LCOV - code coverage report
Current view: top level - js/src/ctypes/libffi/src - dlmalloc.c (source / functions) Hit Total Coverage
Test: output.info Lines: 0 908 0.0 %
Date: 2017-07-14 16:53:18 Functions: 0 46 0.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*
       2             :   This is a version (aka dlmalloc) of malloc/free/realloc written by
       3             :   Doug Lea and released to the public domain, as explained at
       4             :   http://creativecommons.org/licenses/publicdomain.  Send questions,
       5             :   comments, complaints, performance data, etc to dl@cs.oswego.edu
       6             : 
       7             : * Version 2.8.3 Thu Sep 22 11:16:15 2005  Doug Lea  (dl at gee)
       8             : 
       9             :    Note: There may be an updated version of this malloc obtainable at
      10             :            ftp://gee.cs.oswego.edu/pub/misc/malloc.c
      11             :          Check before installing!
      12             : 
      13             : * Quickstart
      14             : 
      15             :   This library is all in one file to simplify the most common usage:
      16             :   ftp it, compile it (-O3), and link it into another program. All of
      17             :   the compile-time options default to reasonable values for use on
      18             :   most platforms.  You might later want to step through various
      19             :   compile-time and dynamic tuning options.
      20             : 
      21             :   For convenience, an include file for code using this malloc is at:
      22             :      ftp://gee.cs.oswego.edu/pub/misc/malloc-2.8.3.h
      23             :   You don't really need this .h file unless you call functions not
      24             :   defined in your system include files.  The .h file contains only the
      25             :   excerpts from this file needed for using this malloc on ANSI C/C++
      26             :   systems, so long as you haven't changed compile-time options about
      27             :   naming and tuning parameters.  If you do, then you can create your
      28             :   own malloc.h that does include all settings by cutting at the point
      29             :   indicated below. Note that you may already by default be using a C
      30             :   library containing a malloc that is based on some version of this
      31             :   malloc (for example in linux). You might still want to use the one
      32             :   in this file to customize settings or to avoid overheads associated
      33             :   with library versions.
      34             : 
      35             : * Vital statistics:
      36             : 
      37             :   Supported pointer/size_t representation:       4 or 8 bytes
      38             :        size_t MUST be an unsigned type of the same width as
      39             :        pointers. (If you are using an ancient system that declares
      40             :        size_t as a signed type, or need it to be a different width
      41             :        than pointers, you can use a previous release of this malloc
      42             :        (e.g. 2.7.2) supporting these.)
      43             : 
      44             :   Alignment:                                     8 bytes (default)
      45             :        This suffices for nearly all current machines and C compilers.
      46             :        However, you can define MALLOC_ALIGNMENT to be wider than this
      47             :        if necessary (up to 128bytes), at the expense of using more space.
      48             : 
      49             :   Minimum overhead per allocated chunk:   4 or  8 bytes (if 4byte sizes)
      50             :                                           8 or 16 bytes (if 8byte sizes)
      51             :        Each malloced chunk has a hidden word of overhead holding size
      52             :        and status information, and additional cross-check word
      53             :        if FOOTERS is defined.
      54             : 
      55             :   Minimum allocated size: 4-byte ptrs:  16 bytes    (including overhead)
      56             :                           8-byte ptrs:  32 bytes    (including overhead)
      57             : 
      58             :        Even a request for zero bytes (i.e., malloc(0)) returns a
      59             :        pointer to something of the minimum allocatable size.
      60             :        The maximum overhead wastage (i.e., number of extra bytes
      61             :        allocated than were requested in malloc) is less than or equal
      62             :        to the minimum size, except for requests >= mmap_threshold that
      63             :        are serviced via mmap(), where the worst case wastage is about
      64             :        32 bytes plus the remainder from a system page (the minimal
      65             :        mmap unit); typically 4096 or 8192 bytes.
      66             : 
      67             :   Security: static-safe; optionally more or less
      68             :        The "security" of malloc refers to the ability of malicious
      69             :        code to accentuate the effects of errors (for example, freeing
      70             :        space that is not currently malloc'ed or overwriting past the
      71             :        ends of chunks) in code that calls malloc.  This malloc
      72             :        guarantees not to modify any memory locations below the base of
      73             :        heap, i.e., static variables, even in the presence of usage
      74             :        errors.  The routines additionally detect most improper frees
      75             :        and reallocs.  All this holds as long as the static bookkeeping
      76             :        for malloc itself is not corrupted by some other means.  This
      77             :        is only one aspect of security -- these checks do not, and
      78             :        cannot, detect all possible programming errors.
      79             : 
      80             :        If FOOTERS is defined nonzero, then each allocated chunk
      81             :        carries an additional check word to verify that it was malloced
      82             :        from its space.  These check words are the same within each
      83             :        execution of a program using malloc, but differ across
      84             :        executions, so externally crafted fake chunks cannot be
      85             :        freed. This improves security by rejecting frees/reallocs that
      86             :        could corrupt heap memory, in addition to the checks preventing
      87             :        writes to statics that are always on.  This may further improve
      88             :        security at the expense of time and space overhead.  (Note that
      89             :        FOOTERS may also be worth using with MSPACES.)
      90             : 
      91             :        By default detected errors cause the program to abort (calling
      92             :        "abort()"). You can override this to instead proceed past
      93             :        errors by defining PROCEED_ON_ERROR.  In this case, a bad free
      94             :        has no effect, and a malloc that encounters a bad address
      95             :        caused by user overwrites will ignore the bad address by
      96             :        dropping pointers and indices to all known memory. This may
      97             :        be appropriate for programs that should continue if at all
      98             :        possible in the face of programming errors, although they may
      99             :        run out of memory because dropped memory is never reclaimed.
     100             : 
     101             :        If you don't like either of these options, you can define
     102             :        CORRUPTION_ERROR_ACTION and USAGE_ERROR_ACTION to do anything
     103             :        else. And if if you are sure that your program using malloc has
     104             :        no errors or vulnerabilities, you can define INSECURE to 1,
     105             :        which might (or might not) provide a small performance improvement.
     106             : 
     107             :   Thread-safety: NOT thread-safe unless USE_LOCKS defined
     108             :        When USE_LOCKS is defined, each public call to malloc, free,
     109             :        etc is surrounded with either a pthread mutex or a win32
     110             :        spinlock (depending on WIN32). This is not especially fast, and
     111             :        can be a major bottleneck.  It is designed only to provide
     112             :        minimal protection in concurrent environments, and to provide a
     113             :        basis for extensions.  If you are using malloc in a concurrent
     114             :        program, consider instead using ptmalloc, which is derived from
     115             :        a version of this malloc. (See http://www.malloc.de).
     116             : 
     117             :   System requirements: Any combination of MORECORE and/or MMAP/MUNMAP
     118             :        This malloc can use unix sbrk or any emulation (invoked using
     119             :        the CALL_MORECORE macro) and/or mmap/munmap or any emulation
     120             :        (invoked using CALL_MMAP/CALL_MUNMAP) to get and release system
     121             :        memory.  On most unix systems, it tends to work best if both
     122             :        MORECORE and MMAP are enabled.  On Win32, it uses emulations
     123             :        based on VirtualAlloc. It also uses common C library functions
     124             :        like memset.
     125             : 
     126             :   Compliance: I believe it is compliant with the Single Unix Specification
     127             :        (See http://www.unix.org). Also SVID/XPG, ANSI C, and probably
     128             :        others as well.
     129             : 
     130             : * Overview of algorithms
     131             : 
     132             :   This is not the fastest, most space-conserving, most portable, or
     133             :   most tunable malloc ever written. However it is among the fastest
     134             :   while also being among the most space-conserving, portable and
     135             :   tunable.  Consistent balance across these factors results in a good
     136             :   general-purpose allocator for malloc-intensive programs.
     137             : 
     138             :   In most ways, this malloc is a best-fit allocator. Generally, it
     139             :   chooses the best-fitting existing chunk for a request, with ties
     140             :   broken in approximately least-recently-used order. (This strategy
     141             :   normally maintains low fragmentation.) However, for requests less
     142             :   than 256bytes, it deviates from best-fit when there is not an
     143             :   exactly fitting available chunk by preferring to use space adjacent
     144             :   to that used for the previous small request, as well as by breaking
     145             :   ties in approximately most-recently-used order. (These enhance
     146             :   locality of series of small allocations.)  And for very large requests
     147             :   (>= 256Kb by default), it relies on system memory mapping
     148             :   facilities, if supported.  (This helps avoid carrying around and
     149             :   possibly fragmenting memory used only for large chunks.)
     150             : 
     151             :   All operations (except malloc_stats and mallinfo) have execution
     152             :   times that are bounded by a constant factor of the number of bits in
     153             :   a size_t, not counting any clearing in calloc or copying in realloc,
     154             :   or actions surrounding MORECORE and MMAP that have times
     155             :   proportional to the number of non-contiguous regions returned by
     156             :   system allocation routines, which is often just 1.
     157             : 
     158             :   The implementation is not very modular and seriously overuses
     159             :   macros. Perhaps someday all C compilers will do as good a job
     160             :   inlining modular code as can now be done by brute-force expansion,
     161             :   but now, enough of them seem not to.
     162             : 
     163             :   Some compilers issue a lot of warnings about code that is
     164             :   dead/unreachable only on some platforms, and also about intentional
     165             :   uses of negation on unsigned types. All known cases of each can be
     166             :   ignored.
     167             : 
     168             :   For a longer but out of date high-level description, see
     169             :      http://gee.cs.oswego.edu/dl/html/malloc.html
     170             : 
     171             : * MSPACES
     172             :   If MSPACES is defined, then in addition to malloc, free, etc.,
     173             :   this file also defines mspace_malloc, mspace_free, etc. These
     174             :   are versions of malloc routines that take an "mspace" argument
     175             :   obtained using create_mspace, to control all internal bookkeeping.
     176             :   If ONLY_MSPACES is defined, only these versions are compiled.
     177             :   So if you would like to use this allocator for only some allocations,
     178             :   and your system malloc for others, you can compile with
     179             :   ONLY_MSPACES and then do something like...
     180             :     static mspace mymspace = create_mspace(0,0); // for example
     181             :     #define mymalloc(bytes)  mspace_malloc(mymspace, bytes)
     182             : 
     183             :   (Note: If you only need one instance of an mspace, you can instead
     184             :   use "USE_DL_PREFIX" to relabel the global malloc.)
     185             : 
     186             :   You can similarly create thread-local allocators by storing
     187             :   mspaces as thread-locals. For example:
     188             :     static __thread mspace tlms = 0;
     189             :     void*  tlmalloc(size_t bytes) {
     190             :       if (tlms == 0) tlms = create_mspace(0, 0);
     191             :       return mspace_malloc(tlms, bytes);
     192             :     }
     193             :     void  tlfree(void* mem) { mspace_free(tlms, mem); }
     194             : 
     195             :   Unless FOOTERS is defined, each mspace is completely independent.
     196             :   You cannot allocate from one and free to another (although
     197             :   conformance is only weakly checked, so usage errors are not always
     198             :   caught). If FOOTERS is defined, then each chunk carries around a tag
     199             :   indicating its originating mspace, and frees are directed to their
     200             :   originating spaces.
     201             : 
     202             :  -------------------------  Compile-time options ---------------------------
     203             : 
     204             : Be careful in setting #define values for numerical constants of type
     205             : size_t. On some systems, literal values are not automatically extended
     206             : to size_t precision unless they are explicitly casted.
     207             : 
     208             : WIN32                    default: defined if _WIN32 defined
     209             :   Defining WIN32 sets up defaults for MS environment and compilers.
     210             :   Otherwise defaults are for unix.
     211             : 
     212             : MALLOC_ALIGNMENT         default: (size_t)8
     213             :   Controls the minimum alignment for malloc'ed chunks.  It must be a
     214             :   power of two and at least 8, even on machines for which smaller
     215             :   alignments would suffice. It may be defined as larger than this
     216             :   though. Note however that code and data structures are optimized for
     217             :   the case of 8-byte alignment.
     218             : 
     219             : MSPACES                  default: 0 (false)
     220             :   If true, compile in support for independent allocation spaces.
     221             :   This is only supported if HAVE_MMAP is true.
     222             : 
     223             : ONLY_MSPACES             default: 0 (false)
     224             :   If true, only compile in mspace versions, not regular versions.
     225             : 
     226             : USE_LOCKS                default: 0 (false)
     227             :   Causes each call to each public routine to be surrounded with
     228             :   pthread or WIN32 mutex lock/unlock. (If set true, this can be
     229             :   overridden on a per-mspace basis for mspace versions.)
     230             : 
     231             : FOOTERS                  default: 0
     232             :   If true, provide extra checking and dispatching by placing
     233             :   information in the footers of allocated chunks. This adds
     234             :   space and time overhead.
     235             : 
     236             : INSECURE                 default: 0
     237             :   If true, omit checks for usage errors and heap space overwrites.
     238             : 
     239             : USE_DL_PREFIX            default: NOT defined
     240             :   Causes compiler to prefix all public routines with the string 'dl'.
     241             :   This can be useful when you only want to use this malloc in one part
     242             :   of a program, using your regular system malloc elsewhere.
     243             : 
     244             : ABORT                    default: defined as abort()
     245             :   Defines how to abort on failed checks.  On most systems, a failed
     246             :   check cannot die with an "assert" or even print an informative
     247             :   message, because the underlying print routines in turn call malloc,
     248             :   which will fail again.  Generally, the best policy is to simply call
     249             :   abort(). It's not very useful to do more than this because many
     250             :   errors due to overwriting will show up as address faults (null, odd
     251             :   addresses etc) rather than malloc-triggered checks, so will also
     252             :   abort.  Also, most compilers know that abort() does not return, so
     253             :   can better optimize code conditionally calling it.
     254             : 
     255             : PROCEED_ON_ERROR           default: defined as 0 (false)
     256             :   Controls whether detected bad addresses cause them to bypassed
     257             :   rather than aborting. If set, detected bad arguments to free and
     258             :   realloc are ignored. And all bookkeeping information is zeroed out
     259             :   upon a detected overwrite of freed heap space, thus losing the
     260             :   ability to ever return it from malloc again, but enabling the
     261             :   application to proceed. If PROCEED_ON_ERROR is defined, the
     262             :   static variable malloc_corruption_error_count is compiled in
     263             :   and can be examined to see if errors have occurred. This option
     264             :   generates slower code than the default abort policy.
     265             : 
     266             : DEBUG                    default: NOT defined
     267             :   The DEBUG setting is mainly intended for people trying to modify
     268             :   this code or diagnose problems when porting to new platforms.
     269             :   However, it may also be able to better isolate user errors than just
     270             :   using runtime checks.  The assertions in the check routines spell
     271             :   out in more detail the assumptions and invariants underlying the
     272             :   algorithms.  The checking is fairly extensive, and will slow down
     273             :   execution noticeably. Calling malloc_stats or mallinfo with DEBUG
     274             :   set will attempt to check every non-mmapped allocated and free chunk
     275             :   in the course of computing the summaries.
     276             : 
     277             : ABORT_ON_ASSERT_FAILURE   default: defined as 1 (true)
     278             :   Debugging assertion failures can be nearly impossible if your
     279             :   version of the assert macro causes malloc to be called, which will
     280             :   lead to a cascade of further failures, blowing the runtime stack.
     281             :   ABORT_ON_ASSERT_FAILURE cause assertions failures to call abort(),
     282             :   which will usually make debugging easier.
     283             : 
     284             : MALLOC_FAILURE_ACTION     default: sets errno to ENOMEM, or no-op on win32
     285             :   The action to take before "return 0" when malloc fails to be able to
     286             :   return memory because there is none available.
     287             : 
     288             : HAVE_MORECORE             default: 1 (true) unless win32 or ONLY_MSPACES
     289             :   True if this system supports sbrk or an emulation of it.
     290             : 
     291             : MORECORE                  default: sbrk
     292             :   The name of the sbrk-style system routine to call to obtain more
     293             :   memory.  See below for guidance on writing custom MORECORE
     294             :   functions. The type of the argument to sbrk/MORECORE varies across
     295             :   systems.  It cannot be size_t, because it supports negative
     296             :   arguments, so it is normally the signed type of the same width as
     297             :   size_t (sometimes declared as "intptr_t").  It doesn't much matter
     298             :   though. Internally, we only call it with arguments less than half
     299             :   the max value of a size_t, which should work across all reasonable
     300             :   possibilities, although sometimes generating compiler warnings.  See
     301             :   near the end of this file for guidelines for creating a custom
     302             :   version of MORECORE.
     303             : 
     304             : MORECORE_CONTIGUOUS       default: 1 (true)
     305             :   If true, take advantage of fact that consecutive calls to MORECORE
     306             :   with positive arguments always return contiguous increasing
     307             :   addresses.  This is true of unix sbrk. It does not hurt too much to
     308             :   set it true anyway, since malloc copes with non-contiguities.
     309             :   Setting it false when definitely non-contiguous saves time
     310             :   and possibly wasted space it would take to discover this though.
     311             : 
     312             : MORECORE_CANNOT_TRIM      default: NOT defined
     313             :   True if MORECORE cannot release space back to the system when given
     314             :   negative arguments. This is generally necessary only if you are
     315             :   using a hand-crafted MORECORE function that cannot handle negative
     316             :   arguments.
     317             : 
     318             : HAVE_MMAP                 default: 1 (true)
     319             :   True if this system supports mmap or an emulation of it.  If so, and
     320             :   HAVE_MORECORE is not true, MMAP is used for all system
     321             :   allocation. If set and HAVE_MORECORE is true as well, MMAP is
     322             :   primarily used to directly allocate very large blocks. It is also
     323             :   used as a backup strategy in cases where MORECORE fails to provide
     324             :   space from system. Note: A single call to MUNMAP is assumed to be
     325             :   able to unmap memory that may have be allocated using multiple calls
     326             :   to MMAP, so long as they are adjacent.
     327             : 
     328             : HAVE_MREMAP               default: 1 on linux, else 0
     329             :   If true realloc() uses mremap() to re-allocate large blocks and
     330             :   extend or shrink allocation spaces.
     331             : 
     332             : MMAP_CLEARS               default: 1 on unix
     333             :   True if mmap clears memory so calloc doesn't need to. This is true
     334             :   for standard unix mmap using /dev/zero.
     335             : 
     336             : USE_BUILTIN_FFS            default: 0 (i.e., not used)
     337             :   Causes malloc to use the builtin ffs() function to compute indices.
     338             :   Some compilers may recognize and intrinsify ffs to be faster than the
     339             :   supplied C version. Also, the case of x86 using gcc is special-cased
     340             :   to an asm instruction, so is already as fast as it can be, and so
     341             :   this setting has no effect. (On most x86s, the asm version is only
     342             :   slightly faster than the C version.)
     343             : 
     344             : malloc_getpagesize         default: derive from system includes, or 4096.
     345             :   The system page size. To the extent possible, this malloc manages
     346             :   memory from the system in page-size units.  This may be (and
     347             :   usually is) a function rather than a constant. This is ignored
     348             :   if WIN32, where page size is determined using getSystemInfo during
     349             :   initialization.
     350             : 
     351             : USE_DEV_RANDOM             default: 0 (i.e., not used)
     352             :   Causes malloc to use /dev/random to initialize secure magic seed for
     353             :   stamping footers. Otherwise, the current time is used.
     354             : 
     355             : NO_MALLINFO                default: 0
     356             :   If defined, don't compile "mallinfo". This can be a simple way
     357             :   of dealing with mismatches between system declarations and
     358             :   those in this file.
     359             : 
     360             : MALLINFO_FIELD_TYPE        default: size_t
     361             :   The type of the fields in the mallinfo struct. This was originally
     362             :   defined as "int" in SVID etc, but is more usefully defined as
     363             :   size_t. The value is used only if  HAVE_USR_INCLUDE_MALLOC_H is not set
     364             : 
     365             : REALLOC_ZERO_BYTES_FREES    default: not defined
     366             :   This should be set if a call to realloc with zero bytes should 
     367             :   be the same as a call to free. Some people think it should. Otherwise, 
     368             :   since this malloc returns a unique pointer for malloc(0), so does 
     369             :   realloc(p, 0).
     370             : 
     371             : LACKS_UNISTD_H, LACKS_FCNTL_H, LACKS_SYS_PARAM_H, LACKS_SYS_MMAN_H
     372             : LACKS_STRINGS_H, LACKS_STRING_H, LACKS_SYS_TYPES_H,  LACKS_ERRNO_H
     373             : LACKS_STDLIB_H                default: NOT defined unless on WIN32
     374             :   Define these if your system does not have these header files.
     375             :   You might need to manually insert some of the declarations they provide.
     376             : 
     377             : DEFAULT_GRANULARITY        default: page size if MORECORE_CONTIGUOUS,
     378             :                                 system_info.dwAllocationGranularity in WIN32,
     379             :                                 otherwise 64K.
     380             :       Also settable using mallopt(M_GRANULARITY, x)
     381             :   The unit for allocating and deallocating memory from the system.  On
     382             :   most systems with contiguous MORECORE, there is no reason to
     383             :   make this more than a page. However, systems with MMAP tend to
     384             :   either require or encourage larger granularities.  You can increase
     385             :   this value to prevent system allocation functions to be called so
     386             :   often, especially if they are slow.  The value must be at least one
     387             :   page and must be a power of two.  Setting to 0 causes initialization
     388             :   to either page size or win32 region size.  (Note: In previous
     389             :   versions of malloc, the equivalent of this option was called
     390             :   "TOP_PAD")
     391             : 
     392             : DEFAULT_TRIM_THRESHOLD    default: 2MB
     393             :       Also settable using mallopt(M_TRIM_THRESHOLD, x)
     394             :   The maximum amount of unused top-most memory to keep before
     395             :   releasing via malloc_trim in free().  Automatic trimming is mainly
     396             :   useful in long-lived programs using contiguous MORECORE.  Because
     397             :   trimming via sbrk can be slow on some systems, and can sometimes be
     398             :   wasteful (in cases where programs immediately afterward allocate
     399             :   more large chunks) the value should be high enough so that your
     400             :   overall system performance would improve by releasing this much
     401             :   memory.  As a rough guide, you might set to a value close to the
     402             :   average size of a process (program) running on your system.
     403             :   Releasing this much memory would allow such a process to run in
     404             :   memory.  Generally, it is worth tuning trim thresholds when a
     405             :   program undergoes phases where several large chunks are allocated
     406             :   and released in ways that can reuse each other's storage, perhaps
     407             :   mixed with phases where there are no such chunks at all. The trim
     408             :   value must be greater than page size to have any useful effect.  To
     409             :   disable trimming completely, you can set to MAX_SIZE_T. Note that the trick
     410             :   some people use of mallocing a huge space and then freeing it at
     411             :   program startup, in an attempt to reserve system memory, doesn't
     412             :   have the intended effect under automatic trimming, since that memory
     413             :   will immediately be returned to the system.
     414             : 
     415             : DEFAULT_MMAP_THRESHOLD       default: 256K
     416             :       Also settable using mallopt(M_MMAP_THRESHOLD, x)
     417             :   The request size threshold for using MMAP to directly service a
     418             :   request. Requests of at least this size that cannot be allocated
     419             :   using already-existing space will be serviced via mmap.  (If enough
     420             :   normal freed space already exists it is used instead.)  Using mmap
     421             :   segregates relatively large chunks of memory so that they can be
     422             :   individually obtained and released from the host system. A request
     423             :   serviced through mmap is never reused by any other request (at least
     424             :   not directly; the system may just so happen to remap successive
     425             :   requests to the same locations).  Segregating space in this way has
     426             :   the benefits that: Mmapped space can always be individually released
     427             :   back to the system, which helps keep the system level memory demands
     428             :   of a long-lived program low.  Also, mapped memory doesn't become
     429             :   `locked' between other chunks, as can happen with normally allocated
     430             :   chunks, which means that even trimming via malloc_trim would not
     431             :   release them.  However, it has the disadvantage that the space
     432             :   cannot be reclaimed, consolidated, and then used to service later
     433             :   requests, as happens with normal chunks.  The advantages of mmap
     434             :   nearly always outweigh disadvantages for "large" chunks, but the
     435             :   value of "large" may vary across systems.  The default is an
     436             :   empirically derived value that works well in most systems. You can
     437             :   disable mmap by setting to MAX_SIZE_T.
     438             : 
     439             : */
     440             : 
     441             : #ifndef WIN32
     442             : #ifdef _WIN32
     443             : #define WIN32 1
     444             : #endif  /* _WIN32 */
     445             : #endif  /* WIN32 */
     446             : #ifdef WIN32
     447             : #define WIN32_LEAN_AND_MEAN
     448             : #include <windows.h>
     449             : #define HAVE_MMAP 1
     450             : #define HAVE_MORECORE 0
     451             : #define LACKS_UNISTD_H
     452             : #define LACKS_SYS_PARAM_H
     453             : #define LACKS_SYS_MMAN_H
     454             : #define LACKS_STRING_H
     455             : #define LACKS_STRINGS_H
     456             : #define LACKS_SYS_TYPES_H
     457             : #define LACKS_ERRNO_H
     458             : #define MALLOC_FAILURE_ACTION
     459             : #define MMAP_CLEARS 0 /* WINCE and some others apparently don't clear */
     460             : #endif  /* WIN32 */
     461             : 
     462             : #ifdef __OS2__
     463             : #define INCL_DOS
     464             : #include <os2.h>
     465             : #define HAVE_MMAP 1
     466             : #define HAVE_MORECORE 0
     467             : #define LACKS_SYS_MMAN_H
     468             : #endif  /* __OS2__ */
     469             : 
     470             : #if defined(DARWIN) || defined(_DARWIN)
     471             : /* Mac OSX docs advise not to use sbrk; it seems better to use mmap */
     472             : #ifndef HAVE_MORECORE
     473             : #define HAVE_MORECORE 0
     474             : #define HAVE_MMAP 1
     475             : #endif  /* HAVE_MORECORE */
     476             : #endif  /* DARWIN */
     477             : 
     478             : #ifndef LACKS_SYS_TYPES_H
     479             : #include <sys/types.h>  /* For size_t */
     480             : #endif  /* LACKS_SYS_TYPES_H */
     481             : 
     482             : /* The maximum possible size_t value has all bits set */
     483             : #define MAX_SIZE_T           (~(size_t)0)
     484             : 
     485             : #ifndef ONLY_MSPACES
     486             : #define ONLY_MSPACES 0
     487             : #endif  /* ONLY_MSPACES */
     488             : #ifndef MSPACES
     489             : #if ONLY_MSPACES
     490             : #define MSPACES 1
     491             : #else   /* ONLY_MSPACES */
     492             : #define MSPACES 0
     493             : #endif  /* ONLY_MSPACES */
     494             : #endif  /* MSPACES */
     495             : #ifndef MALLOC_ALIGNMENT
     496             : #define MALLOC_ALIGNMENT ((size_t)8U)
     497             : #endif  /* MALLOC_ALIGNMENT */
     498             : #ifndef FOOTERS
     499             : #define FOOTERS 0
     500             : #endif  /* FOOTERS */
     501             : #ifndef ABORT
     502             : #define ABORT  abort()
     503             : #endif  /* ABORT */
     504             : #ifndef ABORT_ON_ASSERT_FAILURE
     505             : #define ABORT_ON_ASSERT_FAILURE 1
     506             : #endif  /* ABORT_ON_ASSERT_FAILURE */
     507             : #ifndef PROCEED_ON_ERROR
     508             : #define PROCEED_ON_ERROR 0
     509             : #endif  /* PROCEED_ON_ERROR */
     510             : #ifndef USE_LOCKS
     511             : #define USE_LOCKS 0
     512             : #endif  /* USE_LOCKS */
     513             : #ifndef INSECURE
     514             : #define INSECURE 0
     515             : #endif  /* INSECURE */
     516             : #ifndef HAVE_MMAP
     517             : #define HAVE_MMAP 1
     518             : #endif  /* HAVE_MMAP */
     519             : #ifndef MMAP_CLEARS
     520             : #define MMAP_CLEARS 1
     521             : #endif  /* MMAP_CLEARS */
     522             : #ifndef HAVE_MREMAP
     523             : #ifdef linux
     524             : #define HAVE_MREMAP 1
     525             : #else   /* linux */
     526             : #define HAVE_MREMAP 0
     527             : #endif  /* linux */
     528             : #endif  /* HAVE_MREMAP */
     529             : #ifndef MALLOC_FAILURE_ACTION
     530             : #define MALLOC_FAILURE_ACTION  errno = ENOMEM;
     531             : #endif  /* MALLOC_FAILURE_ACTION */
     532             : #ifndef HAVE_MORECORE
     533             : #if ONLY_MSPACES
     534             : #define HAVE_MORECORE 0
     535             : #else   /* ONLY_MSPACES */
     536             : #define HAVE_MORECORE 1
     537             : #endif  /* ONLY_MSPACES */
     538             : #endif  /* HAVE_MORECORE */
     539             : #if !HAVE_MORECORE
     540             : #define MORECORE_CONTIGUOUS 0
     541             : #else   /* !HAVE_MORECORE */
     542             : #ifndef MORECORE
     543             : #define MORECORE sbrk
     544             : #endif  /* MORECORE */
     545             : #ifndef MORECORE_CONTIGUOUS
     546             : #define MORECORE_CONTIGUOUS 1
     547             : #endif  /* MORECORE_CONTIGUOUS */
     548             : #endif  /* HAVE_MORECORE */
     549             : #ifndef DEFAULT_GRANULARITY
     550             : #if MORECORE_CONTIGUOUS
     551             : #define DEFAULT_GRANULARITY (0)  /* 0 means to compute in init_mparams */
     552             : #else   /* MORECORE_CONTIGUOUS */
     553             : #define DEFAULT_GRANULARITY ((size_t)64U * (size_t)1024U)
     554             : #endif  /* MORECORE_CONTIGUOUS */
     555             : #endif  /* DEFAULT_GRANULARITY */
     556             : #ifndef DEFAULT_TRIM_THRESHOLD
     557             : #ifndef MORECORE_CANNOT_TRIM
     558             : #define DEFAULT_TRIM_THRESHOLD ((size_t)2U * (size_t)1024U * (size_t)1024U)
     559             : #else   /* MORECORE_CANNOT_TRIM */
     560             : #define DEFAULT_TRIM_THRESHOLD MAX_SIZE_T
     561             : #endif  /* MORECORE_CANNOT_TRIM */
     562             : #endif  /* DEFAULT_TRIM_THRESHOLD */
     563             : #ifndef DEFAULT_MMAP_THRESHOLD
     564             : #if HAVE_MMAP
     565             : #define DEFAULT_MMAP_THRESHOLD ((size_t)256U * (size_t)1024U)
     566             : #else   /* HAVE_MMAP */
     567             : #define DEFAULT_MMAP_THRESHOLD MAX_SIZE_T
     568             : #endif  /* HAVE_MMAP */
     569             : #endif  /* DEFAULT_MMAP_THRESHOLD */
     570             : #ifndef USE_BUILTIN_FFS
     571             : #define USE_BUILTIN_FFS 0
     572             : #endif  /* USE_BUILTIN_FFS */
     573             : #ifndef USE_DEV_RANDOM
     574             : #define USE_DEV_RANDOM 0
     575             : #endif  /* USE_DEV_RANDOM */
     576             : #ifndef NO_MALLINFO
     577             : #define NO_MALLINFO 0
     578             : #endif  /* NO_MALLINFO */
     579             : #ifndef MALLINFO_FIELD_TYPE
     580             : #define MALLINFO_FIELD_TYPE size_t
     581             : #endif  /* MALLINFO_FIELD_TYPE */
     582             : 
     583             : /*
     584             :   mallopt tuning options.  SVID/XPG defines four standard parameter
     585             :   numbers for mallopt, normally defined in malloc.h.  None of these
     586             :   are used in this malloc, so setting them has no effect. But this
     587             :   malloc does support the following options.
