U_MEMORY_ALLOCATION_ERROR;
751 0 : deleteTransitionRules();
752 0 : return;
753 : }
754 0 : for (typeIdx = 0; typeIdx < typeCount; typeIdx++) {
755 : // Gather all start times for each pair of offsets
756 0 : int32_t nTimes = 0;
757 0 : for (transitionIdx = firstTZTransitionIdx; transitionIdx < transCount; transitionIdx++) {
758 0 : if (typeIdx == (int16_t)typeMapData[transitionIdx]) {
759 0 : UDate tt = (UDate)transitionTime(transitionIdx);
760 0 : if (finalZone == NULL || tt <= finalStartMillis) {
761 : // Exclude transitions after finalMillis
762 0 : times[nTimes++] = tt;
763 : }
764 : }
765 : }
766 0 : if (nTimes > 0) {
767 : // Create a TimeArrayTimeZoneRule
768 0 : raw = typeOffsets[typeIdx << 1] * U_MILLIS_PER_SECOND;
769 0 : dst = typeOffsets[(typeIdx << 1) + 1] * U_MILLIS_PER_SECOND;
770 0 : if (historicRules == NULL) {
771 0 : historicRuleCount = typeCount;
772 0 : historicRules = (TimeArrayTimeZoneRule**)uprv_malloc(sizeof(TimeArrayTimeZoneRule*)*historicRuleCount);
773 0 : if (historicRules == NULL) {
774 0 : status = U_MEMORY_ALLOCATION_ERROR;
775 0 : deleteTransitionRules();
776 0 : uprv_free(times);
777 0 : return;
778 : }
779 0 : for (int i = 0; i < historicRuleCount; i++) {
780 : // Initialize TimeArrayTimeZoneRule pointers as NULL
781 0 : historicRules[i] = NULL;
782 : }
783 : }
784 0 : historicRules[typeIdx] = new TimeArrayTimeZoneRule((dst == 0 ? stdName : dstName),
785 0 : raw, dst, times, nTimes, DateTimeRule::UTC_TIME);
786 : // Check for memory allocation error
787 0 : if (historicRules[typeIdx] == NULL) {
788 0 : status = U_MEMORY_ALLOCATION_ERROR;
789 0 : deleteTransitionRules();
790 0 : return;
791 : }
792 : }
793 : }
794 0 : uprv_free(times);
795 :
796 : // Create initial transition
797 0 : typeIdx = (int16_t)typeMapData[firstTZTransitionIdx];
798 0 : firstTZTransition = new TimeZoneTransition((UDate)transitionTime(firstTZTransitionIdx),
799 0 : *initialRule, *historicRules[typeIdx]);
800 : // Check to make sure firstTZTransition was created.
801 0 : if (firstTZTransition == NULL) {
802 0 : status = U_MEMORY_ALLOCATION_ERROR;
803 0 : deleteTransitionRules();
804 0 : return;
805 : }
806 : }
807 : }
808 0 : if (finalZone != NULL) {
809 : // Get the first occurence of final rule starts
810 0 : UDate startTime = (UDate)finalStartMillis;
811 0 : TimeZoneRule *firstFinalRule = NULL;
812 :
813 0 : if (finalZone->useDaylightTime()) {
814 : /*
815 : * Note: When an OlsonTimeZone is constructed, we should set the final year
816 : * as the start year of finalZone. However, the bounday condition used for
817 : * getting offset from finalZone has some problems.
818 : * For now, we do not set the valid start year when the construction time
819 : * and create a clone and set the start year when extracting rules.
820 : */
821 0 : finalZoneWithStartYear = (SimpleTimeZone*)finalZone->clone();
822 : // Check to make sure finalZone was actually cloned.
823 0 : if (finalZoneWithStartYear == NULL) {
824 0 : status = U_MEMORY_ALLOCATION_ERROR;
825 0 : deleteTransitionRules();
826 0 : return;
827 : }
828 0 : finalZoneWithStartYear->setStartYear(finalStartYear);
829 :
830 0 : TimeZoneTransition tzt;
831 0 : finalZoneWithStartYear->getNextTransition(startTime, false, tzt);
832 0 : firstFinalRule = tzt.getTo()->clone();
833 : // Check to make sure firstFinalRule received proper clone.
834 0 : if (firstFinalRule == NULL) {
835 0 : status = U_MEMORY_ALLOCATION_ERROR;
836 0 : deleteTransitionRules();
837 0 : return;
838 : }
839 0 : startTime = tzt.getTime();
840 : } else {
841 : // final rule with no transitions
842 0 : finalZoneWithStartYear = (SimpleTimeZone*)finalZone->clone();
843 : // Check to make sure finalZone was actually cloned.
