LCOV - code coverage report
Current view: top level - ipc/chromium/src/base - waitable_event_posix.cc (source / functions) Hit Total Coverage
Test: output.info Lines: 81 153 52.9 %
Date: 2017-07-14 16:53:18 Functions: 13 20 65.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
       2             : /* vim: set ts=8 sts=2 et sw=2 tw=80: */
       3             : // Copyright (c) 2006-2008 The Chromium Authors. All rights reserved.
       4             : // Use of this source code is governed by a BSD-style license that can be
       5             : // found in the LICENSE file.
       6             : 
       7             : #include "base/waitable_event.h"
       8             : 
       9             : #include "base/condition_variable.h"
      10             : #include "base/lock.h"
      11             : #include "base/message_loop.h"
      12             : 
      13             : // -----------------------------------------------------------------------------
      14             : // A WaitableEvent on POSIX is implemented as a wait-list. Currently we don't
      15             : // support cross-process events (where one process can signal an event which
      16             : // others are waiting on). Because of this, we can avoid having one thread per
      17             : // listener in several cases.
      18             : //
      19             : // The WaitableEvent maintains a list of waiters, protected by a lock. Each
      20             : // waiter is either an async wait, in which case we have a Task and the
      21             : // MessageLoop to run it on, or a blocking wait, in which case we have the
      22             : // condition variable to signal.
      23             : //
      24             : // Waiting involves grabbing the lock and adding oneself to the wait list. Async
      25             : // waits can be canceled, which means grabbing the lock and removing oneself
      26             : // from the list.
      27             : //
      28             : // Waiting on multiple events is handled by adding a single, synchronous wait to
      29             : // the wait-list of many events. An event passes a pointer to itself when
      30             : // firing a waiter and so we can store that pointer to find out which event
      31             : // triggered.
      32             : // -----------------------------------------------------------------------------
      33             : 
      34             : namespace base {
      35             : 
      36             : // -----------------------------------------------------------------------------
      37             : // This is just an abstract base class for waking the two types of waiters
      38             : // -----------------------------------------------------------------------------
      39          72 : WaitableEvent::WaitableEvent(bool manual_reset, bool initially_signaled)
      40          72 :     : kernel_(new WaitableEventKernel(manual_reset, initially_signaled)) {
      41          72 : }
      42             : 
      43           9 : WaitableEvent::~WaitableEvent() {
      44           9 : }
      45             : 
      46           0 : void WaitableEvent::Reset() {
      47           0 :   AutoLock locked(kernel_->lock_);
      48           0 :   kernel_->signaled_ = false;
      49           0 : }
      50             : 
      51         853 : void WaitableEvent::Signal() {
      52        1663 :   AutoLock locked(kernel_->lock_);
      53             : 
      54         853 :   if (kernel_->signaled_)
      55          43 :     return;
      56             : 
      57         810 :   if (kernel_->manual_reset_) {
      58           0 :     SignalAll();
      59           0 :     kernel_->signaled_ = true;
      60             :   } else {
      61             :     // In the case of auto reset, if no waiters were woken, we remain
      62             :     // signaled.
      63         810 :     if (!SignalOne())
      64         557 :       kernel_->signaled_ = true;
      65             :   }
      66             : }
      67             : 
      68           0 : bool WaitableEvent::IsSignaled() {
      69           0 :   AutoLock locked(kernel_->lock_);
      70             : 
      71           0 :   const bool result = kernel_->signaled_;
      72           0 :   if (result && !kernel_->manual_reset_)
      73           0 :     kernel_->signaled_ = false;
      74           0 :   return result;
      75             : }
      76             : 
      77             : // -----------------------------------------------------------------------------
      78             : // Synchronous waits
      79             : 
      80             : // -----------------------------------------------------------------------------
      81             : // This is an synchronous waiter. The thread is waiting on the given condition
      82             : // variable and the fired flag in this object.
      83             : // -----------------------------------------------------------------------------
      84             : class SyncWaiter : public WaitableEvent::Waiter {
      85             :  public:
      86         777 :   SyncWaiter(ConditionVariable* cv, Lock* lock)
      87         777 :       : fired_(false),
      88             :         cv_(cv),
      89             :         lock_(lock),
      90         777 :         signaling_event_(NULL) {
      91         777 :   }
      92             : 
      93         253 :   bool Fire(WaitableEvent *signaling_event) {
      94         253 :     lock_->Acquire();
      95         253 :       const bool previous_value = fired_;
      96         253 :       fired_ = true;
      97         253 :       if (!previous_value)
      98         253 :         signaling_event_ = signaling_event;
      99         253 :     lock_->Release();
     100             : 
     101         253 :     if (previous_value)
     102           0 :       return false;
     103             : 
     104         253 :     cv_->Broadcast();
     105             : 
     106             :     // SyncWaiters are stack allocated on the stack of the blocking thread.