     588             : */
     589             : 
     590             : #define M_TRIM_THRESHOLD     (-1)
     591             : #define M_GRANULARITY        (-2)
     592             : #define M_MMAP_THRESHOLD     (-3)
     593             : 
     594             : /* ------------------------ Mallinfo declarations ------------------------ */
     595             : 
     596             : #if !NO_MALLINFO
     597             : /*
     598             :   This version of malloc supports the standard SVID/XPG mallinfo
     599             :   routine that returns a struct containing usage properties and
     600             :   statistics. It should work on any system that has a
     601             :   /usr/include/malloc.h defining struct mallinfo.  The main
     602             :   declaration needed is the mallinfo struct that is returned (by-copy)
     603             :   by mallinfo().  The malloinfo struct contains a bunch of fields that
     604             :   are not even meaningful in this version of malloc.  These fields are
     605             :   are instead filled by mallinfo() with other numbers that might be of
     606             :   interest.
     607             : 
     608             :   HAVE_USR_INCLUDE_MALLOC_H should be set if you have a
     609             :   /usr/include/malloc.h file that includes a declaration of struct
     610             :   mallinfo.  If so, it is included; else a compliant version is
     611             :   declared below.  These must be precisely the same for mallinfo() to
     612             :   work.  The original SVID version of this struct, defined on most
     613             :   systems with mallinfo, declares all fields as ints. But some others
     614             :   define as unsigned long. If your system defines the fields using a
     615             :   type of different width than listed here, you MUST #include your
     616             :   system version and #define HAVE_USR_INCLUDE_MALLOC_H.
     617             : */
     618             : 
     619             : /* #define HAVE_USR_INCLUDE_MALLOC_H */
     620             : 
     621             : #ifdef HAVE_USR_INCLUDE_MALLOC_H
     622             : #include "/usr/include/malloc.h"
     623             : #else /* HAVE_USR_INCLUDE_MALLOC_H */
     624             : 
     625             : /* HP-UX's stdlib.h redefines mallinfo unless _STRUCT_MALLINFO is defined */
     626             : #define _STRUCT_MALLINFO
     627             : 
     628             : struct mallinfo {
     629             :   MALLINFO_FIELD_TYPE arena;    /* non-mmapped space allocated from system */
     630             :   MALLINFO_FIELD_TYPE ordblks;  /* number of free chunks */
     631             :   MALLINFO_FIELD_TYPE smblks;   /* always 0 */
     632             :   MALLINFO_FIELD_TYPE hblks;    /* always 0 */
     633             :   MALLINFO_FIELD_TYPE hblkhd;   /* space in mmapped regions */
     634             :   MALLINFO_FIELD_TYPE usmblks;  /* maximum total allocated space */
     635             :   MALLINFO_FIELD_TYPE fsmblks;  /* always 0 */
     636             :   MALLINFO_FIELD_TYPE uordblks; /* total allocated space */
     637             :   MALLINFO_FIELD_TYPE fordblks; /* total free space */
     638             :   MALLINFO_FIELD_TYPE keepcost; /* releasable (via malloc_trim) space */
     639             : };
     640             : 
     641             : #endif /* HAVE_USR_INCLUDE_MALLOC_H */
     642             : #endif /* NO_MALLINFO */
     643             : 
     644             : #ifdef __cplusplus
     645             : extern "C" {
     646             : #endif /* __cplusplus */
     647             : 
     648             : #if !ONLY_MSPACES
     649             : 
     650             : /* ------------------- Declarations of public routines ------------------- */
     651             : 
     652             : #ifndef USE_DL_PREFIX
     653             : #define dlcalloc               calloc
     654             : #define dlfree                 free
     655             : #define dlmalloc               malloc
     656             : #define dlmemalign             memalign
     657             : #define dlrealloc              realloc
     658             : #define dlvalloc               valloc
     659             : #define dlpvalloc              pvalloc
     660             : #define dlmallinfo             mallinfo
     661             : #define dlmallopt              mallopt
     662             : #define dlmalloc_trim          malloc_trim
     663             : #define dlmalloc_stats         malloc_stats
     664             : #define dlmalloc_usable_size   malloc_usable_size
     665             : #define dlmalloc_footprint     malloc_footprint
     666             : #define dlmalloc_max_footprint malloc_max_footprint
     667             : #define dlindependent_calloc   independent_calloc
     668             : #define dlindependent_comalloc independent_comalloc
     669             : #endif /* USE_DL_PREFIX */
     670             : 
     671             : 
     672             : /*
     673             :   malloc(size_t n)
     674             :   Returns a pointer to a newly allocated chunk of at least n bytes, or
     675             :   null if no space is available, in which case errno is set to ENOMEM
     676             :   on ANSI C systems.
     677             : 
     678             :   If n is zero, malloc returns a minimum-sized chunk. (The minimum
     679             :   size is 16 bytes on most 32bit systems, and 32 bytes on 64bit
     680             :   systems.)  Note that size_t is an unsigned type, so calls with
     681             :   arguments that would be negative if signed are interpreted as
     682             :   requests for huge amounts of space, which will often fail. The
     683             :   maximum supported value of n differs across systems, but is in all
     684             :   cases less than the maximum representable value of a size_t.
     685             : */
     686             : void* dlmalloc(size_t);
     687             : 
     688             : /*
     689             :   free(void* p)
     690             :   Releases the chunk of memory pointed to by p, that had been previously
     691             :   allocated using malloc or a related routine such as realloc.
     692             :   It has no effect if p is null. If p was not malloced or already
     693             :   freed, free(p) will by default cause the current program to abort.
     694             : */
     695             : void  dlfree(void*);
     696             : 
     697             : /*
     698             :   calloc(size_t n_elements, size_t element_size);
     699             :   Returns a pointer to n_elements * element_size bytes, with all locations
     700             :   set to zero.
     701             : */
     702             : void* dlcalloc(size_t, size_t);
     703             : 
     704             : /*
     705             :   realloc(void* p, size_t n)
     706             :   Returns a pointer to a chunk of size n that contains the same data
     707             :   as does chunk p up to the minimum of (n, p's size) bytes, or null
     708             :   if no space is available.
     709             : 
     710             :   The returned pointer may or may not be the same as p. The algorithm
     711             :   prefers extending p in most cases when possible, otherwise it
     712             :   employs the equivalent of a malloc-copy-free sequence.
     713             : 
     714             :   If p is null, realloc is equivalent to malloc.
     715             : 
     716             :   If space is not available, realloc returns null, errno is set (if on
     717             :   ANSI) and p is NOT freed.
     718             : 
     719             :   if n is for fewer bytes than already held by p, the newly unused
     720             :   space is lopped off and freed if possible.  realloc with a size
     721             :   argument of zero (re)allocates a minimum-sized chunk.
     722             : 
     723             :   The old unix realloc convention of allowing the last-free'd chunk
     724             :   to be used as an argument to realloc is not supported.
     725             : */
     726             : 
     727             : void* dlrealloc(void*, size_t);
     728             : 
     729             : /*
     730             :   memalign(size_t alignment, size_t n);
     731             :   Returns a pointer to a newly allocated chunk of n bytes, aligned
     732             :   in accord with the alignment argument.
     733             : 
     734             :   The alignment argument should be a power of two. If the argument is
     735             :   not a power of two, the nearest greater power is used.
     736             :   8-byte alignment is guaranteed by normal malloc calls, so don't
     737             :   bother calling memalign with an argument of 8 or less.
     738             : 
     739             :   Overreliance on memalign is a sure way to fragment space.
     740             : */
     741             : void* dlmemalign(size_t, size_t);
     742             : 
     743             : /*
     744             :   valloc(size_t n);
     745             :   Equivalent to memalign(pagesize, n), where pagesize is the page
     746             :   size of the system. If the pagesize is unknown, 4096 is used.
     747             : */
     748             : void* dlvalloc(size_t);
     749             : 
     750             : /*
     751             :   mallopt(int parameter_number, int parameter_value)
     752             :   Sets tunable parameters The format is to provide a
     753             :   (parameter-number, parameter-value) pair.  mallopt then sets the
     754             :   corresponding parameter to the argument value if it can (i.e., so
     755             :   long as the value is meaningful), and returns 1 if successful else
     756             :   0.  SVID/XPG/ANSI defines four standard param numbers for mallopt,
     757             :   normally defined in malloc.h.  None of these are use in this malloc,
     758             :   so setting them has no effect. But this malloc also supports other
     759             :   options in mallopt. See below for details.  Briefly, supported
     760             :   parameters are as follows (listed defaults are for "typical"
     761             :   configurations).
     762             : 
     763             :   Symbol            param #  default    allowed param values
     764             :   M_TRIM_THRESHOLD     -1   2*1024*1024   any   (MAX_SIZE_T disables)
     765             :   M_GRANULARITY        -2     page size   any power of 2 >= page size
     766             :   M_MMAP_THRESHOLD     -3      256*1024   any   (or 0 if no MMAP support)
     767             : */
     768             : int dlmallopt(int, int);
     769             : 
     770             : /*
     771             :   malloc_footprint();
     772             :   Returns the number of bytes obtained from the system.  The total
     773             :   number of bytes allocated by malloc, realloc etc., is less than this
     774             :   value. Unlike mallinfo, this function returns only a precomputed
     775             :   result, so can be called frequently to monitor memory consumption.
     776             :   Even if locks are otherwise defined, this function does not use them,
     777             :   so results might not be up to date.
     778             : */
     779             : size_t dlmalloc_footprint(void);
     780             : 
     781             : /*
     782             :   malloc_max_footprint();
     783             :   Returns the maximum number of bytes obtained from the system. This
     784             :   value will be greater than current footprint if deallocated space
     785             :   has been reclaimed by the system. The peak number of bytes allocated
     786             :   by malloc, realloc etc., is less than this value. Unlike mallinfo,
     787             :   this function returns only a precomputed result, so can be called
     788             :   frequently to monitor memory consumption.  Even if locks are
     789             :   otherwise defined, this function does not use them, so results might
     790             :   not be up to date.
     791             : */
     792             : size_t dlmalloc_max_footprint(void);
     793             : 
     794             : #if !NO_MALLINFO
     795             : /*
     796             :   mallinfo()
     797             :   Returns (by copy) a struct containing various summary statistics:
     798             : 
     799             :   arena:     current total non-mmapped bytes allocated from system
     800             :   ordblks:   the number of free chunks
     801             :   smblks:    always zero.
     802             :   hblks:     current number of mmapped regions
     803             :   hblkhd:    total bytes held in mmapped regions
     804             :   usmblks:   the maximum total allocated space. This will be greater
     805             :                 than current total if trimming has occurred.
     806             :   fsmblks:   always zero
     807             :   uordblks:  current total allocated space (normal or mmapped)
     808             :   fordblks:  total free space
     809             :   keepcost:  the maximum number of bytes that could ideally be released
     810             :                back to system via malloc_trim. ("ideally" means that
     811             :                it ignores page restrictions etc.)
     812             : 
     813             :   Because these fields are ints, but internal bookkeeping may
     814             :   be kept as longs, the reported values may wrap around zero and
     815             :   thus be inaccurate.
     816             : */
     817             : struct mallinfo dlmallinfo(void);
     818             : #endif /* NO_MALLINFO */
     819             : 
     820             : /*
     821             :   independent_calloc(size_t n_elements, size_t element_size, void* chunks[]);
     822             : 
     823             :   independent_calloc is similar to calloc, but instead of returning a
     824             :   single cleared space, it returns an array of pointers to n_elements
     825             :   independent elements that can hold contents of size elem_size, each
     826             :   of which starts out cleared, and can be independently freed,
     827             :   realloc'ed etc. The elements are guaranteed to be adjacently
     828             :   allocated (this is not guaranteed to occur with multiple callocs or
     829             :   mallocs), which may also improve cache locality in some
     830             :   applications.
     831             : 
     832             :   The "chunks" argument is optional (i.e., may be null, which is
     833             :   probably the most typical usage). If it is null, the returned array
     834             :   is itself dynamically allocated and should also be freed when it is
     835             :   no longer needed. Otherwise, the chunks array must be of at least
     836             :   n_elements in length. It is filled in with the pointers to the
     837             :   chunks.
     838             : 
     839             :   In either case, independent_calloc returns this pointer array, or
     840             :   null if the allocation failed.  If n_elements is zero and "chunks"
     841             :   is null, it returns a chunk representing an array with zero elements
     842             :   (which should be freed if not wanted).
     843             : 
     844             :   Each element must be individually freed when it is no longer
     845             :   needed. If you'd like to instead be able to free all at once, you
     846             :   should instead use regular calloc and assign pointers into this
     847             :   space to represent elements.  (In this case though, you cannot
     848             :   independently free elements.)
     849             : 
     850             :   independent_calloc simplifies and speeds up implementations of many
     851             :   kinds of pools.  It may also be useful when constructing large data
     852             :   structures that initially have a fixed number of fixed-sized nodes,
     853             :   but the number is not known at compile time, and some of the nodes
     854             :   may later need to be freed. For example:
     855             : 
     856             :   struct Node { int item; struct Node* next; };
     857             : 
     858             :   struct Node* build_list() {
     859             :     struct Node** pool;
     860             :     int n = read_number_of_nodes_needed();
     861             :     if (n <= 0) return 0;
     862             :     pool = (struct Node**)(independent_calloc(n, sizeof(struct Node), 0);
     863             :     if (pool == 0) die();
     864             :     // organize into a linked list...
     865             :     struct Node* first = pool[0];
     866             :     for (i = 0; i < n-1; ++i)
     867             :       pool[i]->next = pool[i+1];
     868             :     free(pool);     // Can now free the array (or not, if it is needed later)
     869             :     return first;
     870             :   }
     871             : */
     872             : void** dlindependent_calloc(size_t, size_t, void**);
     873             : 
     874             : /*
     875             :   independent_comalloc(size_t n_elements, size_t sizes[], void* chunks[]);
     876             : 
     877             :   independent_comalloc allocates, all at once, a set of n_elements
     878             :   chunks with sizes indicated in the "sizes" array.    It returns
     879             :   an array of pointers to these elements, each of which can be
     880             :   independently freed, realloc'ed etc. The elements are guaranteed to
     881             :   be adjacently allocated (this is not guaranteed to occur with
     882             :   multiple callocs or mallocs), which may also improve cache locality
     883             :   in some applications.
     884             : 
     885             :   The "chunks" argument is optional (i.e., may be null). If it is null
     886             :   the returned array is itself dynamically allocated and should also
     887             :   be freed when it is no longer needed. Otherwise, the chunks array
     888             :   must be of at least n_elements in length. It is filled in with the
     889             :   pointers to the chunks.
     890             : 
     891             :   In either case, independent_comalloc returns this pointer array, or
     892             :   null if the allocation failed.  If n_elements is zero and chunks is
     893             :   null, it returns a chunk representing an array with zero elements
     894             :   (which should be freed if not wanted).
     895             : 
     896             :   Each element must be individually freed when it is no longer
     897             :   needed. If you'd like to instead be able to free all at once, you
     898             :   should instead use a single regular malloc, and assign pointers at
     899             :   particular offsets in the aggregate space. (In this case though, you
     900             :   cannot independently free elements.)
     901             : 
     902             :   independent_comallac differs from independent_calloc in that each
     903             :   element may have a different size, and also that it does not
     904             :   automatically clear elements.
     905             : 
     906             :   independent_comalloc can be used to speed up allocation in cases
     907             :   where several structs or objects must always be allocated at the
     908             :   same time.  For example:
     909             : 
     910             :   struct Head { ... }
     911             :   struct Foot { ... }
     912             : 
     913             :   void send_message(char* msg) {
     914             :     int msglen = strlen(msg);
     915             :     size_t sizes[3] = { sizeof(struct Head), msglen, sizeof(struct Foot) };
     916             :     void* chunks[3];
     917             :     if (independent_comalloc(3, sizes, chunks) == 0)
     918             :       die();
     919             :     struct Head* head = (struct Head*)(chunks[0]);
     920             :     char*        body = (char*)(chunks[1]);
     921             :     struct Foot* foot = (struct Foot*)(chunks[2]);
     922             :     // ...
     923             :   }
     924             : 
     925             :   In general though, independent_comalloc is worth using only for
     926             :   larger values of n_elements. For small values, you probably won't
     927             :   detect enough difference from series of malloc calls to bother.
     928             : 
     929             :   Overuse of independent_comalloc can increase overall memory usage,
     930             :   since it cannot reuse existing noncontiguous small chunks that
     931             :   might be available for some of the elements.
     932             : */
     933             : void** dlindependent_comalloc(size_t, size_t*, void**);
     934             : 
     935             : 
     936             : /*
     937             :   pvalloc(size_t n);
     938             :   Equivalent to valloc(minimum-page-that-holds(n)), that is,
     939             :   round up n to nearest pagesize.
     940             :  */
     941             : void*  dlpvalloc(size_t);
     942             : 
     943             : /*
     944             :   malloc_trim(size_t pad);
     945             : 
     946             :   If possible, gives memory back to the system (via negative arguments
     947             :   to sbrk) if there is unused memory at the `high' end of the malloc
     948             :   pool or in unused MMAP segments. You can call this after freeing
     949             :   large blocks of memory to potentially reduce the system-level memory
     950             :   requirements of a program. However, it cannot guarantee to reduce
     951             :   memory. Under some allocation patterns, some large free blocks of
     952             :   memory will be locked between two used chunks, so they cannot be
     953             :   given back to the system.
     954             : 
     955             :   The `pad' argument to malloc_trim represents the amount of free
     956             :   trailing space to leave untrimmed. If this argument is zero, only
     957             :   the minimum amount of memory to maintain internal data structures
     958             :   will be left. Non-zero arguments can be supplied to maintain enough
     959             :   trailing space to service future expected allocations without having
     960             :   to re-obtain memory from the system.
     961             : 
     962             :   Malloc_trim returns 1 if it actually released any memory, else 0.
     963             : */
     964             : int  dlmalloc_trim(size_t);
     965             : 
     966             : /*
     967             :   malloc_usable_size(void* p);
     968             : 
     969             :   Returns the number of bytes you can actually use in
     970             :   an allocated chunk, which may be more than you requested (although
     971             :   often not) due to alignment and minimum size constraints.
     972             :   You can use this many bytes without worrying about
     973             :   overwriting other allocated objects. This is not a particularly great
     974             :   programming practice. malloc_usable_size can be more useful in
     975             :   debugging and assertions, for example:
     976             : 
     977             :   p = malloc(n);
     978             :   assert(malloc_usable_size(p) >= 256);
     979             : */
     980             : size_t dlmalloc_usable_size(void*);
     981             : 
     982             : /*
     983             :   malloc_stats();
     984             :   Prints on stderr the amount of space obtained from the system (both
     985             :   via sbrk and mmap), the maximum amount (which may be more than
     986             :   current if malloc_trim and/or munmap got called), and the current
     987             :   number of bytes allocated via malloc (or realloc, etc) but not yet
     988             :   freed. Note that this is the number of bytes allocated, not the
     989             :   number requested. It will be larger than the number requested
     990             :   because of alignment and bookkeeping overhead. Because it includes
     991             :   alignment wastage as being in use, this figure may be greater than
     992             :   zero even when no user-level chunks are allocated.
     993             : 
     994             :   The reported current and maximum system memory can be inaccurate if
     995             :   a program makes other calls to system memory allocation functions
     996             :   (normally sbrk) outside of malloc.
     997             : 
     998             :   malloc_stats prints only the most commonly interesting statistics.
     999             :   More information can be obtained by calling mallinfo.
    1000             : */
    1001             : void  dlmalloc_stats(void);
    1002             : 
    1003             : #endif /* ONLY_MSPACES */
    1004             : 
    1005             : #if MSPACES
    1006             : 
    1007             : /*
    1008             :   mspace is an opaque type representing an independent
    1009             :   region of space that supports mspace_malloc, etc.
    1010             : */
    1011             : typedef void* mspace;
    1012             : 
    1013             : /*
    1014             :   create_mspace creates and returns a new independent space with the
    1015             :   given initial capacity, or, if 0, the default granularity size.  It
    1016             :   returns null if there is no system memory available to create the
    1017             :   space.  If argument locked is non-zero, the space uses a separate
    1018             :   lock to control access. The capacity of the space will grow
    1019             :   dynamically as needed to service mspace_malloc requests.  You can
    1020             :   control the sizes of incremental increases of this space by
    1021             :   compiling with a different DEFAULT_GRANULARITY or dynamically
    1022             :   setting with mallopt(M_GRANULARITY, value).
    1023             : */
    1024             : mspace create_mspace(size_t capacity, int locked);
    1025             : 
    1026             : /*
    1027             :   destroy_mspace destroys the given space, and attempts to return all
    1028             :   of its memory back to the system, returning the total number of
    1029             :   bytes freed. After destruction, the results of access to all memory
    1030             :   used by the space become undefined.
    1031             : */
    1032             : size_t destroy_mspace(mspace msp);
    1033             : 
    1034             : /*
    1035             :   create_mspace_with_base uses the memory supplied as the initial base
    1036             :   of a new mspace. Part (less than 128*sizeof(size_t) bytes) of this
    1037             :   space is used for bookkeeping, so the capacity must be at least this
    1038             :   large. (Otherwise 0 is returned.) When this initial space is
    1039             :   exhausted, additional memory will be obtained from the system.
    1040             :   Destroying this space will deallocate all additionally allocated
    1041             :   space (if possible) but not the initial base.
    1042             : */
    1043             : mspace create_mspace_with_base(void* base, size_t capacity, int locked);
    1044             : 
    1045             : /*
    1046             :   mspace_malloc behaves as malloc, but operates within
    1047             :   the given space.
    1048             : */
    1049             : void* mspace_malloc(mspace msp, size_t bytes);
    1050             : 
    1051             : /*
    1052             :   mspace_free behaves as free, but operates within
    1053             :   the given space.
    1054             : 
    1055             :   If compiled with FOOTERS==1, mspace_free is not actually needed.
    1056             :   free may be called instead of mspace_free because freed chunks from
    1057             :   any space are handled by their originating spaces.
    1058             : */
    1059             : void mspace_free(mspace msp, void* mem);
    1060             : 
    1061             : /*
    1062             :   mspace_realloc behaves as realloc, but operates within
    1063             :   the given space.
    1064             : 
    1065             :   If compiled with FOOTERS==1, mspace_realloc is not actually
    1066             :   needed.  realloc may be called instead of mspace_realloc because
    1067             :   realloced chunks from any space are handled by their originating
    1068             :   spaces.
    1069             : */
    1070             : void* mspace_realloc(mspace msp, void* mem, size_t newsize);
    1071             : 
    1072             : /*
    1073             :   mspace_calloc behaves as calloc, but operates within
    1074             :   the given space.
    1075             : */
    1076             : void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size);
    1077             : 
    1078             : /*
    1079             :   mspace_memalign behaves as memalign, but operates within
    1080             :   the given space.
    1081             : */
    1082             : void* mspace_memalign(mspace msp, size_t alignment, size_t bytes);
    1083             : 
    1084             : /*
    1085             :   mspace_independent_calloc behaves as independent_calloc, but
    1086             :   operates within the given space.
    1087             : */
    1088             : void** mspace_independent_calloc(mspace msp, size_t n_elements,
    1089             :                                  size_t elem_size, void* chunks[]);
    1090             : 
    1091             : /*
    1092             :   mspace_independent_comalloc behaves as independent_comalloc, but
    1093             :   operates within the given space.
    1094             : */
    1095             : void** mspace_independent_comalloc(mspace msp, size_t n_elements,
    1096             :                                    size_t sizes[], void* chunks[]);
    1097             : 
    1098             : /*
    1099             :   mspace_footprint() returns the number of bytes obtained from the
    1100             :   system for this space.
    1101             : */
    1102             : size_t mspace_footprint(mspace msp);
    1103             : 
    1104             : /*
    1105             :   mspace_max_footprint() returns the peak number of bytes obtained from the
    1106             :   system for this space.
    1107             : */
    1108             : size_t mspace_max_footprint(mspace msp);
    1109             : 
    1110             : 
    1111             : #if !NO_MALLINFO
    1112             : /*
    1113             :   mspace_mallinfo behaves as mallinfo, but reports properties of
    1114             :   the given space.
    1115             : */
    1116             : struct mallinfo mspace_mallinfo(mspace msp);
    1117             : #endif /* NO_MALLINFO */
    1118             : 
    1119             : /*
    1120             :   mspace_malloc_stats behaves as malloc_stats, but reports
    1121             :   properties of the given space.
    1122             : */
    1123             : void mspace_malloc_stats(mspace msp);
    1124             : 
    1125             : /*
    1126             :   mspace_trim behaves as malloc_trim, but
    1127             :   operates within the given space.
    1128             : */
    1129             : int mspace_trim(mspace msp, size_t pad);
    1130             : 
    1131             : /*
    1132             :   An alias for mallopt.
    1133             : */
    1134             : int mspace_mallopt(int, int);
    1135             : 
    1136             : #endif /* MSPACES */
    1137             : 
    1138             : #ifdef __cplusplus
    1139             : };  /* end of extern "C" */
    1140             : #endif /* __cplusplus */
    1141             : 
    1142             : /*
    1143             :   ========================================================================
    1144             :   To make a fully customizable malloc.h header file, cut everything
    1145             :   above this line, put into file malloc.h, edit to suit, and #include it
    1146             :   on the next line, as well as in programs that use this malloc.
    1147             :   ========================================================================
    1148             : */
    1149             : 
    1150             : /* #include "malloc.h" */
    1151             : 
    1152             : /*------------------------------ internal #includes ---------------------- */
    1153             : 
    1154             : #ifdef _MSC_VER
    1155             : #pragma warning( disable : 4146 ) /* no "unsigned" warnings */
    1156             : #endif /* _MSC_VER */
    1157             : 
    1158             : #include <stdio.h>       /* for printing in malloc_stats */
    1159             : 
    1160             : #ifndef LACKS_ERRNO_H
    1161             : #include <errno.h>       /* for MALLOC_FAILURE_ACTION */
    1162             : #endif /* LACKS_ERRNO_H */
    1163             : #if FOOTERS
    1164             : #include <time.h>        /* for magic initialization */
    1165             : #endif /* FOOTERS */
    1166             : #ifndef LACKS_STDLIB_H
    1167             : #include <stdlib.h>      /* for abort() */
    1168             : #endif /* LACKS_STDLIB_H */
    1169             : #ifdef DEBUG
    1170             : #if ABORT_ON_ASSERT_FAILURE
    1171             : #define assert(x) if(!(x)) ABORT
    1172             : #else /* ABORT_ON_ASSERT_FAILURE */
    1173             : #include <assert.h>
    1174             : #endif /* ABORT_ON_ASSERT_FAILURE */
    1175             : #else  /* DEBUG */
    1176             : #define assert(x)
    1177             : #endif /* DEBUG */
    1178             : #ifndef LACKS_STRING_H
    1179             : #include <string.h>      /* for memset etc */
    1180             : #endif  /* LACKS_STRING_H */
    1181             : #if USE_BUILTIN_FFS
    1182             : #ifndef LACKS_STRINGS_H
    1183             : #include <strings.h>     /* for ffs */
    1184             : #endif /* LACKS_STRINGS_H */
    1185             : #endif /* USE_BUILTIN_FFS */
    1186             : #if HAVE_MMAP
    1187             : #ifndef LACKS_SYS_MMAN_H
    1188             : #include <sys/mman.h>    /* for mmap */
    1189             : #endif /* LACKS_SYS_MMAN_H */
    1190             : #ifndef LACKS_FCNTL_H
    1191             : #include <fcntl.h>
    1192             : #endif /* LACKS_FCNTL_H */
    1193             : #endif /* HAVE_MMAP */
    1194             : #if HAVE_MORECORE
    1195             : #ifndef LACKS_UNISTD_H
    1196             : #include <unistd.h>     /* for sbrk */
    1197             : #else /* LACKS_UNISTD_H */
    1198             : #if !defined(__FreeBSD__) && !defined(__OpenBSD__) && !defined(__NetBSD__)
    1199             : extern void*     sbrk(ptrdiff_t);
    1200             : #endif /* FreeBSD etc */
    1201             : #endif /* LACKS_UNISTD_H */
    1202             : #endif /* HAVE_MMAP */
    1203             : 
    1204             : #ifndef WIN32
    1205             : #ifndef malloc_getpagesize
    1206             : #  ifdef _SC_PAGESIZE         /* some SVR4 systems omit an underscore */
    1207             : #    ifndef _SC_PAGE_SIZE
    1208             : #      define _SC_PAGE_SIZE _SC_PAGESIZE
    1209             : #    endif
    1210             : #  endif
    1211             : #  ifdef _SC_PAGE_SIZE
    1212             : #    define malloc_getpagesize sysconf(_SC_PAGE_SIZE)
    1213             : #  else
    1214             : #    if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE)
    1215             :        extern size_t getpagesize();
    1216             : #      define malloc_getpagesize getpagesize()
    1217             : #    else
    1218             : #      ifdef WIN32 /* use supplied emulation of getpagesize */
    1219             : #        define malloc_getpagesize getpagesize()
    1220             : #      else
    1221             : #        ifndef LACKS_SYS_PARAM_H
    1222             : #          include <sys/param.h>
    1223             : #        endif
    1224             : #        ifdef EXEC_PAGESIZE
    1225             : #          define malloc_getpagesize EXEC_PAGESIZE
    1226             : #        else
    1227             : #          ifdef NBPG
    1228             : #            ifndef CLSIZE
    1229             : #              define malloc_getpagesize NBPG
    1230             : #            else
    1231             : #              define malloc_getpagesize (NBPG * CLSIZE)
    1232             : #            endif
    1233             : #          else
    1234             : #            ifdef NBPC
    1235             : #              define malloc_getpagesize NBPC
    1236             : #            else
    1237             : #              ifdef PAGESIZE
    1238             : #                define malloc_getpagesize PAGESIZE
    1239             : #              else /* just guess */
    1240             : #                define malloc_getpagesize ((size_t)4096U)
    1241             : #              endif
    1242             : #            endif
    1243             : #          endif
    1244             : #        endif
    1245             : #      endif
    1246             : #    endif
    1247             : #  endif
    1248             : #endif
    1249             : #endif
    1250             : 
    1251             : /* ------------------- size_t and alignment properties -------------------- */
    1252             : 
    1253             : /* The byte and bit size of a size_t */
    1254             : #define SIZE_T_SIZE         (sizeof(size_t))
    1255             : #define SIZE_T_BITSIZE      (sizeof(size_t) << 3)
    1256             : 
    1257             : /* Some constants coerced to size_t */
    1258             : /* Annoying but necessary to avoid errors on some platforms */
    1259             : #define SIZE_T_ZERO         ((size_t)0)
    1260             : #define SIZE_T_ONE          ((size_t)1)
    1261             : #define SIZE_T_TWO          ((size_t)2)
    1262             : #define TWO_SIZE_T_SIZES    (SIZE_T_SIZE<<1)
    1263             : #define FOUR_SIZE_T_SIZES   (SIZE_T_SIZE<<2)
    1264             : #define SIX_SIZE_T_SIZES    (FOUR_SIZE_T_SIZES+TWO_SIZE_T_SIZES)
    1265             : #define HALF_MAX_SIZE_T     (MAX_SIZE_T / 2U)
    1266             : 
    1267             : /* The bit mask value corresponding to MALLOC_ALIGNMENT */
    1268             : #define CHUNK_ALIGN_MASK    (MALLOC_ALIGNMENT - SIZE_T_ONE)
    1269             : 
    1270             : /* True if address a has acceptable alignment */
    1271             : #define is_aligned(A)       (((size_t)((A)) & (CHUNK_ALIGN_MASK)) == 0)
    1272             : 
    1273             : /* the number of bytes to offset an address to align it */
    1274             : #define align_offset(A)\
    1275             :  ((((size_t)(A) & CHUNK_ALIGN_MASK) == 0)? 0 :\
    1276             :   ((MALLOC_ALIGNMENT - ((size_t)(A) & CHUNK_ALIGN_MASK)) & CHUNK_ALIGN_MASK))
    1277             : 
    1278             : /* -------------------------- MMAP preliminaries ------------------------- */
    1279             : 
    1280             : /*
    1281             :    If HAVE_MORECORE or HAVE_MMAP are false, we just define calls and
    1282             :    checks to fail so compiler optimizer can delete code rather than
    1283             :    using so many "#if"s.