844 0 : if (finalZoneWithStartYear == NULL) {
845 0 : status = U_MEMORY_ALLOCATION_ERROR;
846 0 : deleteTransitionRules();
847 0 : return;
848 : }
849 0 : finalZone->getID(tzid);
850 0 : firstFinalRule = new TimeArrayTimeZoneRule(tzid,
851 0 : finalZone->getRawOffset(), 0, &startTime, 1, DateTimeRule::UTC_TIME);
852 : // Check firstFinalRule was properly created.
853 0 : if (firstFinalRule == NULL) {
854 0 : status = U_MEMORY_ALLOCATION_ERROR;
855 0 : deleteTransitionRules();
856 0 : return;
857 : }
858 : }
859 0 : TimeZoneRule *prevRule = NULL;
860 0 : if (transCount > 0) {
861 0 : prevRule = historicRules[typeMapData[transCount - 1]];
862 : }
863 0 : if (prevRule == NULL) {
864 : // No historic transitions, but only finalZone available
865 0 : prevRule = initialRule;
866 : }
867 0 : firstFinalTZTransition = new TimeZoneTransition();
868 : // Check to make sure firstFinalTZTransition was created before dereferencing
869 0 : if (firstFinalTZTransition == NULL) {
870 0 : status = U_MEMORY_ALLOCATION_ERROR;
871 0 : deleteTransitionRules();
872 0 : return;
873 : }
874 0 : firstFinalTZTransition->setTime(startTime);
875 0 : firstFinalTZTransition->adoptFrom(prevRule->clone());
876 0 : firstFinalTZTransition->adoptTo(firstFinalRule);
877 : }
878 : }
879 :
880 : UBool
881 0 : OlsonTimeZone::getNextTransition(UDate base, UBool inclusive, TimeZoneTransition& result) const {
882 0 : UErrorCode status = U_ZERO_ERROR;
883 0 : checkTransitionRules(status);
884 0 : if (U_FAILURE(status)) {
885 0 : return FALSE;
886 : }
887 :
888 0 : if (finalZone != NULL) {
889 0 : if (inclusive && base == firstFinalTZTransition->getTime()) {
890 0 : result = *firstFinalTZTransition;
891 0 : return TRUE;
892 0 : } else if (base >= firstFinalTZTransition->getTime()) {
893 0 : if (finalZone->useDaylightTime()) {
894 : //return finalZone->getNextTransition(base, inclusive, result);
895 0 : return finalZoneWithStartYear->getNextTransition(base, inclusive, result);
896 : } else {
897 : // No more transitions
898 0 : return FALSE;
899 : }
900 : }
901 : }
902 0 : if (historicRules != NULL) {
903 : // Find a historical transition
904 0 : int16_t transCount = transitionCount();
905 0 : int16_t ttidx = transCount - 1;
906 0 : for (; ttidx >= firstTZTransitionIdx; ttidx--) {
907 0 : UDate t = (UDate)transitionTime(ttidx);
908 0 : if (base > t || (!inclusive && base == t)) {
909 : break;
910 : }
911 : }
912 0 : if (ttidx == transCount - 1) {
913 0 : if (firstFinalTZTransition != NULL) {
914 0 : result = *firstFinalTZTransition;
915 0 : return TRUE;
916 : } else {
917 0 : return FALSE;
918 : }
919 0 : } else if (ttidx < firstTZTransitionIdx) {
920 0 : result = *firstTZTransition;
921 0 : return TRUE;
922 : } else {
923 : // Create a TimeZoneTransition
924 0 : TimeZoneRule *to = historicRules[typeMapData[ttidx + 1]];
925 0 : TimeZoneRule *from = historicRules[typeMapData[ttidx]];
926 0 : UDate startTime = (UDate)transitionTime(ttidx+1);
927 :
928 : // The transitions loaded from zoneinfo.res may contain non-transition data
929 0 : UnicodeString fromName, toName;
930 0 : from->getName(fromName);
931 0 : to->getName(toName);
932 0 : if (fromName == toName && from->getRawOffset() == to->getRawOffset()
933 0 : && from->getDSTSavings() == to->getDSTSavings()) {
934 0 : return getNextTransition(startTime, false, result);
935 : }
936 0 : result.setTime(startTime);
937 0 : result.adoptFrom(from->clone());
938 0 : result.adoptTo(to->clone());
939 0 : return TRUE;
940 : }
941 : }
942 0 : return FALSE;
943 : }
944 :
945 : UBool
946 0 : OlsonTimeZone::getPreviousTransition(UDate base, UBool inclusive, TimeZoneTransition& result) const {
947 0 : UErrorCode status = U_ZERO_ERROR;
948 0 : checkTransitionRules(status);
949 0 : if (U_FAILURE(status)) {
950 0 : return FALSE;
951 : }
952 :
953 0 : if (finalZone != NULL) {
954 0 : if (inclusive && base == firstFinalTZTransition->getTime()) {