     107         253 :     return true;
     108             :   }
     109             : 
     110           0 :   WaitableEvent* signaled_event() const {
     111           0 :     return signaling_event_;
     112             :   }
     113             : 
     114             :   // ---------------------------------------------------------------------------
     115             :   // These waiters are always stack allocated and don't delete themselves. Thus
     116             :   // there's no problem and the ABA tag is the same as the object pointer.
     117             :   // ---------------------------------------------------------------------------
     118         523 :   bool Compare(void* tag) {
     119         523 :     return this == tag;
     120             :   }
     121             : 
     122             :   // ---------------------------------------------------------------------------
     123             :   // Called with lock held.
     124             :   // ---------------------------------------------------------------------------
     125        2333 :   bool fired() const {
     126        2333 :     return fired_;
     127             :   }
     128             : 
     129             :   // ---------------------------------------------------------------------------
     130             :   // During a TimedWait, we need a way to make sure that an auto-reset
     131             :   // WaitableEvent doesn't think that this event has been signaled between
     132             :   // unlocking it and removing it from the wait-list. Called with lock held.
     133             :   // ---------------------------------------------------------------------------
     134         776 :   void Disable() {
     135         776 :     fired_ = true;
     136         776 :   }
     137             : 
     138             :  private:
     139             :   bool fired_;
     140             :   ConditionVariable *const cv_;
     141             :   Lock *const lock_;
     142             :   WaitableEvent* signaling_event_;  // The WaitableEvent which woke us
     143             : };
     144             : 
     145        1338 : bool WaitableEvent::TimedWait(const TimeDelta& max_time) {
     146        1338 :   const TimeTicks end_time(TimeTicks::Now() + max_time);
     147        1338 :   const bool finite_time = max_time.ToInternalValue() >= 0;
     148             : 
     149        1338 :   kernel_->lock_.Acquire();
     150        1338 :     if (kernel_->signaled_) {
     151         557 :       if (!kernel_->manual_reset_) {
     152             :         // In this case we were signaled when we had no waiters. Now that
     153             :         // someone has waited upon us, we can automatically reset.
     154         557 :         kernel_->signaled_ = false;
     155             :       }
     156             : 
     157         557 :       kernel_->lock_.Release();
     158         557 :       return true;
     159             :     }
     160             : 
     161        1557 :     Lock lock;
     162         781 :     lock.Acquire();
     163        1557 :     ConditionVariable cv(&lock);
     164         778 :     SyncWaiter sw(&cv, &lock);
     165             : 
     166         778 :     Enqueue(&sw);
     167         781 :   kernel_->lock_.Release();
     168             :   // We are violating locking order here by holding the SyncWaiter lock but not
     169             :   // the WaitableEvent lock. However, this is safe because we don't lock @lock_
     170             :   // again before unlocking it.
     171             : 
     172             :   for (;;) {
     173        1557 :     const TimeTicks current_time(TimeTicks::Now());
     174             : 
     175        1557 :     if (sw.fired() || (finite_time && current_time >= end_time)) {
     176         776 :       const bool return_value = sw.fired();
     177             : 
     178             :       // We can't acquire @lock_ before releasing @lock (because of locking
     179             :       // order), however, inbetween the two a signal could be fired and @sw
     180             :       // would accept it, however we will still return false, so the signal
     181             :       // would be lost on an auto-reset WaitableEvent. Thus we call Disable
     182             :       // which makes sw::Fire return false.
     183         776 :       sw.Disable();
     184         776 :       lock.Release();
     185             : 
     186         776 :       kernel_->lock_.Acquire();
     187         776 :         kernel_->Dequeue(&sw, &sw);
     188         776 :       kernel_->lock_.Release();
     189             : 
     190         776 :       return return_value;
     191             :     }
     192             : 
     193         781 :     if (finite_time) {
     194         527 :       const TimeDelta max_wait(end_time - current_time);
     195         527 :       cv.TimedWait(max_wait);
     196             :     } else {
     197         254 :       cv.Wait();
     198             :     }
     199         776 :   }
     200             : }
     201             : 
     202         288 : bool WaitableEvent::Wait() {
     203         288 :   return TimedWait(TimeDelta::FromSeconds(-1));
     204             : }
     205             : 
     206             : // -----------------------------------------------------------------------------
     207             : 
     208             : 
     209             : // -----------------------------------------------------------------------------
     210             : // Synchronous waiting on multiple objects.