    1284             : */
    1285             : 
    1286             : 
    1287             : /* MORECORE and MMAP must return MFAIL on failure */
    1288             : #define MFAIL                ((void*)(MAX_SIZE_T))
    1289             : #define CMFAIL               ((char*)(MFAIL)) /* defined for convenience */
    1290             : 
    1291             : #if !HAVE_MMAP
    1292             : #define IS_MMAPPED_BIT       (SIZE_T_ZERO)
    1293             : #define USE_MMAP_BIT         (SIZE_T_ZERO)
    1294             : #define CALL_MMAP(s)         MFAIL
    1295             : #define CALL_MUNMAP(a, s)    (-1)
    1296             : #define DIRECT_MMAP(s)       MFAIL
    1297             : 
    1298             : #else /* HAVE_MMAP */
    1299             : #define IS_MMAPPED_BIT       (SIZE_T_ONE)
    1300             : #define USE_MMAP_BIT         (SIZE_T_ONE)
    1301             : 
    1302             : #if !defined(WIN32) && !defined (__OS2__)
    1303             : #define CALL_MUNMAP(a, s)    munmap((a), (s))
    1304             : #define MMAP_PROT            (PROT_READ|PROT_WRITE)
    1305             : #if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
    1306             : #define MAP_ANONYMOUS        MAP_ANON
    1307             : #endif /* MAP_ANON */
    1308             : #ifdef MAP_ANONYMOUS
    1309             : #define MMAP_FLAGS           (MAP_PRIVATE|MAP_ANONYMOUS)
    1310             : #define CALL_MMAP(s)         mmap(0, (s), MMAP_PROT, MMAP_FLAGS, -1, 0)
    1311             : #else /* MAP_ANONYMOUS */
    1312             : /*
    1313             :    Nearly all versions of mmap support MAP_ANONYMOUS, so the following
    1314             :    is unlikely to be needed, but is supplied just in case.
    1315             : */
    1316             : #define MMAP_FLAGS           (MAP_PRIVATE)
    1317             : static int dev_zero_fd = -1; /* Cached file descriptor for /dev/zero. */
    1318             : #define CALL_MMAP(s) ((dev_zero_fd < 0) ? \
    1319             :            (dev_zero_fd = open("/dev/zero", O_RDWR), \
    1320             :             mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0)) : \
    1321             :             mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0))
    1322             : #endif /* MAP_ANONYMOUS */
    1323             : 
    1324             : #define DIRECT_MMAP(s)       CALL_MMAP(s)
    1325             : 
    1326             : #elif defined(__OS2__)
    1327             : 
    1328             : /* OS/2 MMAP via DosAllocMem */
    1329             : static void* os2mmap(size_t size) {
    1330             :   void* ptr;
    1331             :   if (DosAllocMem(&ptr, size, OBJ_ANY|PAG_COMMIT|PAG_READ|PAG_WRITE) &&
    1332             :       DosAllocMem(&ptr, size, PAG_COMMIT|PAG_READ|PAG_WRITE))
    1333             :     return MFAIL;
    1334             :   return ptr;
    1335             : }
    1336             : 
    1337             : #define os2direct_mmap(n)     os2mmap(n)
    1338             : 
    1339             : /* This function supports releasing coalesed segments */
    1340             : static int os2munmap(void* ptr, size_t size) {
    1341             :   while (size) {
    1342             :     ULONG ulSize = size;
    1343             :     ULONG ulFlags = 0;
    1344             :     if (DosQueryMem(ptr, &ulSize, &ulFlags) != 0)
    1345             :       return -1;
    1346             :     if ((ulFlags & PAG_BASE) == 0 ||(ulFlags & PAG_COMMIT) == 0 ||
    1347             :         ulSize > size)
    1348             :       return -1;
    1349             :     if (DosFreeMem(ptr) != 0)
    1350             :       return -1;
    1351             :     ptr = ( void * ) ( ( char * ) ptr + ulSize );
    1352             :     size -= ulSize;
    1353             :   }
    1354             :   return 0;
    1355             : }
    1356             : 
    1357             : #define CALL_MMAP(s)         os2mmap(s)
    1358             : #define CALL_MUNMAP(a, s)    os2munmap((a), (s))
    1359             : #define DIRECT_MMAP(s)       os2direct_mmap(s)
    1360             : 
    1361             : #else /* WIN32 */
    1362             : 
    1363             : /* Win32 MMAP via VirtualAlloc */
    1364             : static void* win32mmap(size_t size) {
    1365             :   void* ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT, PAGE_EXECUTE_READWRITE);
    1366             :   return (ptr != 0)? ptr: MFAIL;
    1367             : }
    1368             : 
    1369             : /* For direct MMAP, use MEM_TOP_DOWN to minimize interference */
    1370             : static void* win32direct_mmap(size_t size) {
    1371             :   void* ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT|MEM_TOP_DOWN,
    1372             :                            PAGE_EXECUTE_READWRITE);
    1373             :   return (ptr != 0)? ptr: MFAIL;
    1374             : }
    1375             : 
    1376             : /* This function supports releasing coalesed segments */
    1377             : static int win32munmap(void* ptr, size_t size) {
    1378             :   MEMORY_BASIC_INFORMATION minfo;
    1379             :   char* cptr = ptr;
    1380             :   while (size) {
    1381             :     if (VirtualQuery(cptr, &minfo, sizeof(minfo)) == 0)
    1382             :       return -1;
    1383             :     if (minfo.BaseAddress != cptr || minfo.AllocationBase != cptr ||
    1384             :         minfo.State != MEM_COMMIT || minfo.RegionSize > size)
    1385             :       return -1;
    1386             :     if (VirtualFree(cptr, 0, MEM_RELEASE) == 0)
    1387             :       return -1;
    1388             :     cptr += minfo.RegionSize;
    1389             :     size -= minfo.RegionSize;
    1390             :   }
    1391             :   return 0;
    1392             : }
    1393             : 
    1394             : #define CALL_MMAP(s)         win32mmap(s)
    1395             : #define CALL_MUNMAP(a, s)    win32munmap((a), (s))
    1396             : #define DIRECT_MMAP(s)       win32direct_mmap(s)
    1397             : #endif /* WIN32 */
    1398             : #endif /* HAVE_MMAP */
    1399             : 
    1400             : #if HAVE_MMAP && HAVE_MREMAP
    1401             : #define CALL_MREMAP(addr, osz, nsz, mv) mremap((addr), (osz), (nsz), (mv))
    1402             : #else  /* HAVE_MMAP && HAVE_MREMAP */
    1403             : #define CALL_MREMAP(addr, osz, nsz, mv) MFAIL
    1404             : #endif /* HAVE_MMAP && HAVE_MREMAP */
    1405             : 
    1406             : #if HAVE_MORECORE
    1407             : #define CALL_MORECORE(S)     MORECORE(S)
    1408             : #else  /* HAVE_MORECORE */
    1409             : #define CALL_MORECORE(S)     MFAIL
    1410             : #endif /* HAVE_MORECORE */
    1411             : 
    1412             : /* mstate bit set if contiguous morecore disabled or failed */
    1413             : #define USE_NONCONTIGUOUS_BIT (4U)
    1414             : 
    1415             : /* segment bit set in create_mspace_with_base */
    1416             : #define EXTERN_BIT            (8U)
    1417             : 
    1418             : 
    1419             : /* --------------------------- Lock preliminaries ------------------------ */
    1420             : 
    1421             : #if USE_LOCKS
    1422             : 
    1423             : /*
    1424             :   When locks are defined, there are up to two global locks:
    1425             : 
    1426             :   * If HAVE_MORECORE, morecore_mutex protects sequences of calls to
    1427             :     MORECORE.  In many cases sys_alloc requires two calls, that should
    1428             :     not be interleaved with calls by other threads.  This does not
    1429             :     protect against direct calls to MORECORE by other threads not
    1430             :     using this lock, so there is still code to cope the best we can on
    1431             :     interference.
    1432             : 
    1433             :   * magic_init_mutex ensures that mparams.magic and other
    1434             :     unique mparams values are initialized only once.
    1435             : */
    1436             : 
    1437             : #if !defined(WIN32) && !defined(__OS2__)
    1438             : /* By default use posix locks */
    1439             : #include <pthread.h>
    1440             : #define MLOCK_T pthread_mutex_t
    1441             : #define INITIAL_LOCK(l)      pthread_mutex_init(l, NULL)
    1442             : #define ACQUIRE_LOCK(l)      pthread_mutex_lock(l)
    1443             : #define RELEASE_LOCK(l)      pthread_mutex_unlock(l)
    1444             : 
    1445             : #if HAVE_MORECORE
    1446             : static MLOCK_T morecore_mutex = PTHREAD_MUTEX_INITIALIZER;
    1447             : #endif /* HAVE_MORECORE */
    1448             : 
    1449             : static MLOCK_T magic_init_mutex = PTHREAD_MUTEX_INITIALIZER;
    1450             : 
    1451             : #elif defined(__OS2__)
    1452             : #define MLOCK_T HMTX
    1453             : #define INITIAL_LOCK(l)      DosCreateMutexSem(0, l, 0, FALSE)
    1454             : #define ACQUIRE_LOCK(l)      DosRequestMutexSem(*l, SEM_INDEFINITE_WAIT)
    1455             : #define RELEASE_LOCK(l)      DosReleaseMutexSem(*l)
    1456             : #if HAVE_MORECORE
    1457             : static MLOCK_T morecore_mutex;
    1458             : #endif /* HAVE_MORECORE */
    1459             : static MLOCK_T magic_init_mutex;
    1460             : 
    1461             : #else /* WIN32 */
    1462             : /*
    1463             :    Because lock-protected regions have bounded times, and there
    1464             :    are no recursive lock calls, we can use simple spinlocks.
    1465             : */
    1466             : 
    1467             : #define MLOCK_T long
    1468             : static int win32_acquire_lock (MLOCK_T *sl) {
    1469             :   for (;;) {
    1470             : #ifdef InterlockedCompareExchangePointer
    1471             :     if (!InterlockedCompareExchange(sl, 1, 0))
    1472             :       return 0;
    1473             : #else  /* Use older void* version */
    1474             :     if (!InterlockedCompareExchange((void**)sl, (void*)1, (void*)0))
    1475             :       return 0;
    1476             : #endif /* InterlockedCompareExchangePointer */
    1477             :     Sleep (0);
    1478             :   }
    1479             : }
    1480             : 
    1481             : static void win32_release_lock (MLOCK_T *sl) {
    1482             :   InterlockedExchange (sl, 0);
    1483             : }
    1484             : 
    1485             : #define INITIAL_LOCK(l)      *(l)=0
    1486             : #define ACQUIRE_LOCK(l)      win32_acquire_lock(l)
    1487             : #define RELEASE_LOCK(l)      win32_release_lock(l)
    1488             : #if HAVE_MORECORE
    1489             : static MLOCK_T morecore_mutex;
    1490             : #endif /* HAVE_MORECORE */
    1491             : static MLOCK_T magic_init_mutex;
    1492             : #endif /* WIN32 */
    1493             : 
    1494             : #define USE_LOCK_BIT               (2U)
    1495             : #else  /* USE_LOCKS */
    1496             : #define USE_LOCK_BIT               (0U)
    1497             : #define INITIAL_LOCK(l)
    1498             : #endif /* USE_LOCKS */
    1499             : 
    1500             : #if USE_LOCKS && HAVE_MORECORE
    1501             : #define ACQUIRE_MORECORE_LOCK()    ACQUIRE_LOCK(&morecore_mutex);
    1502             : #define RELEASE_MORECORE_LOCK()    RELEASE_LOCK(&morecore_mutex);
    1503             : #else /* USE_LOCKS && HAVE_MORECORE */
    1504             : #define ACQUIRE_MORECORE_LOCK()
    1505             : #define RELEASE_MORECORE_LOCK()
    1506             : #endif /* USE_LOCKS && HAVE_MORECORE */
    1507             : 
    1508             : #if USE_LOCKS
    1509             : #define ACQUIRE_MAGIC_INIT_LOCK()  ACQUIRE_LOCK(&magic_init_mutex);
    1510             : #define RELEASE_MAGIC_INIT_LOCK()  RELEASE_LOCK(&magic_init_mutex);
    1511             : #else  /* USE_LOCKS */
    1512             : #define ACQUIRE_MAGIC_INIT_LOCK()
    1513             : #define RELEASE_MAGIC_INIT_LOCK()
    1514             : #endif /* USE_LOCKS */
    1515             : 
    1516             : 
    1517             : /* -----------------------  Chunk representations ------------------------ */
    1518             : 
    1519             : /*
    1520             :   (The following includes lightly edited explanations by Colin Plumb.)
    1521             : 
    1522             :   The malloc_chunk declaration below is misleading (but accurate and
    1523             :   necessary).  It declares a "view" into memory allowing access to
    1524             :   necessary fields at known offsets from a given base.
    1525             : 
    1526             :   Chunks of memory are maintained using a `boundary tag' method as
    1527             :   originally described by Knuth.  (See the paper by Paul Wilson
    1528             :   ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a survey of such
    1529             :   techniques.)  Sizes of free chunks are stored both in the front of
    1530             :   each chunk and at the end.  This makes consolidating fragmented
    1531             :   chunks into bigger chunks fast.  The head fields also hold bits
    1532             :   representing whether chunks are free or in use.
    1533             : 
    1534             :   Here are some pictures to make it clearer.  They are "exploded" to
    1535             :   show that the state of a chunk can be thought of as extending from
    1536             :   the high 31 bits of the head field of its header through the
    1537             :   prev_foot and PINUSE_BIT bit of the following chunk header.
    1538             : 
    1539             :   A chunk that's in use looks like:
    1540             : 
    1541             :    chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    1542             :            | Size of previous chunk (if P = 1)                             |
    1543             :            +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    1544             :          +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P|
    1545             :          | Size of this chunk                                         1| +-+
    1546             :    mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    1547             :          |                                                               |
    1548             :          +-                                                             -+
    1549             :          |                                                               |
    1550             :          +-                                                             -+
    1551             :          |                                                               :
    1552             :          +-      size - sizeof(size_t) available payload bytes          -+
    1553             :          :                                                               |
    1554             :  chunk-> +-                                                             -+
    1555             :          |                                                               |
    1556             :          +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    1557             :        +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |1|
    1558             :        | Size of next chunk (may or may not be in use)               | +-+
    1559             :  mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    1560             : 
    1561             :     And if it's free, it looks like this:
    1562             : 
    1563             :    chunk-> +-                                                             -+
    1564             :            | User payload (must be in use, or we would have merged!)       |
    1565             :            +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    1566             :          +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P|
    1567             :          | Size of this chunk                                         0| +-+
    1568             :    mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    1569             :          | Next pointer                                                  |
    1570             :          +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    1571             :          | Prev pointer                                                  |
    1572             :          +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    1573             :          |                                                               :
    1574             :          +-      size - sizeof(struct chunk) unused bytes               -+
    1575             :          :                                                               |
    1576             :  chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    1577             :          | Size of this chunk                                            |
    1578             :          +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    1579             :        +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |0|
    1580             :        | Size of next chunk (must be in use, or we would have merged)| +-+
    1581             :  mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    1582             :        |                                                               :
    1583             :        +- User payload                                                -+
    1584             :        :                                                               |
    1585             :        +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    1586             :                                                                      |0|
    1587             :                                                                      +-+
    1588             :   Note that since we always merge adjacent free chunks, the chunks
    1589             :   adjacent to a free chunk must be in use.
    1590             : 
    1591             :   Given a pointer to a chunk (which can be derived trivially from the
    1592             :   payload pointer) we can, in O(1) time, find out whether the adjacent
    1593             :   chunks are free, and if so, unlink them from the lists that they
    1594             :   are on and merge them with the current chunk.
    1595             : 
    1596             :   Chunks always begin on even word boundaries, so the mem portion
    1597             :   (which is returned to the user) is also on an even word boundary, and
    1598             :   thus at least double-word aligned.
    1599             : 
    1600             :   The P (PINUSE_BIT) bit, stored in the unused low-order bit of the
    1601             :   chunk size (which is always a multiple of two words), is an in-use
    1602             :   bit for the *previous* chunk.  If that bit is *clear*, then the
    1603             :   word before the current chunk size contains the previous chunk
    1604             :   size, and can be used to find the front of the previous chunk.
    1605             :   The very first chunk allocated always has this bit set, preventing
    1606             :   access to non-existent (or non-owned) memory. If pinuse is set for
    1607             :   any given chunk, then you CANNOT determine the size of the
    1608             :   previous chunk, and might even get a memory addressing fault when
    1609             :   trying to do so.
    1610             : 
    1611             :   The C (CINUSE_BIT) bit, stored in the unused second-lowest bit of
    1612             :   the chunk size redundantly records whether the current chunk is
    1613             :   inuse. This redundancy enables usage checks within free and realloc,
    1614             :   and reduces indirection when freeing and consolidating chunks.
    1615             : 
    1616             :   Each freshly allocated chunk must have both cinuse and pinuse set.
    1617             :   That is, each allocated chunk borders either a previously allocated
    1618             :   and still in-use chunk, or the base of its memory arena. This is
    1619             :   ensured by making all allocations from the the `lowest' part of any
    1620             :   found chunk.  Further, no free chunk physically borders another one,
    1621             :   so each free chunk is known to be preceded and followed by either
    1622             :   inuse chunks or the ends of memory.
    1623             : 
    1624             :   Note that the `foot' of the current chunk is actually represented
    1625             :   as the prev_foot of the NEXT chunk. This makes it easier to
    1626             :   deal with alignments etc but can be very confusing when trying
    1627             :   to extend or adapt this code.
    1628             : 
    1629             :   The exceptions to all this are
    1630             : 
    1631             :      1. The special chunk `top' is the top-most available chunk (i.e.,
    1632             :         the one bordering the end of available memory). It is treated
    1633             :         specially.  Top is never included in any bin, is used only if
    1634             :         no other chunk is available, and is released back to the
    1635             :         system if it is very large (see M_TRIM_THRESHOLD).  In effect,
    1636             :         the top chunk is treated as larger (and thus less well
    1637             :         fitting) than any other available chunk.  The top chunk
    1638             :         doesn't update its trailing size field since there is no next
    1639             :         contiguous chunk that would have to index off it. However,
    1640             :         space is still allocated for it (TOP_FOOT_SIZE) to enable
    1641             :         separation or merging when space is extended.
    1642             : 
    1643             :      3. Chunks allocated via mmap, which have the lowest-order bit
    1644             :         (IS_MMAPPED_BIT) set in their prev_foot fields, and do not set
    1645             :         PINUSE_BIT in their head fields.  Because they are allocated
    1646             :         one-by-one, each must carry its own prev_foot field, which is
    1647             :         also used to hold the offset this chunk has within its mmapped
    1648             :         region, which is needed to preserve alignment. Each mmapped
    1649             :         chunk is trailed by the first two fields of a fake next-chunk
    1650             :         for sake of usage checks.
    1651             : 
    1652             : */
    1653             : 
    1654             : struct malloc_chunk {
    1655             :   size_t               prev_foot;  /* Size of previous chunk (if free).  */
    1656             :   size_t               head;       /* Size and inuse bits. */
    1657             :   struct malloc_chunk* fd;         /* double links -- used only if free. */
    1658             :   struct malloc_chunk* bk;
    1659             : };
    1660             : 
    1661             : typedef struct malloc_chunk  mchunk;
    1662             : typedef struct malloc_chunk* mchunkptr;
    1663             : typedef struct malloc_chunk* sbinptr;  /* The type of bins of chunks */
    1664             : typedef size_t bindex_t;               /* Described below */
    1665             : typedef unsigned int binmap_t;         /* Described below */
    1666             : typedef unsigned int flag_t;           /* The type of various bit flag sets */
    1667             : 
    1668             : /* ------------------- Chunks sizes and alignments ----------------------- */
    1669             : 
    1670             : #define MCHUNK_SIZE         (sizeof(mchunk))
    1671             : 
    1672             : #if FOOTERS
    1673             : #define CHUNK_OVERHEAD      (TWO_SIZE_T_SIZES)
    1674             : #else /* FOOTERS */
    1675             : #define CHUNK_OVERHEAD      (SIZE_T_SIZE)
    1676             : #endif /* FOOTERS */
    1677             : 
    1678             : /* MMapped chunks need a second word of overhead ... */
    1679             : #define MMAP_CHUNK_OVERHEAD (TWO_SIZE_T_SIZES)
    1680             : /* ... and additional padding for fake next-chunk at foot */
    1681             : #define MMAP_FOOT_PAD       (FOUR_SIZE_T_SIZES)
    1682             : 
    1683             : /* The smallest size we can malloc is an aligned minimal chunk */
    1684             : #define MIN_CHUNK_SIZE\
    1685             :   ((MCHUNK_SIZE + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK)
    1686             : 
    1687             : /* conversion from malloc headers to user pointers, and back */
    1688             : #define chunk2mem(p)        ((void*)((char*)(p)       + TWO_SIZE_T_SIZES))
    1689             : #define mem2chunk(mem)      ((mchunkptr)((char*)(mem) - TWO_SIZE_T_SIZES))
    1690             : /* chunk associated with aligned address A */
    1691             : #define align_as_chunk(A)   (mchunkptr)((A) + align_offset(chunk2mem(A)))
    1692             : 
    1693             : /* Bounds on request (not chunk) sizes. */
    1694             : #define MAX_REQUEST         ((-MIN_CHUNK_SIZE) << 2)
    1695             : #define MIN_REQUEST         (MIN_CHUNK_SIZE - CHUNK_OVERHEAD - SIZE_T_ONE)
    1696             : 
    1697             : /* pad request bytes into a usable size */
    1698             : #define pad_request(req) \
    1699             :    (((req) + CHUNK_OVERHEAD + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK)
    1700             : 
    1701             : /* pad request, checking for minimum (but not maximum) */
    1702             : #define request2size(req) \
    1703             :   (((req) < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(req))
    1704             : 
    1705             : 
    1706             : /* ------------------ Operations on head and foot fields ----------------- */
    1707             : 
    1708             : /*
    1709             :   The head field of a chunk is or'ed with PINUSE_BIT when previous
    1710             :   adjacent chunk in use, and or'ed with CINUSE_BIT if this chunk is in
    1711             :   use. If the chunk was obtained with mmap, the prev_foot field has
    1712             :   IS_MMAPPED_BIT set, otherwise holding the offset of the base of the
    1713             :   mmapped region to the base of the chunk.
    1714             : */
    1715             : 
    1716             : #define PINUSE_BIT          (SIZE_T_ONE)
    1717             : #define CINUSE_BIT          (SIZE_T_TWO)
    1718             : #define INUSE_BITS          (PINUSE_BIT|CINUSE_BIT)
    1719             : 
    1720             : /* Head value for fenceposts */
    1721             : #define FENCEPOST_HEAD      (INUSE_BITS|SIZE_T_SIZE)
    1722             : 
    1723             : /* extraction of fields from head words */
    1724             : #define cinuse(p)           ((p)->head & CINUSE_BIT)
    1725             : #define pinuse(p)           ((p)->head & PINUSE_BIT)
    1726             : #define chunksize(p)        ((p)->head & ~(INUSE_BITS))
    1727             : 
    1728             : #define clear_pinuse(p)     ((p)->head &= ~PINUSE_BIT)
    1729             : #define clear_cinuse(p)     ((p)->head &= ~CINUSE_BIT)
    1730             : 
    1731             : /* Treat space at ptr +/- offset as a chunk */
    1732             : #define chunk_plus_offset(p, s)  ((mchunkptr)(((char*)(p)) + (s)))
    1733             : #define chunk_minus_offset(p, s) ((mchunkptr)(((char*)(p)) - (s)))
    1734             : 
    1735             : /* Ptr to next or previous physical malloc_chunk. */
    1736             : #define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->head & ~INUSE_BITS)))
    1737             : #define prev_chunk(p) ((mchunkptr)( ((char*)(p)) - ((p)->prev_foot) ))
    1738             : 
    1739             : /* extract next chunk's pinuse bit */
    1740             : #define next_pinuse(p)  ((next_chunk(p)->head) & PINUSE_BIT)
    1741             : 
    1742             : /* Get/set size at footer */
    1743             : #define get_foot(p, s)  (((mchunkptr)((char*)(p) + (s)))->prev_foot)
    1744             : #define set_foot(p, s)  (((mchunkptr)((char*)(p) + (s)))->prev_foot = (s))
    1745             : 
    1746             : /* Set size, pinuse bit, and foot */
    1747             : #define set_size_and_pinuse_of_free_chunk(p, s)\
    1748             :   ((p)->head = (s|PINUSE_BIT), set_foot(p, s))
    1749             : 
    1750             : /* Set size, pinuse bit, foot, and clear next pinuse */
    1751             : #define set_free_with_pinuse(p, s, n)\
    1752             :   (clear_pinuse(n), set_size_and_pinuse_of_free_chunk(p, s))
    1753             : 
    1754             : #define is_mmapped(p)\
    1755             :   (!((p)->head & PINUSE_BIT) && ((p)->prev_foot & IS_MMAPPED_BIT))
    1756             : 
    1757             : /* Get the internal overhead associated with chunk p */
    1758             : #define overhead_for(p)\
    1759             :  (is_mmapped(p)? MMAP_CHUNK_OVERHEAD : CHUNK_OVERHEAD)
    1760             : 
    1761             : /* Return true if malloced space is not necessarily cleared */
    1762             : #if MMAP_CLEARS
    1763             : #define calloc_must_clear(p) (!is_mmapped(p))
    1764             : #else /* MMAP_CLEARS */
    1765             : #define calloc_must_clear(p) (1)
    1766             : #endif /* MMAP_CLEARS */
    1767             : 
    1768             : /* ---------------------- Overlaid data structures ----------------------- */
    1769             : 
    1770             : /*
    1771             :   When chunks are not in use, they are treated as nodes of either
    1772             :   lists or trees.
    1773             : 
    1774             :   "Small"  chunks are stored in circular doubly-linked lists, and look
    1775             :   like this:
    1776             : 
    1777             :     chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    1778             :             |             Size of previous chunk                            |
    1779             :             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    1780             :     `head:' |             Size of chunk, in bytes                         |P|
    1781             :       mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    1782             :             |             Forward pointer to next chunk in list             |
    1783             :             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    1784             :             |             Back pointer to previous chunk in list            |
    1785             :             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    1786             :             |             Unused space (may be 0 bytes long)                .
    1787             :             .                                                               .
    1788             :             .                                                               |
    1789             : nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    1790             :     `foot:' |             Size of chunk, in bytes                           |
    1791             :             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    1792             : 
    1793             :   Larger chunks are kept in a form of bitwise digital trees (aka
    1794             :   tries) keyed on chunksizes.  Because malloc_tree_chunks are only for
    1795             :   free chunks greater than 256 bytes, their size doesn't impose any
    1796             :   constraints on user chunk sizes.  Each node looks like:
    1797             : 
    1798             :     chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    1799             :             |             Size of previous chunk                            |
    1800             :             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    1801             :     `head:' |             Size of chunk, in bytes                         |P|
    1802             :       mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    1803             :             |             Forward pointer to next chunk of same size        |
    1804             :             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    1805             :             |             Back pointer to previous chunk of same size       |
    1806             :             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    1807             :             |             Pointer to left child (child[0])                  |
    1808             :             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    1809             :             |             Pointer to right child (child[1])                 |
    1810             :             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    1811             :             |             Pointer to parent                                 |
    1812             :             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    1813             :             |             bin index of this chunk                           |
    1814             :             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    1815             :             |             Unused space                                      .
    1816             :             .                                                               |
    1817             : nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    1818             :     `foot:' |             Size of chunk, in bytes                           |
    1819             :             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    1820             : 
    1821             :   Each tree holding treenodes is a tree of unique chunk sizes.  Chunks
    1822             :   of the same size are arranged in a circularly-linked list, with only
    1823             :   the oldest chunk (the next to be used, in our FIFO ordering)
    1824             :   actually in the tree.  (Tree members are distinguished by a non-null
    1825             :   parent pointer.)  If a chunk with the same size an an existing node
    1826             :   is inserted, it is linked off the existing node using pointers that
    1827             :   work in the same way as fd/bk pointers of small chunks.
    1828             : 
    1829             :   Each tree contains a power of 2 sized range of chunk sizes (the
    1830             :   smallest is 0x100 <= x < 0x180), which is is divided in half at each
    1831             :   tree level, with the chunks in the smaller half of the range (0x100
    1832             :   <= x < 0x140 for the top nose) in the left subtree and the larger
    1833             :   half (0x140 <= x < 0x180) in the right subtree.  This is, of course,
    1834             :   done by inspecting individual bits.
    1835             : 
    1836             :   Using these rules, each node's left subtree contains all smaller
    1837             :   sizes than its right subtree.  However, the node at the root of each
    1838             :   subtree has no particular ordering relationship to either.  (The
    1839             :   dividing line between the subtree sizes is based on trie relation.)
    1840             :   If we remove the last chunk of a given size from the interior of the
    1841             :   tree, we need to replace it with a leaf node.  The tree ordering
    1842             :   rules permit a node to be replaced by any leaf below it.
    1843             : 
    1844             :   The smallest chunk in a tree (a common operation in a best-fit
    1845             :   allocator) can be found by walking a path to the leftmost leaf in
    1846             :   the tree.  Unlike a usual binary tree, where we follow left child
    1847             :   pointers until we reach a null, here we follow the right child
    1848             :   pointer any time the left one is null, until we reach a leaf with
    1849             :   both child pointers null. The smallest chunk in the tree will be
    1850             :   somewhere along that path.
    1851             : 
    1852             :   The worst case number of steps to add, find, or remove a node is
    1853             :   bounded by the number of bits differentiating chunks within
    1854             :   bins. Under current bin calculations, this ranges from 6 up to 21
    1855             :   (for 32 bit sizes) or up to 53 (for 64 bit sizes). The typical case
    1856             :   is of course much better.
    1857             : */
    1858             : 
    1859             : struct malloc_tree_chunk {
    1860             :   /* The first four fields must be compatible with malloc_chunk */
    1861             :   size_t                    prev_foot;
    1862             :   size_t                    head;
    1863             :   struct malloc_tree_chunk* fd;
    1864             :   struct malloc_tree_chunk* bk;
    1865             : 
    1866             :   struct malloc_tree_chunk* child[2];
    1867             :   struct malloc_tree_chunk* parent;
    1868             :   bindex_t                  index;
    1869             : };
    1870             : 
    1871             : typedef struct malloc_tree_chunk  tchunk;
    1872             : typedef struct malloc_tree_chunk* tchunkptr;
    1873             : typedef struct malloc_tree_chunk* tbinptr; /* The type of bins of trees */
    1874             : 
    1875             : /* A little helper macro for trees */
    1876             : #define leftmost_child(t) ((t)->child[0] != 0? (t)->child[0] : (t)->child[1])
    1877             : 
    1878             : /* ----------------------------- Segments -------------------------------- */
    1879             : 
    1880             : /*
    1881             :   Each malloc space may include non-contiguous segments, held in a
    1882             :   list headed by an embedded malloc_segment record representing the
    1883             :   top-most space. Segments also include flags holding properties of
    1884             :   the space. Large chunks that are directly allocated by mmap are not
    1885             :   included in this list. They are instead independently created and
    1886             :   destroyed without otherwise keeping track of them.
    1887             : 
    1888             :   Segment management mainly comes into play for spaces allocated by
    1889             :   MMAP.  Any call to MMAP might or might not return memory that is
    1890             :   adjacent to an existing segment.  MORECORE normally contiguously
    1891             :   extends the current space, so this space is almost always adjacent,
    1892             :   which is simpler and faster to deal with. (This is why MORECORE is
    1893             :   used preferentially to MMAP when both are available -- see
    1894             :   sys_alloc.)  When allocating using MMAP, we don't use any of the
    1895             :   hinting mechanisms (inconsistently) supported in various
    1896             :   implementations of unix mmap, or distinguish reserving from
    1897             :   committing memory. Instead, we just ask for space, and exploit
    1898             :   contiguity when we get it.  It is probably possible to do
    1899             :   better than this on some systems, but no general scheme seems
    1900             :   to be significantly better.