955 0 : result = *firstFinalTZTransition;
956 0 : return TRUE;
957 0 : } else if (base > firstFinalTZTransition->getTime()) {
958 0 : if (finalZone->useDaylightTime()) {
959 : //return finalZone->getPreviousTransition(base, inclusive, result);
960 0 : return finalZoneWithStartYear->getPreviousTransition(base, inclusive, result);
961 : } else {
962 0 : result = *firstFinalTZTransition;
963 0 : return TRUE;
964 : }
965 : }
966 : }
967 :
968 0 : if (historicRules != NULL) {
969 : // Find a historical transition
970 0 : int16_t ttidx = transitionCount() - 1;
971 0 : for (; ttidx >= firstTZTransitionIdx; ttidx--) {
972 0 : UDate t = (UDate)transitionTime(ttidx);
973 0 : if (base > t || (inclusive && base == t)) {
974 : break;
975 : }
976 : }
977 0 : if (ttidx < firstTZTransitionIdx) {
978 : // No more transitions
979 0 : return FALSE;
980 0 : } else if (ttidx == firstTZTransitionIdx) {
981 0 : result = *firstTZTransition;
982 0 : return TRUE;
983 : } else {
984 : // Create a TimeZoneTransition
985 0 : TimeZoneRule *to = historicRules[typeMapData[ttidx]];
986 0 : TimeZoneRule *from = historicRules[typeMapData[ttidx-1]];
987 0 : UDate startTime = (UDate)transitionTime(ttidx);
988 :
989 : // The transitions loaded from zoneinfo.res may contain non-transition data
990 0 : UnicodeString fromName, toName;
991 0 : from->getName(fromName);
992 0 : to->getName(toName);
993 0 : if (fromName == toName && from->getRawOffset() == to->getRawOffset()
994 0 : && from->getDSTSavings() == to->getDSTSavings()) {
995 0 : return getPreviousTransition(startTime, false, result);
996 : }
997 0 : result.setTime(startTime);
998 0 : result.adoptFrom(from->clone());
999 0 : result.adoptTo(to->clone());
1000 0 : return TRUE;
1001 : }
1002 : }
1003 0 : return FALSE;
1004 : }
1005 :
1006 : int32_t
1007 0 : OlsonTimeZone::countTransitionRules(UErrorCode& status) const {
1008 0 : if (U_FAILURE(status)) {
1009 0 : return 0;
1010 : }
1011 0 : checkTransitionRules(status);
1012 0 : if (U_FAILURE(status)) {
1013 0 : return 0;
1014 : }
1015 :
1016 0 : int32_t count = 0;
1017 0 : if (historicRules != NULL) {
1018 : // historicRules may contain null entries when original zoneinfo data
1019 : // includes non transition data.
1020 0 : for (int32_t i = 0; i < historicRuleCount; i++) {
1021 0 : if (historicRules[i] != NULL) {
1022 0 : count++;
1023 : }
1024 : }
1025 : }
1026 0 : if (finalZone != NULL) {
1027 0 : if (finalZone->useDaylightTime()) {
1028 0 : count += 2;
1029 : } else {
1030 0 : count++;
1031 : }
1032 : }
1033 0 : return count;
1034 : }
1035 :
1036 : void
1037 0 : OlsonTimeZone::getTimeZoneRules(const InitialTimeZoneRule*& initial,
1038 : const TimeZoneRule* trsrules[],
1039 : int32_t& trscount,
1040 : UErrorCode& status) const {
1041 0 : if (U_FAILURE(status)) {
1042 0 : return;
1043 : }
1044 0 : checkTransitionRules(status);
1045 0 : if (U_FAILURE(status)) {
1046 0 : return;
1047 : }
1048 :
1049 : // Initial rule
1050 0 : initial = initialRule;
1051 :
1052 : // Transition rules
1053 0 : int32_t cnt = 0;
1054 0 : if (historicRules != NULL && trscount > cnt) {
1055 : // historicRules may contain null entries when original zoneinfo data
1056 : // includes non transition data.
1057 0 : for (int32_t i = 0; i < historicRuleCount; i++) {
1058 0 : if (historicRules[i] != NULL) {
1059 0 : trsrules[cnt++] = historicRules[i];
1060 0 : if (cnt >= trscount) {
1061 0 : break;
1062 : }
1063 : }
1064 : }
1065 : }
1066 0 : if (finalZoneWithStartYear != NULL && trscount > cnt) {
1067 : const InitialTimeZoneRule *tmpini;
1068 0 : int32_t tmpcnt = trscount - cnt;
1069 0 : finalZoneWithStartYear->getTimeZoneRules(tmpini, &trsrules[cnt], tmpcnt, status);
1070 0 : if (U_FAILURE(status)) {
1071 0 : return;
1072 : }
1073 0 : cnt += tmpcnt;
1074 : }
1075 : // Set the result length
1076 0 : trscount = cnt;
1077 : }
1078 :
1079 : U_NAMESPACE_END
1080 :
1081 : #endif // !UCONFIG_NO_FORMATTING
1082 :
1083 : //eof
|