     211             : 
     212             : static bool  // StrictWeakOrdering
     213           0 : cmp_fst_addr(const std::pair<WaitableEvent*, unsigned> &a,
     214             :              const std::pair<WaitableEvent*, unsigned> &b) {
     215           0 :   return a.first < b.first;
     216             : }
     217             : 
     218             : // static
     219           0 : size_t WaitableEvent::WaitMany(WaitableEvent** raw_waitables,
     220             :                                size_t count) {
     221           0 :   DCHECK(count) << "Cannot wait on no events";
     222             : 
     223             :   // We need to acquire the locks in a globally consistent order. Thus we sort
     224             :   // the array of waitables by address. We actually sort a pairs so that we can
     225             :   // map back to the original index values later.
     226           0 :   std::vector<std::pair<WaitableEvent*, size_t> > waitables;
     227           0 :   waitables.reserve(count);
     228           0 :   for (size_t i = 0; i < count; ++i)
     229           0 :     waitables.push_back(std::make_pair(raw_waitables[i], i));
     230             : 
     231           0 :   DCHECK_EQ(count, waitables.size());
     232             : 
     233           0 :   sort(waitables.begin(), waitables.end(), cmp_fst_addr);
     234             : 
     235             :   // The set of waitables must be distinct. Since we have just sorted by
     236             :   // address, we can check this cheaply by comparing pairs of consecutive
     237             :   // elements.
     238           0 :   for (size_t i = 0; i < waitables.size() - 1; ++i) {
     239           0 :     DCHECK(waitables[i].first != waitables[i+1].first);
     240             :   }
     241             : 
     242           0 :   Lock lock;
     243           0 :   ConditionVariable cv(&lock);
     244           0 :   SyncWaiter sw(&cv, &lock);
     245             : 
     246           0 :   const size_t r = EnqueueMany(&waitables[0], count, &sw);
     247           0 :   if (r) {
     248             :     // One of the events is already signaled. The SyncWaiter has not been
     249             :     // enqueued anywhere. EnqueueMany returns the count of remaining waitables
     250             :     // when the signaled one was seen, so the index of the signaled event is
     251             :     // @count - @r.
     252           0 :     return waitables[count - r].second;
     253             :   }
     254             : 
     255             :   // At this point, we hold the locks on all the WaitableEvents and we have
     256             :   // enqueued our waiter in them all.
     257           0 :   lock.Acquire();
     258             :     // Release the WaitableEvent locks in the reverse order
     259           0 :     for (size_t i = 0; i < count; ++i) {
     260           0 :       waitables[count - (1 + i)].first->kernel_->lock_.Release();
     261             :     }
     262             : 
     263             :     for (;;) {
     264           0 :       if (sw.fired())
     265           0 :         break;
     266             : 
     267           0 :       cv.Wait();
     268             :     }
     269           0 :   lock.Release();
     270             : 
     271             :   // The address of the WaitableEvent which fired is stored in the SyncWaiter.
     272           0 :   WaitableEvent *const signaled_event = sw.signaled_event();
     273             :   // This will store the index of the raw_waitables which fired.
     274           0 :   size_t signaled_index = 0;
     275             : 
     276             :   // Take the locks of each WaitableEvent in turn (except the signaled one) and
     277             :   // remove our SyncWaiter from the wait-list
     278           0 :   for (size_t i = 0; i < count; ++i) {
     279           0 :     if (raw_waitables[i] != signaled_event) {
     280           0 :       raw_waitables[i]->kernel_->lock_.Acquire();
     281             :         // There's no possible ABA issue with the address of the SyncWaiter here
     282             :         // because it lives on the stack. Thus the tag value is just the pointer
     283             :         // value again.