    1901             : 
    1902             :   Management entails a simpler variant of the consolidation scheme
    1903             :   used for chunks to reduce fragmentation -- new adjacent memory is
    1904             :   normally prepended or appended to an existing segment. However,
    1905             :   there are limitations compared to chunk consolidation that mostly
    1906             :   reflect the fact that segment processing is relatively infrequent
    1907             :   (occurring only when getting memory from system) and that we
    1908             :   don't expect to have huge numbers of segments:
    1909             : 
    1910             :   * Segments are not indexed, so traversal requires linear scans.  (It
    1911             :     would be possible to index these, but is not worth the extra
    1912             :     overhead and complexity for most programs on most platforms.)
    1913             :   * New segments are only appended to old ones when holding top-most
    1914             :     memory; if they cannot be prepended to others, they are held in
    1915             :     different segments.
    1916             : 
    1917             :   Except for the top-most segment of an mstate, each segment record
    1918             :   is kept at the tail of its segment. Segments are added by pushing
    1919             :   segment records onto the list headed by &mstate.seg for the
    1920             :   containing mstate.
    1921             : 
    1922             :   Segment flags control allocation/merge/deallocation policies:
    1923             :   * If EXTERN_BIT set, then we did not allocate this segment,
    1924             :     and so should not try to deallocate or merge with others.
    1925             :     (This currently holds only for the initial segment passed
    1926             :     into create_mspace_with_base.)
    1927             :   * If IS_MMAPPED_BIT set, the segment may be merged with
    1928             :     other surrounding mmapped segments and trimmed/de-allocated
    1929             :     using munmap.
    1930             :   * If neither bit is set, then the segment was obtained using
    1931             :     MORECORE so can be merged with surrounding MORECORE'd segments
    1932             :     and deallocated/trimmed using MORECORE with negative arguments.
    1933             : */
    1934             : 
    1935             : struct malloc_segment {
    1936             :   char*        base;             /* base address */
    1937             :   size_t       size;             /* allocated size */
    1938             :   struct malloc_segment* next;   /* ptr to next segment */
    1939             : #if FFI_MMAP_EXEC_WRIT
    1940             :   /* The mmap magic is supposed to store the address of the executable
    1941             :      segment at the very end of the requested block.  */
    1942             : 
    1943             : # define mmap_exec_offset(b,s) (*(ptrdiff_t*)((b)+(s)-sizeof(ptrdiff_t)))
    1944             : 
    1945             :   /* We can only merge segments if their corresponding executable
    1946             :      segments are at identical offsets.  */
    1947             : # define check_segment_merge(S,b,s) \
    1948             :   (mmap_exec_offset((b),(s)) == (S)->exec_offset)
    1949             : 
    1950             : # define add_segment_exec_offset(p,S) ((char*)(p) + (S)->exec_offset)
    1951             : # define sub_segment_exec_offset(p,S) ((char*)(p) - (S)->exec_offset)
    1952             : 
    1953             :   /* The removal of sflags only works with HAVE_MORECORE == 0.  */
    1954             : 
    1955             : # define get_segment_flags(S)   (IS_MMAPPED_BIT)
    1956             : # define set_segment_flags(S,v) \
    1957             :   (((v) != IS_MMAPPED_BIT) ? (ABORT, (v)) :                             \
    1958             :    (((S)->exec_offset =                                                      \
    1959             :      mmap_exec_offset((S)->base, (S)->size)),                             \
    1960             :     (mmap_exec_offset((S)->base + (S)->exec_offset, (S)->size) !=      \
    1961             :      (S)->exec_offset) ? (ABORT, (v)) :                                      \
    1962             :    (mmap_exec_offset((S)->base, (S)->size) = 0), (v)))
    1963             : 
    1964             :   /* We use an offset here, instead of a pointer, because then, when
    1965             :      base changes, we don't have to modify this.  On architectures
    1966             :      with segmented addresses, this might not work.  */
    1967             :   ptrdiff_t    exec_offset;
    1968             : #else
    1969             : 
    1970             : # define get_segment_flags(S)   ((S)->sflags)
    1971             : # define set_segment_flags(S,v) ((S)->sflags = (v))
    1972             : # define check_segment_merge(S,b,s) (1)
    1973             : 
    1974             :   flag_t       sflags;           /* mmap and extern flag */
    1975             : #endif
    1976             : };
    1977             : 
    1978             : #define is_mmapped_segment(S)  (get_segment_flags(S) & IS_MMAPPED_BIT)
    1979             : #define is_extern_segment(S)   (get_segment_flags(S) & EXTERN_BIT)
    1980             : 
    1981             : typedef struct malloc_segment  msegment;
    1982             : typedef struct malloc_segment* msegmentptr;
    1983             : 
    1984             : /* ---------------------------- malloc_state ----------------------------- */
    1985             : 
    1986             : /*
    1987             :    A malloc_state holds all of the bookkeeping for a space.
    1988             :    The main fields are:
    1989             : 
    1990             :   Top
    1991             :     The topmost chunk of the currently active segment. Its size is
    1992             :     cached in topsize.  The actual size of topmost space is
    1993             :     topsize+TOP_FOOT_SIZE, which includes space reserved for adding
    1994             :     fenceposts and segment records if necessary when getting more
    1995             :     space from the system.  The size at which to autotrim top is
    1996             :     cached from mparams in trim_check, except that it is disabled if
    1997             :     an autotrim fails.
    1998             : 
    1999             :   Designated victim (dv)
    2000             :     This is the preferred chunk for servicing small requests that
    2001             :     don't have exact fits.  It is normally the chunk split off most
    2002             :     recently to service another small request.  Its size is cached in
    2003             :     dvsize. The link fields of this chunk are not maintained since it
    2004             :     is not kept in a bin.
    2005             : 
    2006             :   SmallBins
    2007             :     An array of bin headers for free chunks.  These bins hold chunks
    2008             :     with sizes less than MIN_LARGE_SIZE bytes. Each bin contains
    2009             :     chunks of all the same size, spaced 8 bytes apart.  To simplify
    2010             :     use in double-linked lists, each bin header acts as a malloc_chunk
    2011             :     pointing to the real first node, if it exists (else pointing to
    2012             :     itself).  This avoids special-casing for headers.  But to avoid
    2013             :     waste, we allocate only the fd/bk pointers of bins, and then use
    2014             :     repositioning tricks to treat these as the fields of a chunk.
    2015             : 
    2016             :   TreeBins
    2017             :     Treebins are pointers to the roots of trees holding a range of
    2018             :     sizes. There are 2 equally spaced treebins for each power of two
    2019             :     from TREE_SHIFT to TREE_SHIFT+16. The last bin holds anything
    2020             :     larger.
    2021             : 
    2022             :   Bin maps
    2023             :     There is one bit map for small bins ("smallmap") and one for
    2024             :     treebins ("treemap).  Each bin sets its bit when non-empty, and
    2025             :     clears the bit when empty.  Bit operations are then used to avoid
    2026             :     bin-by-bin searching -- nearly all "search" is done without ever
    2027             :     looking at bins that won't be selected.  The bit maps
    2028             :     conservatively use 32 bits per map word, even if on 64bit system.
    2029             :     For a good description of some of the bit-based techniques used
    2030             :     here, see Henry S. Warren Jr's book "Hacker's Delight" (and
    2031             :     supplement at http://hackersdelight.org/). Many of these are
    2032             :     intended to reduce the branchiness of paths through malloc etc, as
    2033             :     well as to reduce the number of memory locations read or written.
    2034             : 
    2035             :   Segments
    2036             :     A list of segments headed by an embedded malloc_segment record
    2037             :     representing the initial space.
    2038             : 
    2039             :   Address check support
    2040             :     The least_addr field is the least address ever obtained from
    2041             :     MORECORE or MMAP. Attempted frees and reallocs of any address less
    2042             :     than this are trapped (unless INSECURE is defined).
    2043             : 
    2044             :   Magic tag
    2045             :     A cross-check field that should always hold same value as mparams.magic.
    2046             : 
    2047             :   Flags
    2048             :     Bits recording whether to use MMAP, locks, or contiguous MORECORE
    2049             : 
    2050             :   Statistics
    2051             :     Each space keeps track of current and maximum system memory
    2052             :     obtained via MORECORE or MMAP.
    2053             : 
    2054             :   Locking
    2055             :     If USE_LOCKS is defined, the "mutex" lock is acquired and released
    2056             :     around every public call using this mspace.
    2057             : */
    2058             : 
    2059             : /* Bin types, widths and sizes */
    2060             : #define NSMALLBINS        (32U)
    2061             : #define NTREEBINS         (32U)
    2062             : #define SMALLBIN_SHIFT    (3U)
    2063             : #define SMALLBIN_WIDTH    (SIZE_T_ONE << SMALLBIN_SHIFT)
    2064             : #define TREEBIN_SHIFT     (8U)
    2065             : #define MIN_LARGE_SIZE    (SIZE_T_ONE << TREEBIN_SHIFT)
    2066             : #define MAX_SMALL_SIZE    (MIN_LARGE_SIZE - SIZE_T_ONE)
    2067             : #define MAX_SMALL_REQUEST (MAX_SMALL_SIZE - CHUNK_ALIGN_MASK - CHUNK_OVERHEAD)
    2068             : 
    2069             : struct malloc_state {
    2070             :   binmap_t   smallmap;
    2071             :   binmap_t   treemap;
    2072             :   size_t     dvsize;
    2073             :   size_t     topsize;
    2074             :   char*      least_addr;
    2075             :   mchunkptr  dv;
    2076             :   mchunkptr  top;
    2077             :   size_t     trim_check;
    2078             :   size_t     magic;
    2079             :   mchunkptr  smallbins[(NSMALLBINS+1)*2];
    2080             :   tbinptr    treebins[NTREEBINS];
    2081             :   size_t     footprint;
    2082             :   size_t     max_footprint;
    2083             :   flag_t     mflags;
    2084             : #if USE_LOCKS
    2085             :   MLOCK_T    mutex;     /* locate lock among fields that rarely change */
    2086             : #endif /* USE_LOCKS */
    2087             :   msegment   seg;
    2088             : };
    2089             : 
    2090             : typedef struct malloc_state*    mstate;
    2091             : 
    2092             : /* ------------- Global malloc_state and malloc_params ------------------- */
    2093             : 
    2094             : /*
    2095             :   malloc_params holds global properties, including those that can be
    2096             :   dynamically set using mallopt. There is a single instance, mparams,
    2097             :   initialized in init_mparams.
    2098             : */
    2099             : 
    2100             : struct malloc_params {
    2101             :   size_t magic;
    2102             :   size_t page_size;
    2103             :   size_t granularity;
    2104             :   size_t mmap_threshold;
    2105             :   size_t trim_threshold;
    2106             :   flag_t default_mflags;
    2107             : };
    2108             : 
    2109             : static struct malloc_params mparams;
    2110             : 
    2111             : /* The global malloc_state used for all non-"mspace" calls */
    2112             : static struct malloc_state _gm_;
    2113             : #define gm                 (&_gm_)
    2114             : #define is_global(M)       ((M) == &_gm_)
    2115             : #define is_initialized(M)  ((M)->top != 0)
    2116             : 
    2117             : /* -------------------------- system alloc setup ------------------------- */
    2118             : 
    2119             : /* Operations on mflags */
    2120             : 
    2121             : #define use_lock(M)           ((M)->mflags &   USE_LOCK_BIT)
    2122             : #define enable_lock(M)        ((M)->mflags |=  USE_LOCK_BIT)
    2123             : #define disable_lock(M)       ((M)->mflags &= ~USE_LOCK_BIT)
    2124             : 
    2125             : #define use_mmap(M)           ((M)->mflags &   USE_MMAP_BIT)
    2126             : #define enable_mmap(M)        ((M)->mflags |=  USE_MMAP_BIT)
    2127             : #define disable_mmap(M)       ((M)->mflags &= ~USE_MMAP_BIT)
    2128             : 
    2129             : #define use_noncontiguous(M)  ((M)->mflags &   USE_NONCONTIGUOUS_BIT)
    2130             : #define disable_contiguous(M) ((M)->mflags |=  USE_NONCONTIGUOUS_BIT)
    2131             : 
    2132             : #define set_lock(M,L)\
    2133             :  ((M)->mflags = (L)?\
    2134             :   ((M)->mflags | USE_LOCK_BIT) :\
    2135             :   ((M)->mflags & ~USE_LOCK_BIT))
    2136             : 
    2137             : /* page-align a size */
    2138             : #define page_align(S)\
    2139             :  (((S) + (mparams.page_size)) & ~(mparams.page_size - SIZE_T_ONE))
    2140             : 
    2141             : /* granularity-align a size */
    2142             : #define granularity_align(S)\
    2143             :   (((S) + (mparams.granularity)) & ~(mparams.granularity - SIZE_T_ONE))
    2144             : 
    2145             : #define is_page_aligned(S)\
    2146             :    (((size_t)(S) & (mparams.page_size - SIZE_T_ONE)) == 0)
    2147             : #define is_granularity_aligned(S)\
    2148             :    (((size_t)(S) & (mparams.granularity - SIZE_T_ONE)) == 0)
    2149             : 
    2150             : /*  True if segment S holds address A */
    2151             : #define segment_holds(S, A)\
    2152             :   ((char*)(A) >= S->base && (char*)(A) < S->base + S->size)
    2153             : 
    2154             : /* Return segment holding given address */
    2155           0 : static msegmentptr segment_holding(mstate m, char* addr) {
    2156           0 :   msegmentptr sp = &m->seg;
    2157             :   for (;;) {
    2158           0 :     if (addr >= sp->base && addr < sp->base + sp->size)
    2159           0 :       return sp;
    2160           0 :     if ((sp = sp->next) == 0)
    2161           0 :       return 0;
    2162             :   }
    2163             : }
    2164             : 
    2165             : /* Return true if segment contains a segment link */
    2166           0 : static int has_segment_link(mstate m, msegmentptr ss) {
    2167           0 :   msegmentptr sp = &m->seg;
    2168             :   for (;;) {
    2169           0 :     if ((char*)sp >= ss->base && (char*)sp < ss->base + ss->size)
    2170           0 :       return 1;
    2171           0 :     if ((sp = sp->next) == 0)
    2172           0 :       return 0;
    2173             :   }
    2174             : }
    2175             : 
    2176             : #ifndef MORECORE_CANNOT_TRIM
    2177             : #define should_trim(M,s)  ((s) > (M)->trim_check)
    2178             : #else  /* MORECORE_CANNOT_TRIM */
    2179             : #define should_trim(M,s)  (0)
    2180             : #endif /* MORECORE_CANNOT_TRIM */
    2181             : 
    2182             : /*
    2183             :   TOP_FOOT_SIZE is padding at the end of a segment, including space
    2184             :   that may be needed to place segment records and fenceposts when new
    2185             :   noncontiguous segments are added.
    2186             : */
    2187             : #define TOP_FOOT_SIZE\
    2188             :   (align_offset(chunk2mem(0))+pad_request(sizeof(struct malloc_segment))+MIN_CHUNK_SIZE)
    2189             : 
    2190             : 
    2191             : /* -------------------------------  Hooks -------------------------------- */
    2192             : 
    2193             : /*
    2194             :   PREACTION should be defined to return 0 on success, and nonzero on
    2195             :   failure. If you are not using locking, you can redefine these to do
    2196             :   anything you like.
    2197             : */
    2198             : 
    2199             : #if USE_LOCKS
    2200             : 
    2201             : /* Ensure locks are initialized */
    2202             : #define GLOBALLY_INITIALIZE() (mparams.page_size == 0 && init_mparams())
    2203             : 
    2204             : #define PREACTION(M)  ((GLOBALLY_INITIALIZE() || use_lock(M))? ACQUIRE_LOCK(&(M)->mutex) : 0)
    2205             : #define POSTACTION(M) { if (use_lock(M)) RELEASE_LOCK(&(M)->mutex); }
    2206             : #else /* USE_LOCKS */
    2207             : 
    2208             : #ifndef PREACTION
    2209             : #define PREACTION(M) (0)
    2210             : #endif  /* PREACTION */
    2211             : 
    2212             : #ifndef POSTACTION
    2213             : #define POSTACTION(M)
    2214             : #endif  /* POSTACTION */
    2215             : 
    2216             : #endif /* USE_LOCKS */
    2217             : 
    2218             : /*
    2219             :   CORRUPTION_ERROR_ACTION is triggered upon detected bad addresses.
    2220             :   USAGE_ERROR_ACTION is triggered on detected bad frees and
    2221             :   reallocs. The argument p is an address that might have triggered the
    2222             :   fault. It is ignored by the two predefined actions, but might be
    2223             :   useful in custom actions that try to help diagnose errors.
    2224             : */
    2225             : 
    2226             : #if PROCEED_ON_ERROR
    2227             : 
    2228             : /* A count of the number of corruption errors causing resets */
    2229             : int malloc_corruption_error_count;
    2230             : 
    2231             : /* default corruption action */
    2232             : static void reset_on_error(mstate m);
    2233             : 
    2234             : #define CORRUPTION_ERROR_ACTION(m)  reset_on_error(m)
    2235             : #define USAGE_ERROR_ACTION(m, p)
    2236             : 
    2237             : #else /* PROCEED_ON_ERROR */
    2238             : 
    2239             : #ifndef CORRUPTION_ERROR_ACTION
    2240             : #define CORRUPTION_ERROR_ACTION(m) ABORT
    2241             : #endif /* CORRUPTION_ERROR_ACTION */
    2242             : 
    2243             : #ifndef USAGE_ERROR_ACTION
    2244             : #define USAGE_ERROR_ACTION(m,p) ABORT
    2245             : #endif /* USAGE_ERROR_ACTION */
    2246             : 
    2247             : #endif /* PROCEED_ON_ERROR */
    2248             : 
    2249             : /* -------------------------- Debugging setup ---------------------------- */
    2250             : 
    2251             : #if ! DEBUG
    2252             : 
    2253             : #define check_free_chunk(M,P)
    2254             : #define check_inuse_chunk(M,P)
    2255             : #define check_malloced_chunk(M,P,N)
    2256             : #define check_mmapped_chunk(M,P)
    2257             : #define check_malloc_state(M)
    2258             : #define check_top_chunk(M,P)
    2259             : 
    2260             : #else /* DEBUG */
    2261             : #define check_free_chunk(M,P)       do_check_free_chunk(M,P)
    2262             : #define check_inuse_chunk(M,P)      do_check_inuse_chunk(M,P)
    2263             : #define check_top_chunk(M,P)        do_check_top_chunk(M,P)
    2264             : #define check_malloced_chunk(M,P,N) do_check_malloced_chunk(M,P,N)
    2265             : #define check_mmapped_chunk(M,P)    do_check_mmapped_chunk(M,P)
    2266             : #define check_malloc_state(M)       do_check_malloc_state(M)
    2267             : 
    2268             : static void   do_check_any_chunk(mstate m, mchunkptr p);
    2269             : static void   do_check_top_chunk(mstate m, mchunkptr p);
    2270             : static void   do_check_mmapped_chunk(mstate m, mchunkptr p);
    2271             : static void   do_check_inuse_chunk(mstate m, mchunkptr p);
    2272             : static void   do_check_free_chunk(mstate m, mchunkptr p);
    2273             : static void   do_check_malloced_chunk(mstate m, void* mem, size_t s);
    2274             : static void   do_check_tree(mstate m, tchunkptr t);
    2275             : static void   do_check_treebin(mstate m, bindex_t i);
    2276             : static void   do_check_smallbin(mstate m, bindex_t i);
    2277             : static void   do_check_malloc_state(mstate m);
    2278             : static int    bin_find(mstate m, mchunkptr x);
    2279             : static size_t traverse_and_check(mstate m);
    2280             : #endif /* DEBUG */
    2281             : 
    2282             : /* ---------------------------- Indexing Bins ---------------------------- */
    2283             : 
    2284             : #define is_small(s)         (((s) >> SMALLBIN_SHIFT) < NSMALLBINS)
    2285             : #define small_index(s)      ((s)  >> SMALLBIN_SHIFT)
    2286             : #define small_index2size(i) ((i)  << SMALLBIN_SHIFT)
    2287             : #define MIN_SMALL_INDEX     (small_index(MIN_CHUNK_SIZE))
    2288             : 
    2289             : /* addressing by index. See above about smallbin repositioning */
    2290             : #define smallbin_at(M, i)   ((sbinptr)((char*)&((M)->smallbins[(i)<<1])))
    2291             : #define treebin_at(M,i)     (&((M)->treebins[i]))
    2292             : 
    2293             : /* assign tree index for size S to variable I */
    2294             : #if defined(__GNUC__) && defined(i386)
    2295             : #define compute_tree_index(S, I)\
    2296             : {\
    2297             :   size_t X = S >> TREEBIN_SHIFT;\
    2298             :   if (X == 0)\
    2299             :     I = 0;\
    2300             :   else if (X > 0xFFFF)\
    2301             :     I = NTREEBINS-1;\
    2302             :   else {\
    2303             :     unsigned int K;\
    2304             :     __asm__("bsrl %1,%0\n\t" : "=r" (K) : "rm"  (X));\
    2305             :     I =  (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\
    2306             :   }\
    2307             : }
    2308             : #else /* GNUC */
    2309             : #define compute_tree_index(S, I)\
    2310             : {\
    2311             :   size_t X = S >> TREEBIN_SHIFT;\
    2312             :   if (X == 0)\
    2313             :     I = 0;\
    2314             :   else if (X > 0xFFFF)\
    2315             :     I = NTREEBINS-1;\
    2316             :   else {\
    2317             :     unsigned int Y = (unsigned int)X;\
    2318             :     unsigned int N = ((Y - 0x100) >> 16) & 8;\
    2319             :     unsigned int K = (((Y <<= N) - 0x1000) >> 16) & 4;\
    2320             :     N += K;\
    2321             :     N += K = (((Y <<= K) - 0x4000) >> 16) & 2;\
    2322             :     K = 14 - N + ((Y <<= K) >> 15);\
    2323             :     I = (K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1));\
    2324             :   }\
    2325             : }
    2326             : #endif /* GNUC */
    2327             : 
    2328             : /* Bit representing maximum resolved size in a treebin at i */
    2329             : #define bit_for_tree_index(i) \
    2330             :    (i == NTREEBINS-1)? (SIZE_T_BITSIZE-1) : (((i) >> 1) + TREEBIN_SHIFT - 2)
    2331             : 
    2332             : /* Shift placing maximum resolved bit in a treebin at i as sign bit */
    2333             : #define leftshift_for_tree_index(i) \
    2334             :    ((i == NTREEBINS-1)? 0 : \
    2335             :     ((SIZE_T_BITSIZE-SIZE_T_ONE) - (((i) >> 1) + TREEBIN_SHIFT - 2)))
    2336             : 
    2337             : /* The size of the smallest chunk held in bin with index i */
    2338             : #define minsize_for_tree_index(i) \
    2339             :    ((SIZE_T_ONE << (((i) >> 1) + TREEBIN_SHIFT)) |  \
    2340             :    (((size_t)((i) & SIZE_T_ONE)) << (((i) >> 1) + TREEBIN_SHIFT - 1)))
    2341             : 
    2342             : 
    2343             : /* ------------------------ Operations on bin maps ----------------------- */
    2344             : 
    2345             : /* bit corresponding to given index */
    2346             : #define idx2bit(i)              ((binmap_t)(1) << (i))
    2347             : 
    2348             : /* Mark/Clear bits with given index */
    2349             : #define mark_smallmap(M,i)      ((M)->smallmap |=  idx2bit(i))
    2350             : #define clear_smallmap(M,i)     ((M)->smallmap &= ~idx2bit(i))
    2351             : #define smallmap_is_marked(M,i) ((M)->smallmap &   idx2bit(i))
    2352             : 
    2353             : #define mark_treemap(M,i)       ((M)->treemap  |=  idx2bit(i))
    2354             : #define clear_treemap(M,i)      ((M)->treemap  &= ~idx2bit(i))
    2355             : #define treemap_is_marked(M,i)  ((M)->treemap  &   idx2bit(i))
    2356             : 
    2357             : /* index corresponding to given bit */
    2358             : 
    2359             : #if defined(__GNUC__) && defined(i386)
    2360             : #define compute_bit2idx(X, I)\
    2361             : {\
    2362             :   unsigned int J;\
    2363             :   __asm__("bsfl %1,%0\n\t" : "=r" (J) : "rm" (X));\
    2364             :   I = (bindex_t)J;\
    2365             : }
    2366             : 
    2367             : #else /* GNUC */
    2368             : #if  USE_BUILTIN_FFS
    2369             : #define compute_bit2idx(X, I) I = ffs(X)-1
    2370             : 
    2371             : #else /* USE_BUILTIN_FFS */
    2372             : #define compute_bit2idx(X, I)\
    2373             : {\
    2374             :   unsigned int Y = X - 1;\
    2375             :   unsigned int K = Y >> (16-4) & 16;\
    2376             :   unsigned int N = K;        Y >>= K;\
    2377             :   N += K = Y >> (8-3) &  8;  Y >>= K;\
    2378             :   N += K = Y >> (4-2) &  4;  Y >>= K;\
    2379             :   N += K = Y >> (2-1) &  2;  Y >>= K;\
    2380             :   N += K = Y >> (1-0) &  1;  Y >>= K;\
    2381             :   I = (bindex_t)(N + Y);\
    2382             : }
    2383             : #endif /* USE_BUILTIN_FFS */
    2384             : #endif /* GNUC */
    2385             : 
    2386             : /* isolate the least set bit of a bitmap */
    2387             : #define least_bit(x)         ((x) & -(x))
    2388             : 
    2389             : /* mask with all bits to left of least bit of x on */
    2390             : #define left_bits(x)         ((x<<1) | -(x<<1))
    2391             : 
    2392             : /* mask with all bits to left of or equal to least bit of x on */
    2393             : #define same_or_left_bits(x) ((x) | -(x))
    2394             : 
    2395             : 
    2396             : /* ----------------------- Runtime Check Support ------------------------- */
    2397             : 
    2398             : /*
    2399             :   For security, the main invariant is that malloc/free/etc never
    2400             :   writes to a static address other than malloc_state, unless static
    2401             :   malloc_state itself has been corrupted, which cannot occur via
    2402             :   malloc (because of these checks). In essence this means that we
    2403             :   believe all pointers, sizes, maps etc held in malloc_state, but
    2404             :   check all of those linked or offsetted from other embedded data
    2405             :   structures.  These checks are interspersed with main code in a way
    2406             :   that tends to minimize their run-time cost.
    2407             : 
    2408             :   When FOOTERS is defined, in addition to range checking, we also
    2409             :   verify footer fields of inuse chunks, which can be used guarantee
    2410             :   that the mstate controlling malloc/free is intact.  This is a
    2411             :   streamlined version of the approach described by William Robertson
    2412             :   et al in "Run-time Detection of Heap-based Overflows" LISA'03
    2413             :   http://www.usenix.org/events/lisa03/tech/robertson.html The footer
    2414             :   of an inuse chunk holds the xor of its mstate and a random seed,
    2415             :   that is checked upon calls to free() and realloc().  This is
    2416             :   (probablistically) unguessable from outside the program, but can be
    2417             :   computed by any code successfully malloc'ing any chunk, so does not
    2418             :   itself provide protection against code that has already broken
    2419             :   security through some other means.  Unlike Robertson et al, we
    2420             :   always dynamically check addresses of all offset chunks (previous,
    2421             :   next, etc). This turns out to be cheaper than relying on hashes.
    2422             : */
    2423             : 
    2424             : #if !INSECURE
    2425             : /* Check if address a is at least as high as any from MORECORE or MMAP */
    2426             : #define ok_address(M, a) ((char*)(a) >= (M)->least_addr)
    2427             : /* Check if address of next chunk n is higher than base chunk p */
    2428             : #define ok_next(p, n)    ((char*)(p) < (char*)(n))
    2429             : /* Check if p has its cinuse bit on */
    2430             : #define ok_cinuse(p)     cinuse(p)
    2431             : /* Check if p has its pinuse bit on */
    2432             : #define ok_pinuse(p)     pinuse(p)
    2433             : 
    2434             : #else /* !INSECURE */
    2435             : #define ok_address(M, a) (1)
    2436             : #define ok_next(b, n)    (1)
    2437             : #define ok_cinuse(p)     (1)
    2438             : #define ok_pinuse(p)     (1)
    2439             : #endif /* !INSECURE */
    2440             : 
    2441             : #if (FOOTERS && !INSECURE)
    2442             : /* Check if (alleged) mstate m has expected magic field */
    2443             : #define ok_magic(M)      ((M)->magic == mparams.magic)
    2444             : #else  /* (FOOTERS && !INSECURE) */
    2445             : #define ok_magic(M)      (1)
    2446             : #endif /* (FOOTERS && !INSECURE) */
    2447             : 
    2448             : 
    2449             : /* In gcc, use __builtin_expect to minimize impact of checks */
    2450             : #if !INSECURE
    2451             : #if defined(__GNUC__) && __GNUC__ >= 3
    2452             : #define RTCHECK(e)  __builtin_expect(e, 1)
    2453             : #else /* GNUC */
    2454             : #define RTCHECK(e)  (e)
    2455             : #endif /* GNUC */
    2456             : #else /* !INSECURE */
    2457             : #define RTCHECK(e)  (1)
    2458             : #endif /* !INSECURE */
    2459             : 
    2460             : /* macros to set up inuse chunks with or without footers */
    2461             : 
    2462             : #if !FOOTERS
    2463             : 
    2464             : #define mark_inuse_foot(M,p,s)
    2465             : 
    2466             : /* Set cinuse bit and pinuse bit of next chunk */
    2467             : #define set_inuse(M,p,s)\
    2468             :   ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\
    2469             :   ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT)
    2470             : 
    2471             : /* Set cinuse and pinuse of this chunk and pinuse of next chunk */
    2472             : #define set_inuse_and_pinuse(M,p,s)\
    2473             :   ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
    2474             :   ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT)
    2475             : 
    2476             : /* Set size, cinuse and pinuse bit of this chunk */
    2477             : #define set_size_and_pinuse_of_inuse_chunk(M, p, s)\
    2478             :   ((p)->head = (s|PINUSE_BIT|CINUSE_BIT))
    2479             : 
    2480             : #else /* FOOTERS */
    2481             : 
    2482             : /* Set foot of inuse chunk to be xor of mstate and seed */
    2483             : #define mark_inuse_foot(M,p,s)\
    2484             :   (((mchunkptr)((char*)(p) + (s)))->prev_foot = ((size_t)(M) ^ mparams.magic))
    2485             : 
    2486             : #define get_mstate_for(p)\
    2487             :   ((mstate)(((mchunkptr)((char*)(p) +\
    2488             :     (chunksize(p))))->prev_foot ^ mparams.magic))
    2489             : 
    2490             : #define set_inuse(M,p,s)\
    2491             :   ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\
    2492             :   (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT), \
    2493             :   mark_inuse_foot(M,p,s))
    2494             : 
    2495             : #define set_inuse_and_pinuse(M,p,s)\
    2496             :   ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
    2497             :   (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT),\
    2498             :  mark_inuse_foot(M,p,s))
    2499             : 
    2500             : #define set_size_and_pinuse_of_inuse_chunk(M, p, s)\
    2501             :   ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
    2502             :   mark_inuse_foot(M, p, s))
    2503             : 
    2504             : #endif /* !FOOTERS */
    2505             : 
    2506             : /* ---------------------------- setting mparams -------------------------- */
    2507             : 
    2508             : /* Initialize mparams */
    2509           0 : static int init_mparams(void) {
    2510           0 :   if (mparams.page_size == 0) {
    2511             :     size_t s;
    2512             : 
    2513           0 :     mparams.mmap_threshold = DEFAULT_MMAP_THRESHOLD;
    2514           0 :     mparams.trim_threshold = DEFAULT_TRIM_THRESHOLD;
    2515             : #if MORECORE_CONTIGUOUS
    2516             :     mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT;
    2517             : #else  /* MORECORE_CONTIGUOUS */
    2518           0 :     mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT|USE_NONCONTIGUOUS_BIT;
    2519             : #endif /* MORECORE_CONTIGUOUS */
    2520             : 
    2521             : #if (FOOTERS && !INSECURE)
    2522             :     {
    2523             : #if USE_DEV_RANDOM
    2524             :       int fd;
    2525             :       unsigned char buf[sizeof(size_t)];
    2526             :       /* Try to use /dev/urandom, else fall back on using time */
    2527             :       if ((fd = open("/dev/urandom", O_RDONLY)) >= 0 &&
    2528             :           read(fd, buf, sizeof(buf)) == sizeof(buf)) {
    2529             :         s = *((size_t *) buf);
    2530             :         close(fd);
    2531             :       }
    2532             :       else
    2533             : #endif /* USE_DEV_RANDOM */
    2534             :         s = (size_t)(time(0) ^ (size_t)0x55555555U);
    2535             : 
    2536             :       s |= (size_t)8U;    /* ensure nonzero */
    2537             :       s &= ~(size_t)7U;   /* improve chances of fault for bad values */
    2538             : 
    2539             :     }
    2540             : #else /* (FOOTERS && !INSECURE) */
    2541           0 :     s = (size_t)0x58585858U;
    2542             : #endif /* (FOOTERS && !INSECURE) */
    2543           0 :     ACQUIRE_MAGIC_INIT_LOCK();
    2544           0 :     if (mparams.magic == 0) {
    2545           0 :       mparams.magic = s;
    2546             :       /* Set up lock for main malloc area */
    2547           0 :       INITIAL_LOCK(&gm->mutex);
    2548           0 :       gm->mflags = mparams.default_mflags;
    2549             :     }
    2550           0 :     RELEASE_MAGIC_INIT_LOCK();
    2551             : 
    2552             : #if !defined(WIN32) && !defined(__OS2__)
    2553           0 :     mparams.page_size = malloc_getpagesize;
    2554           0 :     mparams.granularity = ((DEFAULT_GRANULARITY != 0)?
    2555           0 :                            DEFAULT_GRANULARITY : mparams.page_size);
    2556             : #elif defined (__OS2__)
    2557             :  /* if low-memory is used, os2munmap() would break
    2558             :     if it were anything other than 64k */
    2559             :     mparams.page_size = 4096u;
    2560             :     mparams.granularity = 65536u;
    2561             : #else /* WIN32 */
    2562             :     {
    2563             :       SYSTEM_INFO system_info;
    2564             :       GetSystemInfo(&system_info);
    2565             :       mparams.page_size = system_info.dwPageSize;
    2566             :       mparams.granularity = system_info.dwAllocationGranularity;
    2567             :     }
    2568             : #endif /* WIN32 */
    2569             : 
    2570             :     /* Sanity-check configuration:
    2571             :        size_t must be unsigned and as wide as pointer type.
    2572             :        ints must be at least 4 bytes.
    2573             :        alignment must be at least 8.
    2574             :        Alignment, min chunk size, and page size must all be powers of 2.
    2575             :     */
    2576           0 :     if ((sizeof(size_t) != sizeof(char*)) ||
    2577             :         (MAX_SIZE_T < MIN_CHUNK_SIZE)  ||
    2578             :         (sizeof(int) < 4)  ||
    2579             :         (MALLOC_ALIGNMENT < (size_t)8U) ||
    2580             :         ((MALLOC_ALIGNMENT    & (MALLOC_ALIGNMENT-SIZE_T_ONE))    != 0) ||
    2581             :         ((MCHUNK_SIZE         & (MCHUNK_SIZE-SIZE_T_ONE))         != 0) ||
    2582           0 :         ((mparams.granularity & (mparams.granularity-SIZE_T_ONE)) != 0) ||
    2583           0 :         ((mparams.page_size   & (mparams.page_size-SIZE_T_ONE))   != 0))
    2584           0 :       ABORT;
    2585             :   }
    2586           0 :   return 0;
    2587             : }
    2588             : 
    2589             : /* support for mallopt */
    2590           0 : static int change_mparam(int param_number, int value) {
    2591           0 :   size_t val = (size_t)value;
    2592           0 :   init_mparams();
    2593           0 :   switch(param_number) {
    2594             :   case M_TRIM_THRESHOLD:
    2595           0 :     mparams.trim_threshold = val;
    2596           0 :     return 1;
    2597             :   case M_GRANULARITY:
    2598           0 :     if (val >= mparams.page_size && ((val & (val-1)) == 0)) {
    2599           0 :       mparams.granularity = val;
    2600           0 :       return 1;
    2601             :     }
    2602             :     else
    2603           0 :       return 0;
    2604             :   case M_MMAP_THRESHOLD:
    2605           0 :     mparams.mmap_threshold = val;
    2606           0 :     return 1;
    2607             :   default:
    2608           0 :     return 0;
    2609             :   }
    2610             : }
    2611             : 
    2612             : #if DEBUG
    2613             : /* ------------------------- Debugging Support --------------------------- */
    2614             : 
    2615             : /* Check properties of any chunk, whether free, inuse, mmapped etc  */
    2616           0 : static void do_check_any_chunk(mstate m, mchunkptr p) {
    2617           0 :   assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
    2618           0 :   assert(ok_address(m, p));
    2619           0 : }
    2620             : 
    2621             : /* Check properties of top chunk */
    2622           0 : static void do_check_top_chunk(mstate m, mchunkptr p) {
    2623           0 :   msegmentptr sp = segment_holding(m, (char*)p);
    2624           0 :   size_t  sz = chunksize(p);
    2625           0 :   assert(sp != 0);
    2626           0 :   assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
    2627           0 :   assert(ok_address(m, p));
    2628           0 :   assert(sz == m->topsize);
    2629           0 :   assert(sz > 0);
    2630           0 :   assert(sz == ((sp->base + sp->size) - (char*)p) - TOP_FOOT_SIZE);
    2631           0 :   assert(pinuse(p));
    2632           0 :   assert(!next_pinuse(p));
    2633           0 : }
    2634             : 
    2635             : /* Check properties of (inuse) mmapped chunks */
    2636           0 : static void do_check_mmapped_chunk(mstate m, mchunkptr p) {
    2637           0 :   size_t  sz = chunksize(p);
    2638           0 :   size_t len = (sz + (p->prev_foot & ~IS_MMAPPED_BIT) + MMAP_FOOT_PAD);
    2639           0 :   assert(is_mmapped(p));
    2640           0 :   assert(use_mmap(m));
    2641           0 :   assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
    2642           0 :   assert(ok_address(m, p));
    2643           0 :   assert(!is_small(sz));
    2644           0 :   assert((len & (mparams.page_size-SIZE_T_ONE)) == 0);
    2645           0 :   assert(chunk_plus_offset(p, sz)->head == FENCEPOST_HEAD);
    2646           0 :   assert(chunk_plus_offset(p, sz+SIZE_T_SIZE)->head == 0);
    2647           0 : }
    2648             : 
    2649             : /* Check properties of inuse chunks */
    2650           0 : static void do_check_inuse_chunk(mstate m, mchunkptr p) {
    2651           0 :   do_check_any_chunk(m, p);
    2652           0 :   assert(cinuse(p));
    2653           0 :   assert(next_pinuse(p));
    2654             :   /* If not pinuse and not mmapped, previous chunk has OK offset */
    2655           0 :   assert(is_mmapped(p) || pinuse(p) || next_chunk(prev_chunk(p)) == p);
    2656           0 :   if (is_mmapped(p))
    2657           0 :     do_check_mmapped_chunk(m, p);
    2658           0 : }
    2659             : 
    2660             : /* Check properties of free chunks */
    2661           0 : static void do_check_free_chunk(mstate m, mchunkptr p) {
    2662           0 :   size_t sz = p->head & ~(PINUSE_BIT|CINUSE_BIT);
    2663           0 :   mchunkptr next = chunk_plus_offset(p, sz);
    2664           0 :   do_check_any_chunk(m, p);
    2665           0 :   assert(!cinuse(p));
    2666           0 :   assert(!next_pinuse(p));
    2667           0 :   assert (!is_mmapped(p));
    2668           0 :   if (p != m->dv && p != m->top) {
    2669           0 :     if (sz >= MIN_CHUNK_SIZE) {
    2670           0 :       assert((sz & CHUNK_ALIGN_MASK) == 0);
    2671           0 :       assert(is_aligned(chunk2mem(p)));
    2672           0 :       assert(next->prev_foot == sz);
    2673           0 :       assert(pinuse(p));
    2674           0 :       assert (next == m->top || cinuse(next));
    2675           0 :       assert(p->fd->bk == p);
    2676           0 :       assert(p->bk->fd == p);
    2677             :     }
    2678             :     else  /* markers are always of size SIZE_T_SIZE */
    2679           0 :       assert(sz == SIZE_T_SIZE);
    2680             :   }
    2681           0 : }
    2682             : 
    2683             : /* Check properties of malloced chunks at the point they are malloced */
    2684           0 : static void do_check_malloced_chunk(mstate m, void* mem, size_t s) {
    2685           0 :   if (mem != 0) {
    2686           0 :     mchunkptr p = mem2chunk(mem);
    2687           0 :     size_t sz = p->head & ~(PINUSE_BIT|CINUSE_BIT);
    2688           0 :     do_check_inuse_chunk(m, p);
    2689           0 :     assert((sz & CHUNK_ALIGN_MASK) == 0);
    2690           0 :     assert(sz >= MIN_CHUNK_SIZE);
    2691           0 :     assert(sz >= s);
    2692             :     /* unless mmapped, size is less than MIN_CHUNK_SIZE more than request */
    2693           0 :     assert(is_mmapped(p) || sz < (s + MIN_CHUNK_SIZE));
    2694             :   }
    2695           0 : }
    2696             : 
    2697             : /* Check a tree and its subtrees.  */
    2698           0 : static void do_check_tree(mstate m, tchunkptr t) {
    2699           0 :   tchunkptr head = 0;
    2700           0 :   tchunkptr u = t;
    2701           0 :   bindex_t tindex = t->index;
    2702           0 :   size_t tsize = chunksize(t);
    2703             :   bindex_t idx;
    2704           0 :   compute_tree_index(tsize, idx);
    2705           0 :   assert(tindex == idx);
    2706           0 :   assert(tsize >= MIN_LARGE_SIZE);
    2707           0 :   assert(tsize >= minsize_for_tree_index(idx));
    2708           0 :   assert((idx == NTREEBINS-1) || (tsize < minsize_for_tree_index((idx+1))));
    2709             : 
    2710             :   do { /* traverse through chain of same-sized nodes */
    2711           0 :     do_check_any_chunk(m, ((mchunkptr)u));
    2712           0 :     assert(u->index == tindex);
    2713           0 :     assert(chunksize(u) == tsize);
    2714           0 :     assert(!cinuse(u));
    2715           0 :     assert(!next_pinuse(u));
    2716           0 :     assert(u->fd->bk == u);
    2717           0 :     assert(u->bk->fd == u);
    2718           0 :     if (u->parent == 0) {
    2719           0 :       assert(u->child[0] == 0);
    2720           0 :       assert(u->child[1] == 0);
    2721             :     }
    2722             :     else {
    2723           0 :       assert(head == 0); /* only one node on chain has parent */
    2724           0 :       head = u;
    2725           0 :       assert(u->parent != u);
    2726           0 :       assert (u->parent->child[0] == u ||
    2727             :               u->parent->child[1] == u ||
    2728             :               *((tbinptr*)(u->parent)) == u);
    2729           0 :       if (u->child[0] != 0) {
    2730           0 :         assert(u->child[0]->parent == u);
    2731           0 :         assert(u->child[0] != u);
    2732           0 :         do_check_tree(m, u->child[0]);
    2733             :       }
    2734           0 :       if (u->child[1] != 0) {
    2735           0 :         assert(u->child[1]->parent == u);
    2736           0 :         assert(u->child[1] != u);
    2737           0 :         do_check_tree(m, u->child[1]);
    2738             :       }
    2739           0 :       if (u->child[0] != 0 && u->child[1] != 0) {
    2740           0 :         assert(chunksize(u->child[0]) < chunksize(u->child[1]));
    2741             :       }
    2742             :     }
    2743           0 :     u = u->fd;
    2744           0 :   } while (u != t);
    2745           0 :   assert(head != 0);
    2746           0 : }
    2747             : 
    2748             : /*  Check all the chunks in a treebin.  */
    2749           0 : static void do_check_treebin(mstate m, bindex_t i) {
    2750           0 :   tbinptr* tb = treebin_at(m, i);
    2751           0 :   tchunkptr t = *tb;
    2752           0 :   int empty = (m->treemap & (1U << i)) == 0;
    2753           0 :   if (t == 0)
    2754           0 :     assert(empty);
    2755           0 :   if (!empty)
    2756           0 :     do_check_tree(m, t);
    2757           0 : }
    2758             : 
    2759             : /*  Check all the chunks in a smallbin.  */
    2760           0 : static void do_check_smallbin(mstate m, bindex_t i) {
    2761           0 :   sbinptr b = smallbin_at(m, i);
    2762           0 :   mchunkptr p = b->bk;
    2763           0 :   unsigned int empty = (m->smallmap & (1U << i)) == 0;
    2764           0 :   if (p == b)
    2765           0 :     assert(empty);
    2766           0 :   if (!empty) {
    2767           0 :     for (; p != b; p = p->bk) {
    2768           0 :       size_t size = chunksize(p);
    2769             :       mchunkptr q;
    2770             :       /* each chunk claims to be free */
    2771           0 :       do_check_free_chunk(m, p);
    2772             :       /* chunk belongs in bin */
    2773           0 :       assert(small_index(size) == i);
    2774           0 :       assert(p->bk == b || chunksize(p->bk) == chunksize(p));
    2775             :       /* chunk is followed by an inuse chunk */
    2776           0 :       q = next_chunk(p);
    2777           0 :       if (q->head != FENCEPOST_HEAD)
    2778           0 :         do_check_inuse_chunk(m, q);
    2779             :     }
    2780             :   }
    2781           0 : }
    2782             : 
    2783             : /* Find x in a bin. Used in other check functions. */
    2784           0 : static int bin_find(mstate m, mchunkptr x) {
    2785           0 :   size_t size = chunksize(x);
    2786           0 :   if (is_small(size)) {
    2787           0 :     bindex_t sidx = small_index(size);
    2788           0 :     sbinptr b = smallbin_at(m, sidx);
    2789           0 :     if (smallmap_is_marked(m, sidx)) {
    2790           0 :       mchunkptr p = b;
    2791             :       do {
    2792           0 :         if (p == x)
    2793           0 :           return 1;
    2794           0 :       } while ((p = p->fd) != b);
    2795             :     }
    2796             :   }
    2797             :   else {
    2798             :     bindex_t tidx;
    2799           0 :     compute_tree_index(size, tidx);
    2800           0 :     if (treemap_is_marked(m, tidx)) {
    2801           0 :       tchunkptr t = *treebin_at(m, tidx);
    2802           0 :       size_t sizebits = size << leftshift_for_tree_index(tidx);
    2803           0 :       while (t != 0 && chunksize(t) != size) {
    2804           0 :         t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1];
    2805           0 :         sizebits <<= 1;
    2806             :       }
    2807           0 :       if (t != 0) {
    2808           0 :         tchunkptr u = t;
    2809             :         do {
    2810           0 :           if (u == (tchunkptr)x)
    2811           0 :             return 1;
    2812           0 :         } while ((u = u->fd) != t);
    2813             :       }
    2814             :     }
    2815             :   }
    2816           0 :   return 0;
    2817             : }
    2818             : 
    2819             : /* Traverse each chunk and check it; return total */
    2820           0 : static size_t traverse_and_check(mstate m) {
    2821           0 :   size_t sum = 0;
    2822           0 :   if (is_initialized(m)) {
    2823           0 :     msegmentptr s = &m->seg;
    2824           0 :     sum += m->topsize + TOP_FOOT_SIZE;
    2825           0 :     while (s != 0) {
    2826           0 :       mchunkptr q = align_as_chunk(s->base);
    2827           0 :       mchunkptr lastq = 0;
    2828           0 :       assert(pinuse(q));
    2829           0 :       while (segment_holds(s, q) &&
    2830           0 :              q != m->top && q->head != FENCEPOST_HEAD) {
    2831           0 :         sum += chunksize(q);
    2832           0 :         if (cinuse(q)) {
    2833           0 :           assert(!bin_find(m, q));
    2834           0 :           do_check_inuse_chunk(m, q);
    2835             :         }
    2836             :         else {
    2837           0 :           assert(q == m->dv || bin_find(m, q));
    2838           0 :           assert(lastq == 0 || cinuse(lastq)); /* Not 2 consecutive free */
    2839           0 :           do_check_free_chunk(m, q);
    2840             :         }
    2841           0 :         lastq = q;
    2842           0 :         q = next_chunk(q);
    2843             :       }
    2844           0 :       s = s->next;
    2845             :     }
    2846             :   }
    2847           0 :   return sum;
    2848             : }
    2849             : 
    2850             : /* Check all properties of malloc_state. */
    2851           0 : static void do_check_malloc_state(mstate m) {
    2852             :   bindex_t i;
    2853             :   size_t total;
    2854             :   /* check bins */
    2855           0 :   for (i = 0; i < NSMALLBINS; ++i)
    2856           0 :     do_check_smallbin(m, i);
    2857           0 :   for (i = 0; i < NTREEBINS; ++i)
    2858           0 :     do_check_treebin(m, i);
    2859             : 
    2860           0 :   if (m->dvsize != 0) { /* check dv chunk */
    2861           0 :     do_check_any_chunk(m, m->dv);
    2862           0 :     assert(m->dvsize == chunksize(m->dv));
    2863           0 :     assert(m->dvsize >= MIN_CHUNK_SIZE);
    2864           0 :     assert(bin_find(m, m->dv) == 0);
    2865             :   }
    2866             : 
    2867           0 :   if (m->top != 0) {   /* check top chunk */
    2868           0 :     do_check_top_chunk(m, m->top);
    2869           0 :     assert(m->topsize == chunksize(m->top));
    2870           0 :     assert(m->topsize > 0);
    2871           0 :     assert(bin_find(m, m->top) == 0);
    2872             :   }
    2873             : 
    2874           0 :   total = traverse_and_check(m);
    2875           0 :   assert(total <= m->footprint);
    2876           0 :   assert(m->footprint <= m->max_footprint);
    2877           0 : }
    2878             : #endif /* DEBUG */
    2879             : 
    2880             : /* ----------------------------- statistics ------------------------------ */
    2881             : 
    2882             : #if !NO_MALLINFO
    2883             : static struct mallinfo internal_mallinfo(mstate m) {
    2884             :   struct mallinfo nm = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
    2885             :   if (!PREACTION(m)) {
    2886             :     check_malloc_state(m);
    2887             :     if (is_initialized(m)) {
    2888             :       size_t nfree = SIZE_T_ONE; /* top always free */
    2889             :       size_t mfree = m->topsize + TOP_FOOT_SIZE;
    2890             :       size_t sum = mfree;
    2891             :       msegmentptr s = &m->seg;
    2892             :       while (s != 0) {
    2893             :         mchunkptr q = align_as_chunk(s->base);
    2894             :         while (segment_holds(s, q) &&
    2895             :                q != m->top && q->head != FENCEPOST_HEAD) {
    2896             :           size_t sz = chunksize(q);
    2897             :           sum += sz;
    2898             :           if (!cinuse(q)) {
    2899             :             mfree += sz;
    2900             :             ++nfree;
    2901             :           }
    2902             :           q = next_chunk(q);
    2903             :         }
    2904             :         s = s->next;
    2905             :       }
    2906             : 
    2907             :       nm.arena    = sum;
    2908             :       nm.ordblks  = nfree;
    2909             :       nm.hblkhd   = m->footprint - sum;
    2910             :       nm.usmblks  = m->max_footprint;
    2911             :       nm.uordblks = m->footprint - mfree;
    2912             :       nm.fordblks = mfree;
    2913             :       nm.keepcost = m->topsize;
    2914             :     }
    2915             : 
    2916             :     POSTACTION(m);
    2917             :   }
    2918             :   return nm;
    2919             : }
    2920             : #endif /* !NO_MALLINFO */
    2921             : 
    2922           0 : static void internal_malloc_stats(mstate m) {
    2923           0 :   if (!PREACTION(m)) {
    2924           0 :     size_t maxfp = 0;
    2925           0 :     size_t fp = 0;
    2926           0 :     size_t used = 0;
    2927           0 :     check_malloc_state(m);
    2928           0 :     if (is_initialized(m)) {
    2929           0 :       msegmentptr s = &m->seg;
    2930           0 :       maxfp = m->max_footprint;
    2931           0 :       fp = m->footprint;
    2932           0 :       used = fp - (m->topsize + TOP_FOOT_SIZE);
    2933             : 
    2934           0 :       while (s != 0) {
    2935           0 :         mchunkptr q = align_as_chunk(s->base);
    2936           0 :         while (segment_holds(s, q) &&
    2937           0 :                q != m->top && q->head != FENCEPOST_HEAD) {
    2938           0 :           if (!cinuse(q))
    2939           0 :             used -= chunksize(q);
    2940           0 :           q = next_chunk(q);
    2941             :         }
    2942           0 :         s = s->next;
    2943             :       }
    2944             :     }
    2945             : 
    2946           0 :     fprintf(stderr, "max system bytes = %10lu\n", (unsigned long)(maxfp));
    2947           0 :     fprintf(stderr, "system bytes     = %10lu\n", (unsigned long)(fp));
    2948           0 :     fprintf(stderr, "in use bytes     = %10lu\n", (unsigned long)(used));
    2949             : 
    2950           0 :     POSTACTION(m);
    2951             :   }
    2952           0 : }
    2953             : 
    2954             : /* ----------------------- Operations on smallbins ----------------------- */
    2955             : 
    2956             : /*
    2957             :   Various forms of linking and unlinking are defined as macros.  Even
    2958             :   the ones for trees, which are very long but have very short typical
    2959             :   paths.  This is ugly but reduces reliance on inlining support of
    2960             :   compilers.
    2961             : */
    2962             : 
    2963             : /* Link a free chunk into a smallbin  */
    2964             : #define insert_small_chunk(M, P, S) {\
    2965             :   bindex_t I  = small_index(S);\
    2966             :   mchunkptr B = smallbin_at(M, I);\
    2967             :   mchunkptr F = B;\
    2968             :   assert(S >= MIN_CHUNK_SIZE);\
    2969             :   if (!smallmap_is_marked(M, I))\
    2970             :     mark_smallmap(M, I);\
    2971             :   else if (RTCHECK(ok_address(M, B->fd)))\
    2972             :     F = B->fd;\
    2973             :   else {\
    2974             :     CORRUPTION_ERROR_ACTION(M);\
    2975             :   }\
    2976             :   B->fd = P;\
    2977             :   F->bk = P;\
    2978             :   P->fd = F;\
    2979             :   P->bk = B;\
    2980             : }
    2981             : 
    2982             : /* Unlink a chunk from a smallbin  */
    2983             : #define unlink_small_chunk(M, P, S) {\
    2984             :   mchunkptr F = P->fd;\
    2985             :   mchunkptr B = P->bk;\
    2986             :   bindex_t I = small_index(S);\
    2987             :   assert(P != B);\
    2988             :   assert(P != F);\
    2989             :   assert(chunksize(P) == small_index2size(I));\
    2990             :   if (F == B)\
    2991             :     clear_smallmap(M, I);\
    2992             :   else if (RTCHECK((F == smallbin_at(M,I) || ok_address(M, F)) &&\
    2993             :                    (B == smallbin_at(M,I) || ok_address(M, B)))) {\
    2994             :     F->bk = B;\
    2995             :     B->fd = F;\
    2996             :   }\
    2997             :   else {\
    2998             :     CORRUPTION_ERROR_ACTION(M);\
    2999             :   }\
    3000             : }
    3001             : 
    3002             : /* Unlink the first chunk from a smallbin */
    3003             : #define unlink_first_small_chunk(M, B, P, I) {\
    3004             :   mchunkptr F = P->fd;\
    3005             :   assert(P != B);\
    3006             :   assert(P != F);\
    3007             :   assert(chunksize(P) == small_index2size(I));\
    3008             :   if (B == F)\
    3009             :     clear_smallmap(M, I);\
    3010             :   else if (RTCHECK(ok_address(M, F))) {\
    3011             :     B->fd = F;\
    3012             :     F->bk = B;\
    3013             :   }\
    3014             :   else {\
    3015             :     CORRUPTION_ERROR_ACTION(M);\
    3016             :   }\
    3017             : }
    3018             : 
    3019             : /* Replace dv node, binning the old one */
    3020             : /* Used only when dvsize known to be small */
    3021             : #define replace_dv(M, P, S) {\
    3022             :   size_t DVS = M->dvsize;\
    3023             :   if (DVS != 0) {\
    3024             :     mchunkptr DV = M->dv;\
    3025             :     assert(is_small(DVS));\
    3026             :     insert_small_chunk(M, DV, DVS);\
    3027             :   }\
    3028             :   M->dvsize = S;\
    3029             :   M->dv = P;\
    3030             : }
    3031             : 
    3032             : /* ------------------------- Operations on trees ------------------------- */
    3033             : 
    3034             : /* Insert chunk into tree */
    3035             : #define insert_large_chunk(M, X, S) {\
    3036             :   tbinptr* H;\
    3037             :   bindex_t I;\
    3038             :   compute_tree_index(S, I);\
    3039             :   H = treebin_at(M, I);\
    3040             :   X->index = I;\
    3041             :   X->child[0] = X->child[1] = 0;\
    3042             :   if (!treemap_is_marked(M, I)) {\
    3043             :     mark_treemap(M, I);\
    3044             :     *H = X;\
    3045             :     X->parent = (tchunkptr)H;\
    3046             :     X->fd = X->bk = X;\
    3047             :   }\
    3048             :   else {\
    3049             :     tchunkptr T = *H;\
    3050             :     size_t K = S << leftshift_for_tree_index(I);\
    3051             :     for (;;) {\
    3052             :       if (chunksize(T) != S) {\
    3053             :         tchunkptr* C = &(T->child[(K >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]);\
    3054             :         K <<= 1;\
    3055             :         if (*C != 0)\
    3056             :           T = *C;\
    3057             :         else if (RTCHECK(ok_address(M, C))) {\
    3058             :           *C = X;\
    3059             :           X->parent = T;\
    3060             :           X->fd = X->bk = X;\
    3061             :           break;\
    3062             :         }\
    3063             :         else {\
    3064             :           CORRUPTION_ERROR_ACTION(M);\
    3065             :           break;\
    3066             :         }\
    3067             :       }\
    3068             :       else {\
    3069             :         tchunkptr F = T->fd;\
    3070             :         if (RTCHECK(ok_address(M, T) && ok_address(M, F))) {\
    3071             :           T->fd = F->bk = X;\
    3072             :           X->fd = F;\
    3073             :           X->bk = T;\
    3074             :           X->parent = 0;\
    3075             :           break;\
    3076             :         }\
    3077             :         else {\
    3078             :           CORRUPTION_ERROR_ACTION(M);\
    3079             :           break;\
    3080             :         }\
    3081             :       }\
    3082             :     }\
    3083             :   }\
    3084             : }
    3085             : 
    3086             : /*
    3087             :   Unlink steps:
    3088             : 
    3089             :   1. If x is a chained node, unlink it from its same-sized fd/bk links
    3090             :      and choose its bk node as its replacement.
    3091             :   2. If x was the last node of its size, but not a leaf node, it must
    3092             :      be replaced with a leaf node (not merely one with an open left or
    3093             :      right), to make sure that lefts and rights of descendants
    3094             :      correspond properly to bit masks.  We use the rightmost descendant
    3095             :      of x.  We could use any other leaf, but this is easy to locate and
    3096             :      tends to counteract removal of leftmosts elsewhere, and so keeps
    3097             :      paths shorter than minimally guaranteed.  This doesn't loop much
    3098             :      because on average a node in a tree is near the bottom.
    3099             :   3. If x is the base of a chain (i.e., has parent links) relink
    3100             :      x's parent and children to x's replacement (or null if none).
    3101             : */
    3102             : 
    3103             : #define unlink_large_chunk(M, X) {\
    3104             :   tchunkptr XP = X->parent;\
    3105             :   tchunkptr R;\
    3106             :   if (X->bk != X) {\
    3107             :     tchunkptr F = X->fd;\
    3108             :     R = X->bk;\
    3109             :     if (RTCHECK(ok_address(M, F))) {\
    3110             :       F->bk = R;\
    3111             :       R->fd = F;\
    3112             :     }\
    3113             :     else {\
    3114             :       CORRUPTION_ERROR_ACTION(M);\
    3115             :     }\
    3116             :   }\
    3117             :   else {\
    3118             :     tchunkptr* RP;\
    3119             :     if (((R = *(RP = &(X->child[1]))) != 0) ||\
    3120             :         ((R = *(RP = &(X->child[0]))) != 0)) {\
    3121             :       tchunkptr* CP;\
    3122             :       while ((*(CP = &(R->child[1])) != 0) ||\
    3123             :              (*(CP = &(R->child[0])) != 0)) {\
    3124             :         R = *(RP = CP);\
    3125             :       }\
    3126             :       if (RTCHECK(ok_address(M, RP)))\
    3127             :         *RP = 0;\
    3128             :       else {\
    3129             :         CORRUPTION_ERROR_ACTION(M);\
    3130             :       }\
    3131             :     }\
    3132             :   }\
    3133             :   if (XP != 0) {\
    3134             :     tbinptr* H = treebin_at(M, X->index);\
    3135             :     if (X == *H) {\
    3136             :       if ((*H = R) == 0) \
    3137             :         clear_treemap(M, X->index);\
    3138             :     }\
    3139             :     else if (RTCHECK(ok_address(M, XP))) {\
    3140             :       if (XP->child[0] == X) \
    3141             :         XP->child[0] = R;\
    3142             :       else \
    3143             :         XP->child[1] = R;\
    3144             :     }\
    3145             :     else\
    3146             :       CORRUPTION_ERROR_ACTION(M);\
    3147             :     if (R != 0) {\
    3148             :       if (RTCHECK(ok_address(M, R))) {\
    3149             :         tchunkptr C0, C1;\
    3150             :         R->parent = XP;\
    3151             :         if ((C0 = X->child[0]) != 0) {\
    3152             :           if (RTCHECK(ok_address(M, C0))) {\
    3153             :             R->child[0] = C0;\
    3154             :             C0->parent = R;\
    3155             :           }\
    3156             :           else\
    3157             :             CORRUPTION_ERROR_ACTION(M);\
    3158             :         }\
    3159             :         if ((C1 = X->child[1]) != 0) {\
    3160             :           if (RTCHECK(ok_address(M, C1))) {\
    3161             :             R->child[1] = C1;\
    3162             :             C1->parent = R;\
    3163             :           }\
    3164             :           else\
    3165             :             CORRUPTION_ERROR_ACTION(M);\
    3166             :         }\
    3167             :       }\
    3168             :       else\
    3169             :         CORRUPTION_ERROR_ACTION(M);\
    3170             :     }\
    3171             :   }\
    3172             : }
    3173             : 
    3174             : /* Relays to large vs small bin operations */
    3175             : 
    3176             : #define insert_chunk(M, P, S)\
    3177             :   if (is_small(S)) insert_small_chunk(M, P, S)\
    3178             :   else { tchunkptr TP = (tchunkptr)(P); insert_large_chunk(M, TP, S); }
    3179             : 
    3180             : #define unlink_chunk(M, P, S)\
    3181             :   if (is_small(S)) unlink_small_chunk(M, P, S)\
    3182             :   else { tchunkptr TP = (tchunkptr)(P); unlink_large_chunk(M, TP); }
    3183             : 
    3184             : 
    3185             : /* Relays to internal calls to malloc/free from realloc, memalign etc */
    3186             : 
    3187             : #if ONLY_MSPACES
    3188             : #define internal_malloc(m, b) mspace_malloc(m, b)
    3189             : #define internal_free(m, mem) mspace_free(m,mem);
    3190             : #else /* ONLY_MSPACES */
    3191             : #if MSPACES
    3192             : #define internal_malloc(m, b)\
    3193             :    (m == gm)? dlmalloc(b) : mspace_malloc(m, b)
    3194             : #define internal_free(m, mem)\
    3195             :    if (m == gm) dlfree(mem); else mspace_free(m,mem);
    3196             : #else /* MSPACES */
    3197             : #define internal_malloc(m, b) dlmalloc(b)
    3198             : #define internal_free(m, mem) dlfree(mem)
    3199             : #endif /* MSPACES */
    3200             : #endif /* ONLY_MSPACES */
    3201             : 
    3202             : /* -----------------------  Direct-mmapping chunks ----------------------- */
    3203             : 
    3204             : /*
    3205             :   Directly mmapped chunks are set up with an offset to the start of
    3206             :   the mmapped region stored in the prev_foot field of the chunk. This
    3207             :   allows reconstruction of the required argument to MUNMAP when freed,
    3208             :   and also allows adjustment of the returned chunk to meet alignment
    3209             :   requirements (especially in memalign).  There is also enough space
    3210             :   allocated to hold a fake next chunk of size SIZE_T_SIZE to maintain
    3211             :   the PINUSE bit so frees can be checked.