     284           0 :         raw_waitables[i]->kernel_->Dequeue(&sw, &sw);
     285           0 :       raw_waitables[i]->kernel_->lock_.Release();
     286             :     } else {
     287           0 :       signaled_index = i;
     288             :     }
     289             :   }
     290             : 
     291           0 :   return signaled_index;
     292             : }
     293             : 
     294             : // -----------------------------------------------------------------------------
     295             : // If return value == 0:
     296             : //   The locks of the WaitableEvents have been taken in order and the Waiter has
     297             : //   been enqueued in the wait-list of each. None of the WaitableEvents are
     298             : //   currently signaled
     299             : // else:
     300             : //   None of the WaitableEvent locks are held. The Waiter has not been enqueued
     301             : //   in any of them and the return value is the index of the first WaitableEvent
     302             : //   which was signaled, from the end of the array.
     303             : // -----------------------------------------------------------------------------
     304             : // static
     305           0 : size_t WaitableEvent::EnqueueMany
     306             :     (std::pair<WaitableEvent*, size_t>* waitables,
     307             :      size_t count, Waiter* waiter) {
     308           0 :   if (!count)
     309           0 :     return 0;
     310             : 
     311           0 :   waitables[0].first->kernel_->lock_.Acquire();
     312           0 :     if (waitables[0].first->kernel_->signaled_) {
     313           0 :       if (!waitables[0].first->kernel_->manual_reset_)
     314           0 :         waitables[0].first->kernel_->signaled_ = false;
     315           0 :       waitables[0].first->kernel_->lock_.Release();
     316           0 :       return count;
     317             :     }
     318             : 
     319           0 :     const size_t r = EnqueueMany(waitables + 1, count - 1, waiter);
     320           0 :     if (r) {
     321           0 :       waitables[0].first->kernel_->lock_.Release();
     322             :     } else {
     323           0 :       waitables[0].first->Enqueue(waiter);
     324             :     }
     325             : 
     326           0 :     return r;
     327             : }
     328             : 
     329             : // -----------------------------------------------------------------------------
     330             : 
     331             : 
     332             : // -----------------------------------------------------------------------------
     333             : // Private functions...
     334             : 
     335             : // -----------------------------------------------------------------------------
     336             : // Wake all waiting waiters. Called with lock held.
     337             : // -----------------------------------------------------------------------------
     338           0 : bool WaitableEvent::SignalAll() {
     339           0 :   bool signaled_at_least_one = false;
     340             : 
     341           0 :   for (std::list<Waiter*>::iterator
     342           0 :        i = kernel_->waiters_.begin(); i != kernel_->waiters_.end(); ++i) {
     343           0 :     if ((*i)->Fire(this))
     344           0 :       signaled_at_least_one = true;
     345             :   }
     346             : 
     347           0 :   kernel_->waiters_.clear();
     348           0 :   return signaled_at_least_one;
     349             : }
     350             : 
     351             : // ---------------------------------------------------------------------------
     352             : // Try to wake a single waiter. Return true if one was woken. Called with lock
     353             : // held.
     354             : // ---------------------------------------------------------------------------
     355         810 : bool WaitableEvent::SignalOne() {
     356             :   for (;;) {
     357         810 :     if (kernel_->waiters_.empty())
     358         557 :       return false;
     359             : 
     360         253 :     const bool r = (*kernel_->waiters_.begin())->Fire(this);
     361         253 :     kernel_->waiters_.pop_front();
     362         253 :     if (r)
     363         253 :       return true;
     364           0 :   }
     365             : }
     366             : 
     367             : // -----------------------------------------------------------------------------
     368             : // Add a waiter to the list of those waiting. Called with lock held.
     369             : // -----------------------------------------------------------------------------
     370         778 : void WaitableEvent::Enqueue(Waiter* waiter) {
     371         778 :   kernel_->waiters_.push_back(waiter);
     372         781 : }
     373             : 
     374             : // -----------------------------------------------------------------------------
     375             : // Remove a waiter from the list of those waiting. Return true if the waiter was
     376             : // actually removed. Called with lock held.
     377             : // -----------------------------------------------------------------------------
     378         776 : bool WaitableEvent::WaitableEventKernel::Dequeue(Waiter* waiter, void* tag) {
     379        1552 :   for (std::list<Waiter*>::iterator
     380        1552 :        i = waiters_.begin(); i != waiters_.end(); ++i) {
     381         523 :     if (*i == waiter && (*i)->Compare(tag)) {
     382         523 :       waiters_.erase(i);
     383         523 :       return true;
     384             :     }
     385             :   }
     386             : 
     387         253 :   return false;
     388             : }
     389             : 
     390             : // -----------------------------------------------------------------------------
     391             : 
     392             : }  // namespace base

Generated by: LCOV version 1.13