    3212             : */
    3213             : 
    3214             : /* Malloc using mmap */
    3215           0 : static void* mmap_alloc(mstate m, size_t nb) {
    3216           0 :   size_t mmsize = granularity_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
    3217           0 :   if (mmsize > nb) {     /* Check for wrap around 0 */
    3218           0 :     char* mm = (char*)(DIRECT_MMAP(mmsize));
    3219           0 :     if (mm != CMFAIL) {
    3220           0 :       size_t offset = align_offset(chunk2mem(mm));
    3221           0 :       size_t psize = mmsize - offset - MMAP_FOOT_PAD;
    3222           0 :       mchunkptr p = (mchunkptr)(mm + offset);
    3223           0 :       p->prev_foot = offset | IS_MMAPPED_BIT;
    3224           0 :       (p)->head = (psize|CINUSE_BIT);
    3225             :       mark_inuse_foot(m, p, psize);
    3226           0 :       chunk_plus_offset(p, psize)->head = FENCEPOST_HEAD;
    3227           0 :       chunk_plus_offset(p, psize+SIZE_T_SIZE)->head = 0;
    3228             : 
    3229           0 :       if (mm < m->least_addr)
    3230           0 :         m->least_addr = mm;
    3231           0 :       if ((m->footprint += mmsize) > m->max_footprint)
    3232           0 :         m->max_footprint = m->footprint;
    3233           0 :       assert(is_aligned(chunk2mem(p)));
    3234           0 :       check_mmapped_chunk(m, p);
    3235           0 :       return chunk2mem(p);
    3236             :     }
    3237             :   }
    3238           0 :   return 0;
    3239             : }
    3240             : 
    3241             : /* Realloc using mmap */
    3242           0 : static mchunkptr mmap_resize(mstate m, mchunkptr oldp, size_t nb) {
    3243           0 :   size_t oldsize = chunksize(oldp);
    3244           0 :   if (is_small(nb)) /* Can't shrink mmap regions below small size */
    3245           0 :     return 0;
    3246             :   /* Keep old chunk if big enough but not too big */
    3247           0 :   if (oldsize >= nb + SIZE_T_SIZE &&
    3248           0 :       (oldsize - nb) <= (mparams.granularity << 1))
    3249           0 :     return oldp;
    3250             :   else {
    3251           0 :     size_t offset = oldp->prev_foot & ~IS_MMAPPED_BIT;
    3252           0 :     size_t oldmmsize = oldsize + offset + MMAP_FOOT_PAD;
    3253           0 :     size_t newmmsize = granularity_align(nb + SIX_SIZE_T_SIZES +
    3254             :                                          CHUNK_ALIGN_MASK);
    3255           0 :     char* cp = (char*)CALL_MREMAP((char*)oldp - offset,
    3256             :                                   oldmmsize, newmmsize, 1);
    3257           0 :     if (cp != CMFAIL) {
    3258           0 :       mchunkptr newp = (mchunkptr)(cp + offset);
    3259           0 :       size_t psize = newmmsize - offset - MMAP_FOOT_PAD;
    3260           0 :       newp->head = (psize|CINUSE_BIT);
    3261             :       mark_inuse_foot(m, newp, psize);
    3262           0 :       chunk_plus_offset(newp, psize)->head = FENCEPOST_HEAD;
    3263           0 :       chunk_plus_offset(newp, psize+SIZE_T_SIZE)->head = 0;
    3264             : 
    3265           0 :       if (cp < m->least_addr)
    3266           0 :         m->least_addr = cp;
    3267           0 :       if ((m->footprint += newmmsize - oldmmsize) > m->max_footprint)
    3268           0 :         m->max_footprint = m->footprint;
    3269           0 :       check_mmapped_chunk(m, newp);
    3270           0 :       return newp;
    3271             :     }
    3272             :   }
    3273           0 :   return 0;
    3274             : }
    3275             : 
    3276             : /* -------------------------- mspace management -------------------------- */
    3277             : 
    3278             : /* Initialize top chunk and its size */
    3279           0 : static void init_top(mstate m, mchunkptr p, size_t psize) {
    3280             :   /* Ensure alignment */
    3281           0 :   size_t offset = align_offset(chunk2mem(p));
    3282           0 :   p = (mchunkptr)((char*)p + offset);
    3283           0 :   psize -= offset;
    3284             : 
    3285           0 :   m->top = p;
    3286           0 :   m->topsize = psize;
    3287           0 :   p->head = psize | PINUSE_BIT;
    3288             :   /* set size of fake trailing chunk holding overhead space only once */
    3289           0 :   chunk_plus_offset(p, psize)->head = TOP_FOOT_SIZE;
    3290           0 :   m->trim_check = mparams.trim_threshold; /* reset on each update */
    3291           0 : }
    3292             : 
    3293             : /* Initialize bins for a new mstate that is otherwise zeroed out */
    3294           0 : static void init_bins(mstate m) {
    3295             :   /* Establish circular links for smallbins */
    3296             :   bindex_t i;
    3297           0 :   for (i = 0; i < NSMALLBINS; ++i) {
    3298           0 :     sbinptr bin = smallbin_at(m,i);
    3299           0 :     bin->fd = bin->bk = bin;
    3300             :   }
    3301           0 : }
    3302             : 
    3303             : #if PROCEED_ON_ERROR
    3304             : 
    3305             : /* default corruption action */
    3306             : static void reset_on_error(mstate m) {
    3307             :   int i;
    3308             :   ++malloc_corruption_error_count;
    3309             :   /* Reinitialize fields to forget about all memory */
    3310             :   m->smallbins = m->treebins = 0;
    3311             :   m->dvsize = m->topsize = 0;
    3312             :   m->seg.base = 0;
    3313             :   m->seg.size = 0;
    3314             :   m->seg.next = 0;
    3315             :   m->top = m->dv = 0;
    3316             :   for (i = 0; i < NTREEBINS; ++i)
    3317             :     *treebin_at(m, i) = 0;
    3318             :   init_bins(m);
    3319             : }
    3320             : #endif /* PROCEED_ON_ERROR */
    3321             : 
    3322             : /* Allocate chunk and prepend remainder with chunk in successor base. */
    3323           0 : static void* prepend_alloc(mstate m, char* newbase, char* oldbase,
    3324             :                            size_t nb) {
    3325           0 :   mchunkptr p = align_as_chunk(newbase);
    3326           0 :   mchunkptr oldfirst = align_as_chunk(oldbase);
    3327           0 :   size_t psize = (char*)oldfirst - (char*)p;
    3328           0 :   mchunkptr q = chunk_plus_offset(p, nb);
    3329           0 :   size_t qsize = psize - nb;
    3330           0 :   set_size_and_pinuse_of_inuse_chunk(m, p, nb);
    3331             : 
    3332           0 :   assert((char*)oldfirst > (char*)q);
    3333           0 :   assert(pinuse(oldfirst));
    3334           0 :   assert(qsize >= MIN_CHUNK_SIZE);
    3335             : 
    3336             :   /* consolidate remainder with first chunk of old base */
    3337           0 :   if (oldfirst == m->top) {
    3338           0 :     size_t tsize = m->topsize += qsize;
    3339           0 :     m->top = q;
    3340           0 :     q->head = tsize | PINUSE_BIT;
    3341           0 :     check_top_chunk(m, q);
    3342             :   }
    3343           0 :   else if (oldfirst == m->dv) {
    3344           0 :     size_t dsize = m->dvsize += qsize;
    3345           0 :     m->dv = q;
    3346           0 :     set_size_and_pinuse_of_free_chunk(q, dsize);
    3347             :   }
    3348             :   else {
    3349           0 :     if (!cinuse(oldfirst)) {
    3350           0 :       size_t nsize = chunksize(oldfirst);
    3351           0 :       unlink_chunk(m, oldfirst, nsize);
    3352           0 :       oldfirst = chunk_plus_offset(oldfirst, nsize);
    3353           0 :       qsize += nsize;
    3354             :     }
    3355           0 :     set_free_with_pinuse(q, qsize, oldfirst);
    3356           0 :     insert_chunk(m, q, qsize);
    3357           0 :     check_free_chunk(m, q);
    3358             :   }
    3359             : 
    3360           0 :   check_malloced_chunk(m, chunk2mem(p), nb);
    3361           0 :   return chunk2mem(p);
    3362             : }
    3363             : 
    3364             : 
    3365             : /* Add a segment to hold a new noncontiguous region */
    3366           0 : static void add_segment(mstate m, char* tbase, size_t tsize, flag_t mmapped) {
    3367             :   /* Determine locations and sizes of segment, fenceposts, old top */
    3368           0 :   char* old_top = (char*)m->top;
    3369           0 :   msegmentptr oldsp = segment_holding(m, old_top);
    3370           0 :   char* old_end = oldsp->base + oldsp->size;
    3371           0 :   size_t ssize = pad_request(sizeof(struct malloc_segment));
    3372           0 :   char* rawsp = old_end - (ssize + FOUR_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
    3373           0 :   size_t offset = align_offset(chunk2mem(rawsp));
    3374           0 :   char* asp = rawsp + offset;
    3375           0 :   char* csp = (asp < (old_top + MIN_CHUNK_SIZE))? old_top : asp;
    3376           0 :   mchunkptr sp = (mchunkptr)csp;
    3377           0 :   msegmentptr ss = (msegmentptr)(chunk2mem(sp));
    3378           0 :   mchunkptr tnext = chunk_plus_offset(sp, ssize);
    3379           0 :   mchunkptr p = tnext;
    3380           0 :   int nfences = 0;
    3381             : 
    3382             :   /* reset top to new space */
    3383           0 :   init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE);
    3384             : 
    3385             :   /* Set up segment record */
    3386           0 :   assert(is_aligned(ss));
    3387           0 :   set_size_and_pinuse_of_inuse_chunk(m, sp, ssize);
    3388           0 :   *ss = m->seg; /* Push current record */
    3389           0 :   m->seg.base = tbase;
    3390           0 :   m->seg.size = tsize;
    3391           0 :   (void)set_segment_flags(&m->seg, mmapped);
    3392           0 :   m->seg.next = ss;
    3393             : 
    3394             :   /* Insert trailing fenceposts */
    3395           0 :   for (;;) {
    3396           0 :     mchunkptr nextp = chunk_plus_offset(p, SIZE_T_SIZE);
    3397           0 :     p->head = FENCEPOST_HEAD;
    3398           0 :     ++nfences;
    3399           0 :     if ((char*)(&(nextp->head)) < old_end)
    3400           0 :       p = nextp;
    3401             :     else
    3402           0 :       break;
    3403             :   }
    3404           0 :   assert(nfences >= 2);
    3405             : 
    3406             :   /* Insert the rest of old top into a bin as an ordinary free chunk */
    3407           0 :   if (csp != old_top) {
    3408           0 :     mchunkptr q = (mchunkptr)old_top;
    3409           0 :     size_t psize = csp - old_top;
    3410           0 :     mchunkptr tn = chunk_plus_offset(q, psize);
    3411           0 :     set_free_with_pinuse(q, psize, tn);
    3412           0 :     insert_chunk(m, q, psize);
    3413             :   }
    3414             : 
    3415           0 :   check_top_chunk(m, m->top);
    3416           0 : }
    3417             : 
    3418             : /* -------------------------- System allocation -------------------------- */
    3419             : 
    3420             : /* Get memory from system using MORECORE or MMAP */
    3421           0 : static void* sys_alloc(mstate m, size_t nb) {
    3422           0 :   char* tbase = CMFAIL;
    3423           0 :   size_t tsize = 0;
    3424           0 :   flag_t mmap_flag = 0;
    3425             : 
    3426           0 :   init_mparams();
    3427             : 
    3428             :   /* Directly map large chunks */
    3429           0 :   if (use_mmap(m) && nb >= mparams.mmap_threshold) {
    3430           0 :     void* mem = mmap_alloc(m, nb);
    3431           0 :     if (mem != 0)
    3432           0 :       return mem;
    3433             :   }
    3434             : 
    3435             :   /*
    3436             :     Try getting memory in any of three ways (in most-preferred to
    3437             :     least-preferred order):
    3438             :     1. A call to MORECORE that can normally contiguously extend memory.
    3439             :        (disabled if not MORECORE_CONTIGUOUS or not HAVE_MORECORE or
    3440             :        or main space is mmapped or a previous contiguous call failed)
    3441             :     2. A call to MMAP new space (disabled if not HAVE_MMAP).
    3442             :        Note that under the default settings, if MORECORE is unable to
    3443             :        fulfill a request, and HAVE_MMAP is true, then mmap is
    3444             :        used as a noncontiguous system allocator. This is a useful backup
    3445             :        strategy for systems with holes in address spaces -- in this case
    3446             :        sbrk cannot contiguously expand the heap, but mmap may be able to
    3447             :        find space.
    3448             :     3. A call to MORECORE that cannot usually contiguously extend memory.
    3449             :        (disabled if not HAVE_MORECORE)
    3450             :   */
    3451             : 
    3452             :   if (MORECORE_CONTIGUOUS && !use_noncontiguous(m)) {
    3453             :     char* br = CMFAIL;
    3454             :     msegmentptr ss = (m->top == 0)? 0 : segment_holding(m, (char*)m->top);
    3455             :     size_t asize = 0;
    3456             :     ACQUIRE_MORECORE_LOCK();
    3457             : 
    3458             :     if (ss == 0) {  /* First time through or recovery */
    3459             :       char* base = (char*)CALL_MORECORE(0);
    3460             :       if (base != CMFAIL) {
    3461             :         asize = granularity_align(nb + TOP_FOOT_SIZE + SIZE_T_ONE);
    3462             :         /* Adjust to end on a page boundary */
    3463             :         if (!is_page_aligned(base))
    3464             :           asize += (page_align((size_t)base) - (size_t)base);
    3465             :         /* Can't call MORECORE if size is negative when treated as signed */
    3466             :         if (asize < HALF_MAX_SIZE_T &&
    3467             :             (br = (char*)(CALL_MORECORE(asize))) == base) {
    3468             :           tbase = base;
    3469             :           tsize = asize;
    3470             :         }
    3471             :       }
    3472             :     }
    3473             :     else {
    3474             :       /* Subtract out existing available top space from MORECORE request. */
    3475             :       asize = granularity_align(nb - m->topsize + TOP_FOOT_SIZE + SIZE_T_ONE);
    3476             :       /* Use mem here only if it did continuously extend old space */
    3477             :       if (asize < HALF_MAX_SIZE_T &&
    3478             :           (br = (char*)(CALL_MORECORE(asize))) == ss->base+ss->size) {
    3479             :         tbase = br;
    3480             :         tsize = asize;
    3481             :       }
    3482             :     }
    3483             : 
    3484             :     if (tbase == CMFAIL) {    /* Cope with partial failure */
    3485             :       if (br != CMFAIL) {    /* Try to use/extend the space we did get */
    3486             :         if (asize < HALF_MAX_SIZE_T &&
    3487             :             asize < nb + TOP_FOOT_SIZE + SIZE_T_ONE) {
    3488             :           size_t esize = granularity_align(nb + TOP_FOOT_SIZE + SIZE_T_ONE - asize);
    3489             :           if (esize < HALF_MAX_SIZE_T) {
    3490             :             char* end = (char*)CALL_MORECORE(esize);
    3491             :             if (end != CMFAIL)
    3492             :               asize += esize;
    3493             :             else {            /* Can't use; try to release */
    3494             :               (void)CALL_MORECORE(-asize);
    3495             :               br = CMFAIL;
    3496             :             }
    3497             :           }
    3498             :         }
    3499             :       }
    3500             :       if (br != CMFAIL) {    /* Use the space we did get */
    3501             :         tbase = br;
    3502             :         tsize = asize;
    3503             :       }
    3504             :       else
    3505             :         disable_contiguous(m); /* Don't try contiguous path in the future */
    3506             :     }
    3507             : 
    3508             :     RELEASE_MORECORE_LOCK();
    3509             :   }
    3510             : 
    3511           0 :   if (HAVE_MMAP && tbase == CMFAIL) {  /* Try MMAP */
    3512           0 :     size_t req = nb + TOP_FOOT_SIZE + SIZE_T_ONE;
    3513           0 :     size_t rsize = granularity_align(req);
    3514           0 :     if (rsize > nb) { /* Fail if wraps around zero */
    3515           0 :       char* mp = (char*)(CALL_MMAP(rsize));
    3516           0 :       if (mp != CMFAIL) {
    3517           0 :         tbase = mp;
    3518           0 :         tsize = rsize;
    3519           0 :         mmap_flag = IS_MMAPPED_BIT;
    3520             :       }
    3521             :     }
    3522             :   }
    3523             : 
    3524             :   if (HAVE_MORECORE && tbase == CMFAIL) { /* Try noncontiguous MORECORE */
    3525             :     size_t asize = granularity_align(nb + TOP_FOOT_SIZE + SIZE_T_ONE);
    3526             :     if (asize < HALF_MAX_SIZE_T) {
    3527             :       char* br = CMFAIL;
    3528             :       char* end = CMFAIL;
    3529             :       ACQUIRE_MORECORE_LOCK();
    3530             :       br = (char*)(CALL_MORECORE(asize));
    3531             :       end = (char*)(CALL_MORECORE(0));
    3532             :       RELEASE_MORECORE_LOCK();
    3533             :       if (br != CMFAIL && end != CMFAIL && br < end) {
    3534             :         size_t ssize = end - br;
    3535             :         if (ssize > nb + TOP_FOOT_SIZE) {
    3536             :           tbase = br;
    3537             :           tsize = ssize;
    3538             :         }
    3539             :       }
    3540             :     }
    3541             :   }
    3542             : 
    3543           0 :   if (tbase != CMFAIL) {
    3544             : 
    3545           0 :     if ((m->footprint += tsize) > m->max_footprint)
    3546           0 :       m->max_footprint = m->footprint;
    3547             : 
    3548           0 :     if (!is_initialized(m)) { /* first-time initialization */
    3549           0 :       m->seg.base = m->least_addr = tbase;
    3550           0 :       m->seg.size = tsize;
    3551           0 :       (void)set_segment_flags(&m->seg, mmap_flag);
    3552           0 :       m->magic = mparams.magic;
    3553           0 :       init_bins(m);
    3554           0 :       if (is_global(m)) 
    3555           0 :         init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE);
    3556             :       else {
    3557             :         /* Offset top by embedded malloc_state */
    3558           0 :         mchunkptr mn = next_chunk(mem2chunk(m));
    3559           0 :         init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) -TOP_FOOT_SIZE);
    3560             :       }
    3561             :     }
    3562             : 
    3563             :     else {
    3564             :       /* Try to merge with an existing segment */
    3565           0 :       msegmentptr sp = &m->seg;
    3566           0 :       while (sp != 0 && tbase != sp->base + sp->size)
    3567           0 :         sp = sp->next;
    3568           0 :       if (sp != 0 &&
    3569           0 :           !is_extern_segment(sp) &&
    3570           0 :           check_segment_merge(sp, tbase, tsize) &&
    3571           0 :           (get_segment_flags(sp) & IS_MMAPPED_BIT) == mmap_flag &&
    3572           0 :           segment_holds(sp, m->top)) { /* append */
    3573           0 :         sp->size += tsize;
    3574           0 :         init_top(m, m->top, m->topsize + tsize);
    3575             :       }
    3576             :       else {
    3577           0 :         if (tbase < m->least_addr)
    3578           0 :           m->least_addr = tbase;
    3579           0 :         sp = &m->seg;
    3580           0 :         while (sp != 0 && sp->base != tbase + tsize)
    3581           0 :           sp = sp->next;
    3582           0 :         if (sp != 0 &&
    3583           0 :             !is_extern_segment(sp) &&
    3584           0 :             check_segment_merge(sp, tbase, tsize) &&
    3585             :             (get_segment_flags(sp) & IS_MMAPPED_BIT) == mmap_flag) {
    3586           0 :           char* oldbase = sp->base;
    3587           0 :           sp->base = tbase;
    3588           0 :           sp->size += tsize;
    3589           0 :           return prepend_alloc(m, tbase, oldbase, nb);
    3590             :         }
    3591             :         else
    3592           0 :           add_segment(m, tbase, tsize, mmap_flag);
    3593             :       }
    3594             :     }
    3595             : 
    3596           0 :     if (nb < m->topsize) { /* Allocate from new or extended top space */
    3597           0 :       size_t rsize = m->topsize -= nb;
    3598           0 :       mchunkptr p = m->top;
    3599           0 :       mchunkptr r = m->top = chunk_plus_offset(p, nb);
    3600           0 :       r->head = rsize | PINUSE_BIT;
    3601           0 :       set_size_and_pinuse_of_inuse_chunk(m, p, nb);
    3602           0 :       check_top_chunk(m, m->top);
    3603           0 :       check_malloced_chunk(m, chunk2mem(p), nb);
    3604           0 :       return chunk2mem(p);
    3605             :     }
    3606             :   }
    3607             : 
    3608           0 :   MALLOC_FAILURE_ACTION;
    3609           0 :   return 0;
    3610             : }
    3611             : 
    3612             : /* -----------------------  system deallocation -------------------------- */
    3613             : 
    3614             : /* Unmap and unlink any mmapped segments that don't contain used chunks */
    3615           0 : static size_t release_unused_segments(mstate m) {
    3616           0 :   size_t released = 0;
    3617           0 :   msegmentptr pred = &m->seg;
    3618           0 :   msegmentptr sp = pred->next;
    3619           0 :   while (sp != 0) {
    3620           0 :     char* base = sp->base;
    3621           0 :     size_t size = sp->size;
    3622           0 :     msegmentptr next = sp->next;
    3623             :     if (is_mmapped_segment(sp) && !is_extern_segment(sp)) {
    3624           0 :       mchunkptr p = align_as_chunk(base);
    3625           0 :       size_t psize = chunksize(p);
    3626             :       /* Can unmap if first chunk holds entire segment and not pinned */
    3627           0 :       if (!cinuse(p) && (char*)p + psize >= base + size - TOP_FOOT_SIZE) {
    3628           0 :         tchunkptr tp = (tchunkptr)p;
    3629           0 :         assert(segment_holds(sp, (char*)sp));
    3630           0 :         if (p == m->dv) {
    3631           0 :           m->dv = 0;
    3632           0 :           m->dvsize = 0;
    3633             :         }
    3634             :         else {
    3635           0 :           unlink_large_chunk(m, tp);
    3636             :         }
    3637           0 :         if (CALL_MUNMAP(base, size) == 0) {
    3638           0 :           released += size;
    3639           0 :           m->footprint -= size;
    3640             :           /* unlink obsoleted record */
    3641           0 :           sp = pred;
    3642           0 :           sp->next = next;
    3643             :         }
    3644             :         else { /* back out if cannot unmap */
    3645           0 :           insert_large_chunk(m, tp, psize);
    3646             :         }
    3647             :       }
    3648             :     }
    3649           0 :     pred = sp;
    3650           0 :     sp = next;
    3651             :   }
    3652           0 :   return released;
    3653             : }
    3654             : 
    3655           0 : static int sys_trim(mstate m, size_t pad) {
    3656           0 :   size_t released = 0;
    3657           0 :   if (pad < MAX_REQUEST && is_initialized(m)) {
    3658           0 :     pad += TOP_FOOT_SIZE; /* ensure enough room for segment overhead */
    3659             : 
    3660           0 :     if (m->topsize > pad) {
    3661             :       /* Shrink top space in granularity-size units, keeping at least one */
    3662           0 :       size_t unit = mparams.granularity;
    3663           0 :       size_t extra = ((m->topsize - pad + (unit - SIZE_T_ONE)) / unit -
    3664             :                       SIZE_T_ONE) * unit;
    3665           0 :       msegmentptr sp = segment_holding(m, (char*)m->top);
    3666             : 
    3667             :       if (!is_extern_segment(sp)) {
    3668             :         if (is_mmapped_segment(sp)) {
    3669           0 :           if (HAVE_MMAP &&
    3670           0 :               sp->size >= extra &&
    3671           0 :               !has_segment_link(m, sp)) { /* can't shrink if pinned */
    3672           0 :             size_t newsize = sp->size - extra;
    3673             :             /* Prefer mremap, fall back to munmap */
    3674           0 :             if ((CALL_MREMAP(sp->base, sp->size, newsize, 0) != MFAIL) ||
    3675           0 :                 (CALL_MUNMAP(sp->base + newsize, extra) == 0)) {
    3676           0 :               released = extra;
    3677             :             }
    3678             :           }
    3679             :         }
    3680             :         else if (HAVE_MORECORE) {
    3681             :           if (extra >= HALF_MAX_SIZE_T) /* Avoid wrapping negative */
    3682             :             extra = (HALF_MAX_SIZE_T) + SIZE_T_ONE - unit;
    3683             :           ACQUIRE_MORECORE_LOCK();
    3684             :           {
    3685             :             /* Make sure end of memory is where we last set it. */
    3686             :             char* old_br = (char*)(CALL_MORECORE(0));
    3687             :             if (old_br == sp->base + sp->size) {
    3688             :               char* rel_br = (char*)(CALL_MORECORE(-extra));
    3689             :               char* new_br = (char*)(CALL_MORECORE(0));
    3690             :               if (rel_br != CMFAIL && new_br < old_br)
    3691             :                 released = old_br - new_br;
    3692             :             }
    3693             :           }
    3694             :           RELEASE_MORECORE_LOCK();
    3695             :         }
    3696             :       }
    3697             : 
    3698           0 :       if (released != 0) {
    3699           0 :         sp->size -= released;
    3700           0 :         m->footprint -= released;
    3701           0 :         init_top(m, m->top, m->topsize - released);
    3702           0 :         check_top_chunk(m, m->top);
    3703             :       }
    3704             :     }
    3705             : 
    3706             :     /* Unmap any unused mmapped segments */
    3707             :     if (HAVE_MMAP) 
    3708           0 :       released += release_unused_segments(m);
    3709             : 
    3710             :     /* On failure, disable autotrim to avoid repeated failed future calls */
    3711           0 :     if (released == 0)
    3712           0 :       m->trim_check = MAX_SIZE_T;
    3713             :   }
    3714             : 
    3715           0 :   return (released != 0)? 1 : 0;
    3716             : }
    3717             : 
    3718             : /* ---------------------------- malloc support --------------------------- */
    3719             : 
    3720             : /* allocate a large request from the best fitting chunk in a treebin */
    3721           0 : static void* tmalloc_large(mstate m, size_t nb) {
    3722           0 :   tchunkptr v = 0;
    3723           0 :   size_t rsize = -nb; /* Unsigned negation */
    3724             :   tchunkptr t;
    3725             :   bindex_t idx;
    3726           0 :   compute_tree_index(nb, idx);
    3727             : 
    3728           0 :   if ((t = *treebin_at(m, idx)) != 0) {
    3729             :     /* Traverse tree for this bin looking for node with size == nb */
    3730           0 :     size_t sizebits = nb << leftshift_for_tree_index(idx);
    3731           0 :     tchunkptr rst = 0;  /* The deepest untaken right subtree */
    3732           0 :     for (;;) {
    3733             :       tchunkptr rt;
    3734           0 :       size_t trem = chunksize(t) - nb;
    3735           0 :       if (trem < rsize) {
    3736           0 :         v = t;
    3737           0 :         if ((rsize = trem) == 0)
    3738           0 :           break;
    3739             :       }
    3740           0 :       rt = t->child[1];
    3741           0 :       t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1];
    3742           0 :       if (rt != 0 && rt != t)
    3743           0 :         rst = rt;
    3744           0 :       if (t == 0) {
    3745           0 :         t = rst; /* set t to least subtree holding sizes > nb */
    3746           0 :         break;
    3747             :       }
    3748           0 :       sizebits <<= 1;
    3749             :     }
    3750             :   }
    3751             : 
    3752           0 :   if (t == 0 && v == 0) { /* set t to root of next non-empty treebin */
    3753           0 :     binmap_t leftbits = left_bits(idx2bit(idx)) & m->treemap;
    3754           0 :     if (leftbits != 0) {
    3755             :       bindex_t i;
    3756           0 :       binmap_t leastbit = least_bit(leftbits);
    3757           0 :       compute_bit2idx(leastbit, i);
    3758           0 :       t = *treebin_at(m, i);
    3759             :     }
    3760             :   }
    3761             : 
    3762           0 :   while (t != 0) { /* find smallest of tree or subtree */
    3763           0 :     size_t trem = chunksize(t) - nb;
    3764           0 :     if (trem < rsize) {
    3765           0 :       rsize = trem;
    3766           0 :       v = t;
    3767             :     }
    3768           0 :     t = leftmost_child(t);
    3769             :   }
    3770             : 
    3771             :   /*  If dv is a better fit, return 0 so malloc will use it */
    3772           0 :   if (v != 0 && rsize < (size_t)(m->dvsize - nb)) {
    3773           0 :     if (RTCHECK(ok_address(m, v))) { /* split */
    3774           0 :       mchunkptr r = chunk_plus_offset(v, nb);
    3775           0 :       assert(chunksize(v) == rsize + nb);
    3776           0 :       if (RTCHECK(ok_next(v, r))) {
    3777           0 :         unlink_large_chunk(m, v);
    3778           0 :         if (rsize < MIN_CHUNK_SIZE)
    3779           0 :           set_inuse_and_pinuse(m, v, (rsize + nb));
    3780             :         else {
    3781           0 :           set_size_and_pinuse_of_inuse_chunk(m, v, nb);
    3782           0 :           set_size_and_pinuse_of_free_chunk(r, rsize);
    3783           0 :           insert_chunk(m, r, rsize);
    3784             :         }
    3785           0 :         return chunk2mem(v);
    3786             :       }
    3787             :     }
    3788           0 :     CORRUPTION_ERROR_ACTION(m);
    3789             :   }
    3790           0 :   return 0;
    3791             : }
    3792             : 
    3793             : /* allocate a small request from the best fitting chunk in a treebin */
    3794           0 : static void* tmalloc_small(mstate m, size_t nb) {
    3795             :   tchunkptr t, v;
    3796             :   size_t rsize;
    3797             :   bindex_t i;
    3798           0 :   binmap_t leastbit = least_bit(m->treemap);
    3799           0 :   compute_bit2idx(leastbit, i);
    3800             : 
    3801           0 :   v = t = *treebin_at(m, i);
    3802           0 :   rsize = chunksize(t) - nb;
    3803             : 
    3804           0 :   while ((t = leftmost_child(t)) != 0) {
    3805           0 :     size_t trem = chunksize(t) - nb;
    3806           0 :     if (trem < rsize) {
    3807           0 :       rsize = trem;
    3808           0 :       v = t;
    3809             :     }
    3810             :   }
    3811             : 
    3812           0 :   if (RTCHECK(ok_address(m, v))) {
    3813           0 :     mchunkptr r = chunk_plus_offset(v, nb);
    3814           0 :     assert(chunksize(v) == rsize + nb);
    3815           0 :     if (RTCHECK(ok_next(v, r))) {
    3816           0 :       unlink_large_chunk(m, v);
    3817           0 :       if (rsize < MIN_CHUNK_SIZE)
    3818           0 :         set_inuse_and_pinuse(m, v, (rsize + nb));
    3819             :       else {
    3820           0 :         set_size_and_pinuse_of_inuse_chunk(m, v, nb);
    3821           0 :         set_size_and_pinuse_of_free_chunk(r, rsize);
    3822           0 :         replace_dv(m, r, rsize);
    3823             :       }
    3824           0 :       return chunk2mem(v);
    3825             :     }
    3826             :   }
    3827             : 
    3828           0 :   CORRUPTION_ERROR_ACTION(m);
    3829             :   return 0;
    3830             : }
    3831             : 
    3832             : /* --------------------------- realloc support --------------------------- */
    3833             : 
    3834           0 : static void* internal_realloc(mstate m, void* oldmem, size_t bytes) {
    3835           0 :   if (bytes >= MAX_REQUEST) {
    3836           0 :     MALLOC_FAILURE_ACTION;
    3837           0 :     return 0;
    3838             :   }
    3839           0 :   if (!PREACTION(m)) {
    3840           0 :     mchunkptr oldp = mem2chunk(oldmem);
    3841           0 :     size_t oldsize = chunksize(oldp);
    3842           0 :     mchunkptr next = chunk_plus_offset(oldp, oldsize);
    3843           0 :     mchunkptr newp = 0;
    3844           0 :     void* extra = 0;
    3845             : 
    3846             :     /* Try to either shrink or extend into top. Else malloc-copy-free */
    3847             : 
    3848           0 :     if (RTCHECK(ok_address(m, oldp) && ok_cinuse(oldp) &&
    3849           0 :                 ok_next(oldp, next) && ok_pinuse(next))) {
    3850           0 :       size_t nb = request2size(bytes);
    3851           0 :       if (is_mmapped(oldp))
    3852           0 :         newp = mmap_resize(m, oldp, nb);
    3853           0 :       else if (oldsize >= nb) { /* already big enough */
    3854           0 :         size_t rsize = oldsize - nb;
    3855           0 :         newp = oldp;
    3856           0 :         if (rsize >= MIN_CHUNK_SIZE) {
    3857           0 :           mchunkptr remainder = chunk_plus_offset(newp, nb);
    3858           0 :           set_inuse(m, newp, nb);
    3859           0 :           set_inuse(m, remainder, rsize);
    3860           0 :           extra = chunk2mem(remainder);
    3861             :         }
    3862             :       }
    3863           0 :       else if (next == m->top && oldsize + m->topsize > nb) {
    3864             :         /* Expand into top */
    3865           0 :         size_t newsize = oldsize + m->topsize;
    3866           0 :         size_t newtopsize = newsize - nb;
    3867           0 :         mchunkptr newtop = chunk_plus_offset(oldp, nb);
    3868           0 :         set_inuse(m, oldp, nb);
    3869           0 :         newtop->head = newtopsize |PINUSE_BIT;
    3870           0 :         m->top = newtop;
    3871           0 :         m->topsize = newtopsize;
    3872           0 :         newp = oldp;
    3873             :       }
    3874             :     }
    3875             :     else {
    3876           0 :       USAGE_ERROR_ACTION(m, oldmem);
    3877             :       POSTACTION(m);
    3878             :       return 0;
    3879             :     }
    3880             : 
    3881           0 :     POSTACTION(m);
    3882             : 
    3883           0 :     if (newp != 0) {
    3884           0 :       if (extra != 0) {
    3885           0 :         internal_free(m, extra);
    3886             :       }
    3887           0 :       check_inuse_chunk(m, newp);
    3888           0 :       return chunk2mem(newp);
    3889             :     }
    3890             :     else {
    3891           0 :       void* newmem = internal_malloc(m, bytes);
    3892           0 :       if (newmem != 0) {
    3893           0 :         size_t oc = oldsize - overhead_for(oldp);
    3894           0 :         memcpy(newmem, oldmem, (oc < bytes)? oc : bytes);
    3895           0 :         internal_free(m, oldmem);
    3896             :       }
    3897           0 :       return newmem;
    3898             :     }
    3899             :   }
    3900           0 :   return 0;
    3901             : }
    3902             : 
    3903             : /* --------------------------- memalign support -------------------------- */
    3904             : 
    3905           0 : static void* internal_memalign(mstate m, size_t alignment, size_t bytes) {
    3906           0 :   if (alignment <= MALLOC_ALIGNMENT)    /* Can just use malloc */
    3907           0 :     return internal_malloc(m, bytes);
    3908           0 :   if (alignment <  MIN_CHUNK_SIZE) /* must be at least a minimum chunk size */
    3909           0 :     alignment = MIN_CHUNK_SIZE;
    3910           0 :   if ((alignment & (alignment-SIZE_T_ONE)) != 0) {/* Ensure a power of 2 */
    3911           0 :     size_t a = MALLOC_ALIGNMENT << 1;
    3912           0 :     while (a < alignment) a <<= 1;
    3913           0 :     alignment = a;
    3914             :   }
    3915             :   
    3916           0 :   if (bytes >= MAX_REQUEST - alignment) {
    3917           0 :     if (m != 0)  { /* Test isn't needed but avoids compiler warning */
    3918           0 :       MALLOC_FAILURE_ACTION;
    3919             :     }
    3920             :   }
    3921             :   else {
    3922           0 :     size_t nb = request2size(bytes);
    3923           0 :     size_t req = nb + alignment + MIN_CHUNK_SIZE - CHUNK_OVERHEAD;
    3924           0 :     char* mem = (char*)internal_malloc(m, req);
    3925           0 :     if (mem != 0) {
    3926           0 :       void* leader = 0;
    3927           0 :       void* trailer = 0;
    3928           0 :       mchunkptr p = mem2chunk(mem);
    3929             : 
    3930           0 :       if (PREACTION(m)) return 0;
    3931           0 :       if ((((size_t)(mem)) % alignment) != 0) { /* misaligned */
    3932             :         /*
    3933             :           Find an aligned spot inside chunk.  Since we need to give
    3934             :           back leading space in a chunk of at least MIN_CHUNK_SIZE, if
    3935             :           the first calculation places us at a spot with less than
    3936             :           MIN_CHUNK_SIZE leader, we can move to the next aligned spot.
    3937             :           We've allocated enough total room so that this is always
    3938             :           possible.
    3939             :         */
    3940           0 :         char* br = (char*)mem2chunk((size_t)(((size_t)(mem +
    3941             :                                                        alignment -
    3942             :                                                        SIZE_T_ONE)) &
    3943             :                                              -alignment));
    3944           0 :         char* pos = ((size_t)(br - (char*)(p)) >= MIN_CHUNK_SIZE)?
    3945           0 :           br : br+alignment;
    3946           0 :         mchunkptr newp = (mchunkptr)pos;
    3947           0 :         size_t leadsize = pos - (char*)(p);
    3948           0 :         size_t newsize = chunksize(p) - leadsize;
    3949             : 
    3950           0 :         if (is_mmapped(p)) { /* For mmapped chunks, just adjust offset */
    3951           0 :           newp->prev_foot = p->prev_foot + leadsize;
    3952           0 :           newp->head = (newsize|CINUSE_BIT);
    3953             :         }
    3954             :         else { /* Otherwise, give back leader, use the rest */
    3955           0 :           set_inuse(m, newp, newsize);
    3956           0 :           set_inuse(m, p, leadsize);
    3957           0 :           leader = chunk2mem(p);
    3958             :         }
    3959           0 :         p = newp;
    3960             :       }
    3961             : 
    3962             :       /* Give back spare room at the end */
    3963           0 :       if (!is_mmapped(p)) {
    3964           0 :         size_t size = chunksize(p);
    3965           0 :         if (size > nb + MIN_CHUNK_SIZE) {
    3966           0 :           size_t remainder_size = size - nb;
    3967           0 :           mchunkptr remainder = chunk_plus_offset(p, nb);
    3968           0 :           set_inuse(m, p, nb);
    3969           0 :           set_inuse(m, remainder, remainder_size);
    3970           0 :           trailer = chunk2mem(remainder);
    3971             :         }
    3972             :       }
    3973             : 
    3974           0 :       assert (chunksize(p) >= nb);
    3975           0 :       assert((((size_t)(chunk2mem(p))) % alignment) == 0);
    3976           0 :       check_inuse_chunk(m, p);
    3977           0 :       POSTACTION(m);
    3978           0 :       if (leader != 0) {
    3979           0 :         internal_free(m, leader);
    3980             :       }
    3981           0 :       if (trailer != 0) {
    3982           0 :         internal_free(m, trailer);
    3983             :       }
    3984           0 :       return chunk2mem(p);
    3985             :     }
    3986             :   }
    3987           0 :   return 0;
    3988             : }
    3989             : 
    3990             : /* ------------------------ comalloc/coalloc support --------------------- */
    3991             : 
    3992           0 : static void** ialloc(mstate m,
    3993             :                      size_t n_elements,
    3994             :                      size_t* sizes,
    3995             :                      int opts,
    3996             :                      void* chunks[]) {
    3997             :   /*
    3998             :     This provides common support for independent_X routines, handling
    3999             :     all of the combinations that can result.
    4000             : 
    4001             :     The opts arg has:
    4002             :     bit 0 set if all elements are same size (using sizes[0])
    4003             :     bit 1 set if elements should be zeroed
    4004             :   */
    4005             : 
    4006             :   size_t    element_size;   /* chunksize of each element, if all same */
    4007             :   size_t    contents_size;  /* total size of elements */
    4008             :   size_t    array_size;     /* request size of pointer array */
    4009             :   void*     mem;            /* malloced aggregate space */
    4010             :   mchunkptr p;              /* corresponding chunk */
    4011             :   size_t    remainder_size; /* remaining bytes while splitting */
    4012             :   void**    marray;         /* either "chunks" or malloced ptr array */
    4013             :   mchunkptr array_chunk;    /* chunk for malloced ptr array */
    4014             :   flag_t    was_enabled;    /* to disable mmap */
    4015             :   size_t    size;
    4016             :   size_t    i;
    4017             : 
    4018             :   /* compute array length, if needed */
    4019           0 :   if (chunks != 0) {
    4020           0 :     if (n_elements == 0)
    4021           0 :       return chunks; /* nothing to do */
    4022           0 :     marray = chunks;
    4023           0 :     array_size = 0;
    4024             :   }
    4025             :   else {
    4026             :     /* if empty req, must still return chunk representing empty array */
    4027           0 :     if (n_elements == 0)
    4028           0 :       return (void**)internal_malloc(m, 0);
    4029           0 :     marray = 0;
    4030           0 :     array_size = request2size(n_elements * (sizeof(void*)));
    4031             :   }
    4032             : 
    4033             :   /* compute total element size */
    4034           0 :   if (opts & 0x1) { /* all-same-size */
    4035           0 :     element_size = request2size(*sizes);
    4036           0 :     contents_size = n_elements * element_size;
    4037             :   }
    4038             :   else { /* add up all the sizes */
    4039           0 :     element_size = 0;
    4040           0 :     contents_size = 0;
    4041           0 :     for (i = 0; i != n_elements; ++i)
    4042           0 :       contents_size += request2size(sizes[i]);
    4043             :   }
    4044             : 
    4045           0 :   size = contents_size + array_size;
    4046             : 
    4047             :   /*
    4048             :      Allocate the aggregate chunk.  First disable direct-mmapping so
    4049             :      malloc won't use it, since we would not be able to later
    4050             :      free/realloc space internal to a segregated mmap region.
    4051             :   */
    4052           0 :   was_enabled = use_mmap(m);
    4053           0 :   disable_mmap(m);
    4054           0 :   mem = internal_malloc(m, size - CHUNK_OVERHEAD);
    4055           0 :   if (was_enabled)
    4056           0 :     enable_mmap(m);
    4057           0 :   if (mem == 0)
    4058           0 :     return 0;
    4059             : 
    4060           0 :   if (PREACTION(m)) return 0;
    4061           0 :   p = mem2chunk(mem);
    4062           0 :   remainder_size = chunksize(p);
    4063             : 
    4064           0 :   assert(!is_mmapped(p));
    4065             : 
    4066           0 :   if (opts & 0x2) {       /* optionally clear the elements */
    4067           0 :     memset((size_t*)mem, 0, remainder_size - SIZE_T_SIZE - array_size);
    4068             :   }
    4069             : 
    4070             :   /* If not provided, allocate the pointer array as final part of chunk */
    4071           0 :   if (marray == 0) {
    4072             :     size_t  array_chunk_size;
    4073           0 :     array_chunk = chunk_plus_offset(p, contents_size);
    4074           0 :     array_chunk_size = remainder_size - contents_size;
    4075           0 :     marray = (void**) (chunk2mem(array_chunk));
    4076           0 :     set_size_and_pinuse_of_inuse_chunk(m, array_chunk, array_chunk_size);
    4077           0 :     remainder_size = contents_size;
    4078             :   }
    4079             : 
    4080             :   /* split out elements */
    4081           0 :   for (i = 0; ; ++i) {
    4082           0 :     marray[i] = chunk2mem(p);
    4083           0 :     if (i != n_elements-1) {
    4084           0 :       if (element_size != 0)
    4085           0 :         size = element_size;
    4086             :       else
    4087           0 :         size = request2size(sizes[i]);
    4088           0 :       remainder_size -= size;
    4089           0 :       set_size_and_pinuse_of_inuse_chunk(m, p, size);
    4090           0 :       p = chunk_plus_offset(p, size);
    4091             :     }
    4092             :     else { /* the final element absorbs any overallocation slop */
    4093           0 :       set_size_and_pinuse_of_inuse_chunk(m, p, remainder_size);
    4094           0 :       break;
    4095             :     }
    4096             :   }
    4097             : 
    4098             : #if DEBUG
    4099           0 :   if (marray != chunks) {
    4100             :     /* final element must have exactly exhausted chunk */
    4101           0 :     if (element_size != 0) {
    4102           0 :       assert(remainder_size == element_size);
    4103             :     }
    4104             :     else {
    4105           0 :       assert(remainder_size == request2size(sizes[i]));
    4106             :     }
    4107           0 :     check_inuse_chunk(m, mem2chunk(marray));
    4108             :   }
    4109           0 :   for (i = 0; i != n_elements; ++i)
    4110           0 :     check_inuse_chunk(m, mem2chunk(marray[i]));
    4111             : 
    4112             : #endif /* DEBUG */
    4113             : 
    4114           0 :   POSTACTION(m);
    4115           0 :   return marray;
    4116             : }
    4117             : 
    4118             : 
    4119             : /* -------------------------- public routines ---------------------------- */
    4120             : 
    4121             : #if !ONLY_MSPACES
    4122             : 
    4123           0 : void* dlmalloc(size_t bytes) {
    4124             :   /*
    4125             :      Basic algorithm:
    4126             :      If a small request (< 256 bytes minus per-chunk overhead):
    4127             :        1. If one exists, use a remainderless chunk in associated smallbin.
    4128             :           (Remainderless means that there are too few excess bytes to
    4129             :           represent as a chunk.)
    4130             :        2. If it is big enough, use the dv chunk, which is normally the
    4131             :           chunk adjacent to the one used for the most recent small request.
    4132             :        3. If one exists, split the smallest available chunk in a bin,
    4133             :           saving remainder in dv.
    4134             :        4. If it is big enough, use the top chunk.
    4135             :        5. If available, get memory from system and use it
    4136             :      Otherwise, for a large request:
    4137             :        1. Find the smallest available binned chunk that fits, and use it
    4138             :           if it is better fitting than dv chunk, splitting if necessary.
    4139             :        2. If better fitting than any binned chunk, use the dv chunk.
    4140             :        3. If it is big enough, use the top chunk.
    4141             :        4. If request size >= mmap threshold, try to directly mmap this chunk.
    4142             :        5. If available, get memory from system and use it
    4143             : 
    4144             :      The ugly goto's here ensure that postaction occurs along all paths.
    4145             :   */
    4146             : 
    4147           0 :   if (!PREACTION(gm)) {
    4148             :     void* mem;
    4149             :     size_t nb;
    4150           0 :     if (bytes <= MAX_SMALL_REQUEST) {
    4151             :       bindex_t idx;
    4152             :       binmap_t smallbits;
    4153           0 :       nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes);
    4154           0 :       idx = small_index(nb);
    4155           0 :       smallbits = gm->smallmap >> idx;
    4156             : 
    4157           0 :       if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */
    4158             :         mchunkptr b, p;
    4159           0 :         idx += ~smallbits & 1;       /* Uses next bin if idx empty */
    4160           0 :         b = smallbin_at(gm, idx);
    4161           0 :         p = b->fd;
    4162           0 :         assert(chunksize(p) == small_index2size(idx));
    4163           0 :         unlink_first_small_chunk(gm, b, p, idx);
    4164           0 :         set_inuse_and_pinuse(gm, p, small_index2size(idx));
    4165           0 :         mem = chunk2mem(p);
    4166           0 :         check_malloced_chunk(gm, mem, nb);
    4167           0 :         goto postaction;
    4168             :       }
    4169             : 
    4170           0 :       else if (nb > gm->dvsize) {
    4171           0 :         if (smallbits != 0) { /* Use chunk in next nonempty smallbin */
    4172             :           mchunkptr b, p, r;
    4173             :           size_t rsize;
    4174             :           bindex_t i;
    4175           0 :           binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx));
    4176           0 :           binmap_t leastbit = least_bit(leftbits);
    4177           0 :           compute_bit2idx(leastbit, i);
    4178           0 :           b = smallbin_at(gm, i);
    4179           0 :           p = b->fd;
    4180           0 :           assert(chunksize(p) == small_index2size(i));
    4181           0 :           unlink_first_small_chunk(gm, b, p, i);
    4182           0 :           rsize = small_index2size(i) - nb;
    4183             :           /* Fit here cannot be remainderless if 4byte sizes */
    4184           0 :           if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE)
    4185           0 :             set_inuse_and_pinuse(gm, p, small_index2size(i));
    4186             :           else {
    4187           0 :             set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
    4188           0 :             r = chunk_plus_offset(p, nb);
    4189           0 :             set_size_and_pinuse_of_free_chunk(r, rsize);
    4190           0 :             replace_dv(gm, r, rsize);
    4191             :           }
    4192           0 :           mem = chunk2mem(p);
    4193           0 :           check_malloced_chunk(gm, mem, nb);
    4194           0 :           goto postaction;
    4195             :         }
    4196             : 
    4197           0 :         else if (gm->treemap != 0 && (mem = tmalloc_small(gm, nb)) != 0) {
    4198           0 :           check_malloced_chunk(gm, mem, nb);
    4199           0 :           goto postaction;
    4200             :         }
    4201             :       }
    4202             :     }
    4203           0 :     else if (bytes >= MAX_REQUEST)
    4204           0 :       nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */
    4205             :     else {
    4206           0 :       nb = pad_request(bytes);
    4207           0 :       if (gm->treemap != 0 && (mem = tmalloc_large(gm, nb)) != 0) {
    4208           0 :         check_malloced_chunk(gm, mem, nb);
    4209           0 :         goto postaction;
    4210             :       }
    4211             :     }
    4212             : 
    4213           0 :     if (nb <= gm->dvsize) {
    4214           0 :       size_t rsize = gm->dvsize - nb;
    4215           0 :       mchunkptr p = gm->dv;
    4216           0 :       if (rsize >= MIN_CHUNK_SIZE) { /* split dv */
    4217           0 :         mchunkptr r = gm->dv = chunk_plus_offset(p, nb);
    4218           0 :         gm->dvsize = rsize;
    4219           0 :         set_size_and_pinuse_of_free_chunk(r, rsize);
    4220           0 :         set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
    4221             :       }
    4222             :       else { /* exhaust dv */
    4223           0 :         size_t dvs = gm->dvsize;
    4224           0 :         gm->dvsize = 0;
    4225           0 :         gm->dv = 0;
    4226           0 :         set_inuse_and_pinuse(gm, p, dvs);
    4227             :       }
    4228           0 :       mem = chunk2mem(p);
    4229           0 :       check_malloced_chunk(gm, mem, nb);
    4230           0 :       goto postaction;
    4231             :     }
    4232             : 
    4233           0 :     else if (nb < gm->topsize) { /* Split top */
    4234           0 :       size_t rsize = gm->topsize -= nb;
    4235           0 :       mchunkptr p = gm->top;
    4236           0 :       mchunkptr r = gm->top = chunk_plus_offset(p, nb);
    4237           0 :       r->head = rsize | PINUSE_BIT;
    4238           0 :       set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
    4239           0 :       mem = chunk2mem(p);
    4240           0 :       check_top_chunk(gm, gm->top);
    4241           0 :       check_malloced_chunk(gm, mem, nb);
    4242           0 :       goto postaction;
    4243             :     }
    4244             : 
    4245           0 :     mem = sys_alloc(gm, nb);
    4246             : 
    4247             :   postaction:
    4248           0 :     POSTACTION(gm);
    4249           0 :     return mem;
    4250             :   }
    4251             : 
    4252           0 :   return 0;
    4253             : }
    4254             : 
    4255           0 : void dlfree(void* mem) {
    4256             :   /*
    4257             :      Consolidate freed chunks with preceding or succeeding bordering
    4258             :      free chunks, if they exist, and then place in a bin.  Intermixed
    4259             :      with special cases for top, dv, mmapped chunks, and usage errors.
    4260             :   */
    4261             : 
    4262           0 :   if (mem != 0) {
    4263           0 :     mchunkptr p  = mem2chunk(mem);
    4264             : #if FOOTERS
    4265             :     mstate fm = get_mstate_for(p);
    4266             :     if (!ok_magic(fm)) {
    4267             :       USAGE_ERROR_ACTION(fm, p);
    4268             :       return;
    4269             :     }
    4270             : #else /* FOOTERS */
    4271             : #define fm gm
    4272             : #endif /* FOOTERS */
    4273           0 :     if (!PREACTION(fm)) {
    4274           0 :       check_inuse_chunk(fm, p);
    4275           0 :       if (RTCHECK(ok_address(fm, p) && ok_cinuse(p))) {
    4276           0 :         size_t psize = chunksize(p);
    4277           0 :         mchunkptr next = chunk_plus_offset(p, psize);
    4278           0 :         if (!pinuse(p)) {
    4279           0 :           size_t prevsize = p->prev_foot;
    4280           0 :           if ((prevsize & IS_MMAPPED_BIT) != 0) {
    4281           0 :             prevsize &= ~IS_MMAPPED_BIT;
    4282           0 :             psize += prevsize + MMAP_FOOT_PAD;
    4283           0 :             if (CALL_MUNMAP((char*)p - prevsize, psize) == 0)
    4284           0 :               fm->footprint -= psize;
    4285           0 :             goto postaction;
    4286             :           }
    4287             :           else {
    4288           0 :             mchunkptr prev = chunk_minus_offset(p, prevsize);
    4289           0 :             psize += prevsize;
    4290           0 :             p = prev;
    4291           0 :             if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */
    4292           0 :               if (p != fm->dv) {
    4293           0 :                 unlink_chunk(fm, p, prevsize);
    4294             :               }
    4295           0 :               else if ((next->head & INUSE_BITS) == INUSE_BITS) {
    4296           0 :                 fm->dvsize = psize;
    4297           0 :                 set_free_with_pinuse(p, psize, next);
    4298           0 :                 goto postaction;
    4299             :               }
    4300             :             }
    4301             :             else
    4302           0 :               goto erroraction;
    4303             :           }
    4304             :         }
    4305             : 
    4306           0 :         if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) {
    4307           0 :           if (!cinuse(next)) {  /* consolidate forward */
    4308           0 :             if (next == fm->top) {
    4309           0 :               size_t tsize = fm->topsize += psize;
    4310           0 :               fm->top = p;
    4311           0 :               p->head = tsize | PINUSE_BIT;
    4312           0 :               if (p == fm->dv) {
    4313           0 :                 fm->dv = 0;
    4314           0 :                 fm->dvsize = 0;
    4315             :               }
    4316           0 :               if (should_trim(fm, tsize))
    4317           0 :                 sys_trim(fm, 0);
    4318           0 :               goto postaction;
    4319             :             }
    4320           0 :             else if (next == fm->dv) {
    4321           0 :               size_t dsize = fm->dvsize += psize;
    4322           0 :               fm->dv = p;
    4323           0 :               set_size_and_pinuse_of_free_chunk(p, dsize);
    4324           0 :               goto postaction;
    4325             :             }
    4326             :             else {
    4327           0 :               size_t nsize = chunksize(next);
    4328           0 :               psize += nsize;
    4329           0 :               unlink_chunk(fm, next, nsize);
    4330           0 :               set_size_and_pinuse_of_free_chunk(p, psize);
    4331           0 :               if (p == fm->dv) {
    4332           0 :                 fm->dvsize = psize;
    4333           0 :                 goto postaction;
    4334             :               }
    4335             :             }
    4336             :           }
    4337             :           else
    4338           0 :             set_free_with_pinuse(p, psize, next);
    4339           0 :           insert_chunk(fm, p, psize);
    4340           0 :           check_free_chunk(fm, p);
    4341           0 :           goto postaction;
    4342             :         }
    4343             :       }
    4344             :     erroraction:
    4345           0 :       USAGE_ERROR_ACTION(fm, p);
    4346             :     postaction:
    4347           0 :       POSTACTION(fm);
    4348             :     }
    4349             :   }
    4350             : #if !FOOTERS
    4351             : #undef fm
    4352             : #endif /* FOOTERS */
    4353           0 : }
    4354             : 
    4355           0 : void* dlcalloc(size_t n_elements, size_t elem_size) {
    4356             :   void* mem;
    4357           0 :   size_t req = 0;
    4358           0 :   if (n_elements != 0) {
    4359           0 :     req = n_elements * elem_size;
    4360           0 :     if (((n_elements | elem_size) & ~(size_t)0xffff) &&
    4361           0 :         (req / n_elements != elem_size))
    4362           0 :       req = MAX_SIZE_T; /* force downstream failure on overflow */
    4363             :   }
    4364           0 :   mem = dlmalloc(req);
    4365           0 :   if (mem != 0 && calloc_must_clear(mem2chunk(mem)))
    4366           0 :     memset(mem, 0, req);
    4367           0 :   return mem;
    4368             : }
    4369             : 
    4370           0 : void* dlrealloc(void* oldmem, size_t bytes) {
    4371           0 :   if (oldmem == 0)
    4372           0 :     return dlmalloc(bytes);
    4373             : #ifdef REALLOC_ZERO_BYTES_FREES
    4374             :   if (bytes == 0) {
    4375             :     dlfree(oldmem);
    4376             :     return 0;
    4377             :   }
    4378             : #endif /* REALLOC_ZERO_BYTES_FREES */
    4379             :   else {
    4380             : #if ! FOOTERS
    4381           0 :     mstate m = gm;
    4382             : #else /* FOOTERS */
    4383             :     mstate m = get_mstate_for(mem2chunk(oldmem));
    4384             :     if (!ok_magic(m)) {
    4385             :       USAGE_ERROR_ACTION(m, oldmem);
    4386             :       return 0;
    4387             :     }
    4388             : #endif /* FOOTERS */
    4389           0 :     return internal_realloc(m, oldmem, bytes);
    4390             :   }
    4391             : }
    4392             : 
    4393           0 : void* dlmemalign(size_t alignment, size_t bytes) {
    4394           0 :   return internal_memalign(gm, alignment, bytes);
    4395             : }
    4396             : 
    4397           0 : void** dlindependent_calloc(size_t n_elements, size_t elem_size,
    4398             :                                  void* chunks[]) {
    4399           0 :   size_t sz = elem_size; /* serves as 1-element array */
    4400           0 :   return ialloc(gm, n_elements, &sz, 3, chunks);
    4401             : }
    4402             : 
    4403           0 : void** dlindependent_comalloc(size_t n_elements, size_t sizes[],
    4404             :                                    void* chunks[]) {
    4405           0 :   return ialloc(gm, n_elements, sizes, 0, chunks);
    4406             : }
    4407             : 
    4408           0 : void* dlvalloc(size_t bytes) {
    4409             :   size_t pagesz;
    4410           0 :   init_mparams();
    4411           0 :   pagesz = mparams.page_size;
    4412           0 :   return dlmemalign(pagesz, bytes);
    4413             : }
    4414             : 
    4415           0 : void* dlpvalloc(size_t bytes) {
    4416             :   size_t pagesz;
    4417           0 :   init_mparams();
    4418           0 :   pagesz = mparams.page_size;
    4419           0 :   return dlmemalign(pagesz, (bytes + pagesz - SIZE_T_ONE) & ~(pagesz - SIZE_T_ONE));
    4420             : }
    4421             : 
    4422           0 : int dlmalloc_trim(size_t pad) {
    4423           0 :   int result = 0;
    4424           0 :   if (!PREACTION(gm)) {
    4425           0 :     result = sys_trim(gm, pad);
    4426           0 :     POSTACTION(gm);
    4427             :   }
    4428           0 :   return result;
    4429             : }
    4430             : 
    4431           0 : size_t dlmalloc_footprint(void) {
    4432           0 :   return gm->footprint;
    4433             : }
    4434             : 
    4435           0 : size_t dlmalloc_max_footprint(void) {
    4436           0 :   return gm->max_footprint;
    4437             : }
    4438             : 
    4439             : #if !NO_MALLINFO
    4440             : struct mallinfo dlmallinfo(void) {
    4441             :   return internal_mallinfo(gm);
    4442             : }
    4443             : #endif /* NO_MALLINFO */
    4444             : 
    4445           0 : void dlmalloc_stats() {
    4446           0 :   internal_malloc_stats(gm);
    4447           0 : }
    4448             : 
    4449           0 : size_t dlmalloc_usable_size(void* mem) {
    4450           0 :   if (mem != 0) {
    4451           0 :     mchunkptr p = mem2chunk(mem);
    4452           0 :     if (cinuse(p))
    4453           0 :       return chunksize(p) - overhead_for(p);
    4454             :   }
    4455           0 :   return 0;
    4456             : }
    4457             : 
    4458           0 : int dlmallopt(int param_number, int value) {
    4459           0 :   return change_mparam(param_number, value);
    4460             : }
    4461             : 
    4462             : #endif /* !ONLY_MSPACES */
    4463             : 
    4464             : /* ----------------------------- user mspaces ---------------------------- */
    4465             : 
    4466             : #if MSPACES
    4467             : 
    4468             : static mstate init_user_mstate(char* tbase, size_t tsize) {
    4469             :   size_t msize = pad_request(sizeof(struct malloc_state));
    4470             :   mchunkptr mn;
    4471             :   mchunkptr msp = align_as_chunk(tbase);
    4472             :   mstate m = (mstate)(chunk2mem(msp));
    4473             :   memset(m, 0, msize);
    4474             :   INITIAL_LOCK(&m->mutex);
    4475             :   msp->head = (msize|PINUSE_BIT|CINUSE_BIT);
    4476             :   m->seg.base = m->least_addr = tbase;
    4477             :   m->seg.size = m->footprint = m->max_footprint = tsize;
    4478             :   m->magic = mparams.magic;
    4479             :   m->mflags = mparams.default_mflags;
    4480             :   disable_contiguous(m);
    4481             :   init_bins(m);
    4482             :   mn = next_chunk(mem2chunk(m));
    4483             :   init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) - TOP_FOOT_SIZE);
    4484             :   check_top_chunk(m, m->top);
    4485             :   return m;
    4486             : }
    4487             : 
    4488             : mspace create_mspace(size_t capacity, int locked) {
    4489             :   mstate m = 0;
    4490             :   size_t msize = pad_request(sizeof(struct malloc_state));
    4491             :   init_mparams(); /* Ensure pagesize etc initialized */
    4492             : 
    4493             :   if (capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) {
    4494             :     size_t rs = ((capacity == 0)? mparams.granularity :
    4495             :                  (capacity + TOP_FOOT_SIZE + msize));
    4496             :     size_t tsize = granularity_align(rs);
    4497             :     char* tbase = (char*)(CALL_MMAP(tsize));
    4498             :     if (tbase != CMFAIL) {
    4499             :       m = init_user_mstate(tbase, tsize);
    4500             :       set_segment_flags(&m->seg, IS_MMAPPED_BIT);
    4501             :       set_lock(m, locked);
    4502             :     }
    4503             :   }
    4504             :   return (mspace)m;
    4505             : }
    4506             : 
    4507             : mspace create_mspace_with_base(void* base, size_t capacity, int locked) {
    4508             :   mstate m = 0;
    4509             :   size_t msize = pad_request(sizeof(struct malloc_state));
    4510             :   init_mparams(); /* Ensure pagesize etc initialized */
    4511             : 
    4512             :   if (capacity > msize + TOP_FOOT_SIZE &&
    4513             :       capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) {
    4514             :     m = init_user_mstate((char*)base, capacity);
    4515             :     set_segment_flags(&m->seg, EXTERN_BIT);
    4516             :     set_lock(m, locked);
    4517             :   }
    4518             :   return (mspace)m;
    4519             : }
    4520             : 
    4521             : size_t destroy_mspace(mspace msp) {
    4522             :   size_t freed = 0;
    4523             :   mstate ms = (mstate)msp;
    4524             :   if (ok_magic(ms)) {
    4525             :     msegmentptr sp = &ms->seg;
    4526             :     while (sp != 0) {
    4527             :       char* base = sp->base;
    4528             :       size_t size = sp->size;
    4529             :       flag_t flag = get_segment_flags(sp);
    4530             :       sp = sp->next;
    4531             :       if ((flag & IS_MMAPPED_BIT) && !(flag & EXTERN_BIT) &&
    4532             :           CALL_MUNMAP(base, size) == 0)
    4533             :         freed += size;
    4534             :     }
    4535             :   }
    4536             :   else {
    4537             :     USAGE_ERROR_ACTION(ms,ms);
    4538             :   }
    4539             :   return freed;
    4540             : }
    4541             : 
    4542             : /*
    4543             :   mspace versions of routines are near-clones of the global
    4544             :   versions. This is not so nice but better than the alternatives.
    4545             : */
    4546             : 
    4547             : 
    4548             : void* mspace_malloc(mspace msp, size_t bytes) {
    4549             :   mstate ms = (mstate)msp;
    4550             :   if (!ok_magic(ms)) {
    4551             :     USAGE_ERROR_ACTION(ms,ms);
    4552             :     return 0;
    4553             :   }
    4554             :   if (!PREACTION(ms)) {
    4555             :     void* mem;
    4556             :     size_t nb;
    4557             :     if (bytes <= MAX_SMALL_REQUEST) {
    4558             :       bindex_t idx;
    4559             :       binmap_t smallbits;
    4560             :       nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes);
    4561             :       idx = small_index(nb);
    4562             :       smallbits = ms->smallmap >> idx;
    4563             : 
    4564             :       if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */
    4565             :         mchunkptr b, p;
    4566             :         idx += ~smallbits & 1;       /* Uses next bin if idx empty */
    4567             :         b = smallbin_at(ms, idx);
    4568             :         p = b->fd;
    4569             :         assert(chunksize(p) == small_index2size(idx));
    4570             :         unlink_first_small_chunk(ms, b, p, idx);
    4571             :         set_inuse_and_pinuse(ms, p, small_index2size(idx));
    4572             :         mem = chunk2mem(p);
    4573             :         check_malloced_chunk(ms, mem, nb);
    4574             :         goto postaction;
    4575             :       }
    4576             : 
    4577             :       else if (nb > ms->dvsize) {
    4578             :         if (smallbits != 0) { /* Use chunk in next nonempty smallbin */
    4579             :           mchunkptr b, p, r;
    4580             :           size_t rsize;
    4581             :           bindex_t i;
    4582             :           binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx));
    4583             :           binmap_t leastbit = least_bit(leftbits);
    4584             :           compute_bit2idx(leastbit, i);
    4585             :           b = smallbin_at(ms, i);
    4586             :           p = b->fd;
    4587             :           assert(chunksize(p) == small_index2size(i));
    4588             :           unlink_first_small_chunk(ms, b, p, i);
    4589             :           rsize = small_index2size(i) - nb;
    4590             :           /* Fit here cannot be remainderless if 4byte sizes */
    4591             :           if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE)
    4592             :             set_inuse_and_pinuse(ms, p, small_index2size(i));
    4593             :           else {
    4594             :             set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
    4595             :             r = chunk_plus_offset(p, nb);
    4596             :             set_size_and_pinuse_of_free_chunk(r, rsize);
    4597             :             replace_dv(ms, r, rsize);
    4598             :           }
    4599             :           mem = chunk2mem(p);
    4600             :           check_malloced_chunk(ms, mem, nb);
    4601             :           goto postaction;
    4602             :         }
    4603             : 
    4604             :         else if (ms->treemap != 0 && (mem = tmalloc_small(ms, nb)) != 0) {
    4605             :           check_malloced_chunk(ms, mem, nb);
    4606             :           goto postaction;
    4607             :         }
    4608             :       }
    4609             :     }
    4610             :     else if (bytes >= MAX_REQUEST)
    4611             :       nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */
    4612             :     else {
    4613             :       nb = pad_request(bytes);
    4614             :       if (ms->treemap != 0 && (mem = tmalloc_large(ms, nb)) != 0) {
    4615             :         check_malloced_chunk(ms, mem, nb);
    4616             :         goto postaction;
    4617             :       }
    4618             :     }
    4619             : 
    4620             :     if (nb <= ms->dvsize) {
    4621             :       size_t rsize = ms->dvsize - nb;
    4622             :       mchunkptr p = ms->dv;
    4623             :       if (rsize >= MIN_CHUNK_SIZE) { /* split dv */
    4624             :         mchunkptr r = ms->dv = chunk_plus_offset(p, nb);
    4625             :         ms->dvsize = rsize;
    4626             :         set_size_and_pinuse_of_free_chunk(r, rsize);
    4627             :         set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
    4628             :       }
    4629             :       else { /* exhaust dv */
    4630             :         size_t dvs = ms->dvsize;
    4631             :         ms->dvsize = 0;
    4632             :         ms->dv = 0;
    4633             :         set_inuse_and_pinuse(ms, p, dvs);
    4634             :       }
    4635             :       mem = chunk2mem(p);
    4636             :       check_malloced_chunk(ms, mem, nb);
    4637             :       goto postaction;
    4638             :     }
    4639             : 
    4640             :     else if (nb < ms->topsize) { /* Split top */
    4641             :       size_t rsize = ms->topsize -= nb;
    4642             :       mchunkptr p = ms->top;
    4643             :       mchunkptr r = ms->top = chunk_plus_offset(p, nb);
    4644             :       r->head = rsize | PINUSE_BIT;
    4645             :       set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
    4646             :       mem = chunk2mem(p);
    4647             :       check_top_chunk(ms, ms->top);
    4648             :       check_malloced_chunk(ms, mem, nb);
    4649             :       goto postaction;
    4650             :     }
    4651             : 
    4652             :     mem = sys_alloc(ms, nb);
    4653             : 
    4654             :   postaction:
    4655             :     POSTACTION(ms);
    4656             :     return mem;
    4657             :   }
    4658             : 
    4659             :   return 0;
    4660             : }
    4661             : 
    4662             : void mspace_free(mspace msp, void* mem) {
    4663             :   if (mem != 0) {
    4664             :     mchunkptr p  = mem2chunk(mem);
    4665             : #if FOOTERS
    4666             :     mstate fm = get_mstate_for(p);
    4667             : #else /* FOOTERS */
    4668             :     mstate fm = (mstate)msp;
    4669             : #endif /* FOOTERS */
    4670             :     if (!ok_magic(fm)) {
    4671             :       USAGE_ERROR_ACTION(fm, p);
    4672             :       return;
    4673             :     }
    4674             :     if (!PREACTION(fm)) {
    4675             :       check_inuse_chunk(fm, p);
    4676             :       if (RTCHECK(ok_address(fm, p) && ok_cinuse(p))) {
    4677             :         size_t psize = chunksize(p);
    4678             :         mchunkptr next = chunk_plus_offset(p, psize);
    4679             :         if (!pinuse(p)) {
    4680             :           size_t prevsize = p->prev_foot;
    4681             :           if ((prevsize & IS_MMAPPED_BIT) != 0) {
    4682             :             prevsize &= ~IS_MMAPPED_BIT;
    4683             :             psize += prevsize + MMAP_FOOT_PAD;
    4684             :             if (CALL_MUNMAP((char*)p - prevsize, psize) == 0)
    4685             :               fm->footprint -= psize;
    4686             :             goto postaction;
    4687             :           }
    4688             :           else {
    4689             :             mchunkptr prev = chunk_minus_offset(p, prevsize);
    4690             :             psize += prevsize;
    4691             :             p = prev;
    4692             :             if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */
    4693             :               if (p != fm->dv) {
    4694             :                 unlink_chunk(fm, p, prevsize);
    4695             :               }
    4696             :               else if ((next->head & INUSE_BITS) == INUSE_BITS) {
    4697             :                 fm->dvsize = psize;
    4698             :                 set_free_with_pinuse(p, psize, next);
    4699             :                 goto postaction;
    4700             :               }
    4701             :             }
    4702             :             else
    4703             :               goto erroraction;
    4704             :           }
    4705             :         }
    4706             : 
    4707             :         if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) {
    4708             :           if (!cinuse(next)) {  /* consolidate forward */
    4709             :             if (next == fm->top) {
    4710             :               size_t tsize = fm->topsize += psize;
    4711             :               fm->top = p;
    4712             :               p->head = tsize | PINUSE_BIT;
    4713             :               if (p == fm->dv) {
    4714             :                 fm->dv = 0;
    4715             :                 fm->dvsize = 0;
    4716             :               }
    4717             :               if (should_trim(fm, tsize))
    4718             :                 sys_trim(fm, 0);
    4719             :               goto postaction;
    4720             :             }
    4721             :             else if (next == fm->dv) {
    4722             :               size_t dsize = fm->dvsize += psize;
    4723             :               fm->dv = p;
    4724             :               set_size_and_pinuse_of_free_chunk(p, dsize);
    4725             :               goto postaction;
    4726             :             }
    4727             :             else {
    4728             :               size_t nsize = chunksize(next);
    4729             :               psize += nsize;
    4730             :               unlink_chunk(fm, next, nsize);
    4731             :               set_size_and_pinuse_of_free_chunk(p, psize);
    4732             :               if (p == fm->dv) {
    4733             :                 fm->dvsize = psize;
    4734             :                 goto postaction;
    4735             :               }
    4736             :             }
    4737             :           }
    4738             :           else
    4739             :             set_free_with_pinuse(p, psize, next);
    4740             :           insert_chunk(fm, p, psize);
    4741             :           check_free_chunk(fm, p);
    4742             :           goto postaction;
    4743             :         }
    4744             :       }
    4745             :     erroraction:
    4746             :       USAGE_ERROR_ACTION(fm, p);
    4747             :     postaction:
    4748             :       POSTACTION(fm);
    4749             :     }
    4750             :   }
    4751             : }
    4752             : 
    4753             : void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size) {
    4754             :   void* mem;
    4755             :   size_t req = 0;
    4756             :   mstate ms = (mstate)msp;
    4757             :   if (!ok_magic(ms)) {
    4758             :     USAGE_ERROR_ACTION(ms,ms);
    4759             :     return 0;
    4760             :   }
    4761             :   if (n_elements != 0) {
    4762             :     req = n_elements * elem_size;
    4763             :     if (((n_elements | elem_size) & ~(size_t)0xffff) &&
    4764             :         (req / n_elements != elem_size))
    4765             :       req = MAX_SIZE_T; /* force downstream failure on overflow */
    4766             :   }
    4767             :   mem = internal_malloc(ms, req);
    4768             :   if (mem != 0 && calloc_must_clear(mem2chunk(mem)))
    4769             :     memset(mem, 0, req);
    4770             :   return mem;
    4771             : }
    4772             : 
    4773             : void* mspace_realloc(mspace msp, void* oldmem, size_t bytes) {
    4774             :   if (oldmem == 0)
    4775             :     return mspace_malloc(msp, bytes);
    4776             : #ifdef REALLOC_ZERO_BYTES_FREES
    4777             :   if (bytes == 0) {
    4778             :     mspace_free(msp, oldmem);
    4779             :     return 0;
    4780             :   }
    4781             : #endif /* REALLOC_ZERO_BYTES_FREES */
    4782             :   else {
    4783             : #if FOOTERS
    4784             :     mchunkptr p  = mem2chunk(oldmem);
    4785             :     mstate ms = get_mstate_for(p);
    4786             : #else /* FOOTERS */
    4787             :     mstate ms = (mstate)msp;
    4788             : #endif /* FOOTERS */
    4789             :     if (!ok_magic(ms)) {
    4790             :       USAGE_ERROR_ACTION(ms,ms);
    4791             :       return 0;
    4792             :     }
    4793             :     return internal_realloc(ms, oldmem, bytes);
    4794             :   }
    4795             : }
    4796             : 
    4797             : void* mspace_memalign(mspace msp, size_t alignment, size_t bytes) {
    4798             :   mstate ms = (mstate)msp;
    4799             :   if (!ok_magic(ms)) {
    4800             :     USAGE_ERROR_ACTION(ms,ms);
    4801             :     return 0;
    4802             :   }
    4803             :   return internal_memalign(ms, alignment, bytes);
    4804             : }
    4805             : 
    4806             : void** mspace_independent_calloc(mspace msp, size_t n_elements,
    4807             :                                  size_t elem_size, void* chunks[]) {
    4808             :   size_t sz = elem_size; /* serves as 1-element array */
    4809             :   mstate ms = (mstate)msp;
    4810             :   if (!ok_magic(ms)) {
    4811             :     USAGE_ERROR_ACTION(ms,ms);
    4812             :     return 0;
    4813             :   }
    4814             :   return ialloc(ms, n_elements, &sz, 3, chunks);
    4815             : }
    4816             : 
    4817             : void** mspace_independent_comalloc(mspace msp, size_t n_elements,
    4818             :                                    size_t sizes[], void* chunks[]) {
    4819             :   mstate ms = (mstate)msp;
    4820             :   if (!ok_magic(ms)) {
    4821             :     USAGE_ERROR_ACTION(ms,ms);
    4822             :     return 0;
    4823             :   }
    4824             :   return ialloc(ms, n_elements, sizes, 0, chunks);
    4825             : }
    4826             : 
    4827             : int mspace_trim(mspace msp, size_t pad) {
    4828             :   int result = 0;
    4829             :   mstate ms = (mstate)msp;
    4830             :   if (ok_magic(ms)) {
    4831             :     if (!PREACTION(ms)) {
    4832             :       result = sys_trim(ms, pad);
    4833             :       POSTACTION(ms);
    4834             :     }
    4835             :   }
    4836             :   else {
    4837             :     USAGE_ERROR_ACTION(ms,ms);
    4838             :   }
    4839             :   return result;
    4840             : }
    4841             : 
    4842             : void mspace_malloc_stats(mspace msp) {
    4843             :   mstate ms = (mstate)msp;
    4844             :   if (ok_magic(ms)) {
    4845             :     internal_malloc_stats(ms);
    4846             :   }
    4847             :   else {
    4848             :     USAGE_ERROR_ACTION(ms,ms);
    4849             :   }
    4850             : }
    4851             : 
    4852             : size_t mspace_footprint(mspace msp) {
    4853             :   size_t result;
    4854             :   mstate ms = (mstate)msp;
    4855             :   if (ok_magic(ms)) {
    4856             :     result = ms->footprint;
    4857             :   }
    4858             :   USAGE_ERROR_ACTION(ms,ms);
    4859             :   return result;
    4860             : }
    4861             : 
    4862             : 
    4863             : size_t mspace_max_footprint(mspace msp) {
    4864             :   size_t result;
    4865             :   mstate ms = (mstate)msp;
    4866             :   if (ok_magic(ms)) {
    4867             :     result = ms->max_footprint;
    4868             :   }
    4869             :   USAGE_ERROR_ACTION(ms,ms);
    4870             :   return result;
    4871             : }
    4872             : 
    4873             : 
    4874             : #if !NO_MALLINFO
    4875             : struct mallinfo mspace_mallinfo(mspace msp) {
    4876             :   mstate ms = (mstate)msp;
    4877             :   if (!ok_magic(ms)) {
    4878             :     USAGE_ERROR_ACTION(ms,ms);
    4879             :   }
    4880             :   return internal_mallinfo(ms);
    4881             : }
    4882             : #endif /* NO_MALLINFO */
    4883             : 
    4884             : int mspace_mallopt(int param_number, int value) {
    4885             :   return change_mparam(param_number, value);
    4886             : }
    4887             : 
    4888             : #endif /* MSPACES */
    4889             : 
    4890             : /* -------------------- Alternative MORECORE functions ------------------- */
    4891             : 
    4892             : /*
    4893             :   Guidelines for creating a custom version of MORECORE:
    4894             : 
    4895             :   * For best performance, MORECORE should allocate in multiples of pagesize.
    4896             :   * MORECORE may allocate more memory than requested. (Or even less,
    4897             :       but this will usually result in a malloc failure.)
    4898             :   * MORECORE must not allocate memory when given argument zero, but
    4899             :       instead return one past the end address of memory from previous
    4900             :       nonzero call.
    4901             :   * For best performance, consecutive calls to MORECORE with positive
    4902             :       arguments should return increasing addresses, indicating that
    4903             :       space has been contiguously extended.
    4904             :   * Even though consecutive calls to MORECORE need not return contiguous
    4905             :       addresses, it must be OK for malloc'ed chunks to span multiple
    4906             :       regions in those cases where they do happen to be contiguous.
    4907             :   * MORECORE need not handle negative arguments -- it may instead
    4908             :       just return MFAIL when given negative arguments.
    4909             :       Negative arguments are always multiples of pagesize. MORECORE
    4910             :       must not misinterpret negative args as large positive unsigned
    4911             :       args. You can suppress all such calls from even occurring by defining
    4912             :       MORECORE_CANNOT_TRIM,
    4913             : 
    4914             :   As an example alternative MORECORE, here is a custom allocator
    4915             :   kindly contributed for pre-OSX macOS.  It uses virtually but not
    4916             :   necessarily physically contiguous non-paged memory (locked in,
    4917             :   present and won't get swapped out).  You can use it by uncommenting
    4918             :   this section, adding some #includes, and setting up the appropriate
    4919             :   defines above:
    4920             : 
    4921             :       #define MORECORE osMoreCore
    4922             : 
    4923             :   There is also a shutdown routine that should somehow be called for
    4924             :   cleanup upon program exit.
    4925             : 
    4926             :   #define MAX_POOL_ENTRIES 100
    4927             :   #define MINIMUM_MORECORE_SIZE  (64 * 1024U)
    4928             :   static int next_os_pool;
    4929             :   void *our_os_pools[MAX_POOL_ENTRIES];
    4930             : 
    4931             :   void *osMoreCore(int size)
    4932             :   {
    4933             :     void *ptr = 0;
    4934             :     static void *sbrk_top = 0;
    4935             : 
    4936             :     if (size > 0)
    4937             :     {
    4938             :       if (size < MINIMUM_MORECORE_SIZE)
    4939             :          size = MINIMUM_MORECORE_SIZE;
    4940             :       if (CurrentExecutionLevel() == kTaskLevel)
    4941             :          ptr = PoolAllocateResident(size + RM_PAGE_SIZE, 0);
    4942             :       if (ptr == 0)
    4943             :       {
    4944             :         return (void *) MFAIL;
    4945             :       }
    4946             :       // save ptrs so they can be freed during cleanup
    4947             :       our_os_pools[next_os_pool] = ptr;
    4948             :       next_os_pool++;
    4949             :       ptr = (void *) ((((size_t) ptr) + RM_PAGE_MASK) & ~RM_PAGE_MASK);
    4950             :       sbrk_top = (char *) ptr + size;
    4951             :       return ptr;
    4952             :     }
    4953             :     else if (size < 0)
    4954             :     {
    4955             :       // we don't currently support shrink behavior
    4956             :       return (void *) MFAIL;
    4957             :     }
    4958             :     else
    4959             :     {
    4960             :       return sbrk_top;
    4961             :     }
    4962             :   }
    4963             : 
    4964             :   // cleanup any allocated memory pools
    4965             :   // called as last thing before shutting down driver
    4966             : 
    4967             :   void osCleanupMem(void)
    4968             :   {
    4969             :     void **ptr;
    4970             : 
    4971             :     for (ptr = our_os_pools; ptr < &our_os_pools[MAX_POOL_ENTRIES]; ptr++)
    4972             :       if (*ptr)
    4973             :       {
    4974             :          PoolDeallocate(*ptr);
    4975             :          *ptr = 0;
    4976             :       }
    4977             :   }
    4978             : 
    4979             : */
    4980             : 
    4981             : 
    4982             : /* -----------------------------------------------------------------------
    4983             : History:
    4984             :     V2.8.3 Thu Sep 22 11:16:32 2005  Doug Lea  (dl at gee)
    4985             :       * Add max_footprint functions
    4986             :       * Ensure all appropriate literals are size_t
    4987             :       * Fix conditional compilation problem for some #define settings
    4988             :       * Avoid concatenating segments with the one provided
    4989             :         in create_mspace_with_base
    4990             :       * Rename some variables to avoid compiler shadowing warnings
    4991             :       * Use explicit lock initialization.
    4992             :       * Better handling of sbrk interference.
    4993             :       * Simplify and fix segment insertion, trimming and mspace_destroy
    4994             :       * Reinstate REALLOC_ZERO_BYTES_FREES option from 2.7.x
    4995             :       * Thanks especially to Dennis Flanagan for help on these.
    4996             : 
    4997             :     V2.8.2 Sun Jun 12 16:01:10 2005  Doug Lea  (dl at gee)
    4998             :       * Fix memalign brace error.
    4999             : 
    5000             :     V2.8.1 Wed Jun  8 16:11:46 2005  Doug Lea  (dl at gee)
    5001             :       * Fix improper #endif nesting in C++
    5002             :       * Add explicit casts needed for C++
    5003             : 
    5004             :     V2.8.0 Mon May 30 14:09:02 2005  Doug Lea  (dl at gee)
    5005             :       * Use trees for large bins
    5006             :       * Support mspaces
    5007             :       * Use segments to unify sbrk-based and mmap-based system allocation,
    5008             :         removing need for emulation on most platforms without sbrk.
    5009             :       * Default safety checks
    5010             :       * Optional footer checks. Thanks to William Robertson for the idea.
    5011             :       * Internal code refactoring
    5012             :       * Incorporate suggestions and platform-specific changes.
    5013             :         Thanks to Dennis Flanagan, Colin Plumb, Niall Douglas,
    5014             :         Aaron Bachmann,  Emery Berger, and others.
    5015             :       * Speed up non-fastbin processing enough to remove fastbins.
    5016             :       * Remove useless cfree() to avoid conflicts with other apps.
    5017             :       * Remove internal memcpy, memset. Compilers handle builtins better.
    5018             :       * Remove some options that no one ever used and rename others.
    5019             : 
    5020             :     V2.7.2 Sat Aug 17 09:07:30 2002  Doug Lea  (dl at gee)
    5021             :       * Fix malloc_state bitmap array misdeclaration
    5022             : 
    5023             :     V2.7.1 Thu Jul 25 10:58:03 2002  Doug Lea  (dl at gee)
    5024             :       * Allow tuning of FIRST_SORTED_BIN_SIZE
    5025             :       * Use PTR_UINT as type for all ptr->int casts. Thanks to John Belmonte.
    5026             :       * Better detection and support for non-contiguousness of MORECORE.
    5027             :         Thanks to Andreas Mueller, Conal Walsh, and Wolfram Gloger
    5028             :       * Bypass most of malloc if no frees. Thanks To Emery Berger.
    5029             :       * Fix freeing of old top non-contiguous chunk im sysmalloc.
    5030             :       * Raised default trim and map thresholds to 256K.
    5031             :       * Fix mmap-related #defines. Thanks to Lubos Lunak.
    5032             :       * Fix copy macros; added LACKS_FCNTL_H. Thanks to Neal Walfield.
    5033             :       * Branch-free bin calculation
    5034             :       * Default trim and mmap thresholds now 256K.
    5035             : 
    5036             :     V2.7.0 Sun Mar 11 14:14:06 2001  Doug Lea  (dl at gee)
    5037             :       * Introduce independent_comalloc and independent_calloc.
    5038             :         Thanks to Michael Pachos for motivation and help.
    5039             :       * Make optional .h file available
    5040             :       * Allow > 2GB requests on 32bit systems.
    5041             :       * new WIN32 sbrk, mmap, munmap, lock code from <Walter@GeNeSys-e.de>.
    5042             :         Thanks also to Andreas Mueller <a.mueller at paradatec.de>,
    5043             :         and Anonymous.
    5044             :       * Allow override of MALLOC_ALIGNMENT (Thanks to Ruud Waij for
    5045             :         helping test this.)
    5046             :       * memalign: check alignment arg
    5047             :       * realloc: don't try to shift chunks backwards, since this
    5048             :         leads to  more fragmentation in some programs and doesn't
    5049             :         seem to help in any others.
    5050             :       * Collect all cases in malloc requiring system memory into sysmalloc
    5051             :       * Use mmap as backup to sbrk
    5052             :       * Place all internal state in malloc_state
    5053             :       * Introduce fastbins (although similar to 2.5.1)
    5054             :       * Many minor tunings and cosmetic improvements
    5055             :       * Introduce USE_PUBLIC_MALLOC_WRAPPERS, USE_MALLOC_LOCK
    5056             :       * Introduce MALLOC_FAILURE_ACTION, MORECORE_CONTIGUOUS
    5057             :         Thanks to Tony E. Bennett <tbennett@nvidia.com> and others.
    5058             :       * Include errno.h to support default failure action.
    5059             : 
    5060             :     V2.6.6 Sun Dec  5 07:42:19 1999  Doug Lea  (dl at gee)
    5061             :       * return null for negative arguments
    5062             :       * Added Several WIN32 cleanups from Martin C. Fong <mcfong at yahoo.com>
    5063             :          * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h'
    5064             :           (e.g. WIN32 platforms)
    5065             :          * Cleanup header file inclusion for WIN32 platforms
    5066             :          * Cleanup code to avoid Microsoft Visual C++ compiler complaints
    5067             :          * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing
    5068             :            memory allocation routines
    5069             :          * Set 'malloc_getpagesize' for WIN32 platforms (needs more work)
    5070             :          * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to
    5071             :            usage of 'assert' in non-WIN32 code
    5072             :          * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to
    5073             :            avoid infinite loop
    5074             :       * Always call 'fREe()' rather than 'free()'
    5075             : 
    5076             :     V2.6.5 Wed Jun 17 15:57:31 1998  Doug Lea  (dl at gee)
    5077             :       * Fixed ordering problem with boundary-stamping
    5078             : 
    5079             :     V2.6.3 Sun May 19 08:17:58 1996  Doug Lea  (dl at gee)
    5080             :       * Added pvalloc, as recommended by H.J. Liu
    5081             :       * Added 64bit pointer support mainly from Wolfram Gloger
    5082             :       * Added anonymously donated WIN32 sbrk emulation
    5083             :       * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen
    5084             :       * malloc_extend_top: fix mask error that caused wastage after
    5085             :         foreign sbrks
    5086             :       * Add linux mremap support code from HJ Liu
    5087             : 
    5088             :     V2.6.2 Tue Dec  5 06:52:55 1995  Doug Lea  (dl at gee)
    5089             :       * Integrated most documentation with the code.
    5090             :       * Add support for mmap, with help from
    5091             :         Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
    5092             :       * Use last_remainder in more cases.
    5093             :       * Pack bins using idea from  colin@nyx10.cs.du.edu
    5094             :       * Use ordered bins instead of best-fit threshold
    5095             :       * Eliminate block-local decls to simplify tracing and debugging.
    5096             :       * Support another case of realloc via move into top
    5097             :       * Fix error occurring when initial sbrk_base not word-aligned.
    5098             :       * Rely on page size for units instead of SBRK_UNIT to
    5099             :         avoid surprises about sbrk alignment conventions.
    5100             :       * Add mallinfo, mallopt. Thanks to Raymond Nijssen
    5101             :         (raymond@es.ele.tue.nl) for the suggestion.
    5102             :       * Add `pad' argument to malloc_trim and top_pad mallopt parameter.
    5103             :       * More precautions for cases where other routines call sbrk,
    5104             :         courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
    5105             :       * Added macros etc., allowing use in linux libc from
    5106             :         H.J. Lu (hjl@gnu.ai.mit.edu)
    5107             :       * Inverted this history list
    5108             : 
    5109             :     V2.6.1 Sat Dec  2 14:10:57 1995  Doug Lea  (dl at gee)
    5110             :       * Re-tuned and fixed to behave more nicely with V2.6.0 changes.
    5111             :       * Removed all preallocation code since under current scheme
    5112             :         the work required to undo bad preallocations exceeds
    5113             :         the work saved in good cases for most test programs.
    5114             :       * No longer use return list or unconsolidated bins since
    5115             :         no scheme using them consistently outperforms those that don't
    5116             :         given above changes.
    5117             :       * Use best fit for very large chunks to prevent some worst-cases.
    5118             :       * Added some support for debugging
    5119             : 
    5120             :     V2.6.0 Sat Nov  4 07:05:23 1995  Doug Lea  (dl at gee)
    5121             :       * Removed footers when chunks are in use. Thanks to
    5122             :         Paul Wilson (wilson@cs.texas.edu) for the suggestion.
    5123             : 
    5124             :     V2.5.4 Wed Nov  1 07:54:51 1995  Doug Lea  (dl at gee)
    5125             :       * Added malloc_trim, with help from Wolfram Gloger
    5126             :         (wmglo@Dent.MED.Uni-Muenchen.DE).
    5127             : 
    5128             :     V2.5.3 Tue Apr 26 10:16:01 1994  Doug Lea  (dl at g)
    5129             : 
    5130             :     V2.5.2 Tue Apr  5 16:20:40 1994  Doug Lea  (dl at g)
    5131             :       * realloc: try to expand in both directions
    5132             :       * malloc: swap order of clean-bin strategy;
    5133             :       * realloc: only conditionally expand backwards
    5134             :       * Try not to scavenge used bins
    5135             :       * Use bin counts as a guide to preallocation
    5136             :       * Occasionally bin return list chunks in first scan
    5137             :       * Add a few optimizations from colin@nyx10.cs.du.edu
    5138             : 
    5139             :     V2.5.1 Sat Aug 14 15:40:43 1993  Doug Lea  (dl at g)
    5140             :       * faster bin computation & slightly different binning
    5141             :       * merged all consolidations to one part of malloc proper
    5142             :          (eliminating old malloc_find_space & malloc_clean_bin)
    5143             :       * Scan 2 returns chunks (not just 1)
    5144             :       * Propagate failure in realloc if malloc returns 0
    5145             :       * Add stuff to allow compilation on non-ANSI compilers
    5146             :           from kpv@research.att.com
    5147             : 
    5148             :     V2.5 Sat Aug  7 07:41:59 1993  Doug Lea  (dl at g.oswego.edu)
    5149             :       * removed potential for odd address access in prev_chunk
    5150             :       * removed dependency on getpagesize.h
    5151             :       * misc cosmetics and a bit more internal documentation
    5152             :       * anticosmetics: mangled names in macros to evade debugger strangeness
    5153             :       * tested on sparc, hp-700, dec-mips, rs6000
    5154             :           with gcc & native cc (hp, dec only) allowing
    5155             :           Detlefs & Zorn comparison study (in SIGPLAN Notices.)
    5156             : 
    5157             :     Trial version Fri Aug 28 13:14:29 1992  Doug Lea  (dl at g.oswego.edu)
    5158             :       * Based loosely on libg++-1.2X malloc. (It retains some of the overall
    5159             :          structure of old version,  but most details differ.)
    5160             :  
    5161             : */

Generated by: LCOV version 1.13