Line data Source code
1 : /*
2 : * (I)RDFT transforms
3 : * Copyright (c) 2009 Alex Converse <alex dot converse at gmail dot com>
4 : *
5 : * This file is part of Libav.
6 : *
7 : * Libav is free software; you can redistribute it and/or
8 : * modify it under the terms of the GNU Lesser General Public
9 : * License as published by the Free Software Foundation; either
10 : * version 2.1 of the License, or (at your option) any later version.
11 : *
12 : * Libav is distributed in the hope that it will be useful,
13 : * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 : * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 : * Lesser General Public License for more details.
16 : *
17 : * You should have received a copy of the GNU Lesser General Public
18 : * License along with Libav; if not, write to the Free Software
19 : * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 : */
21 : #include <stdlib.h>
22 : #include <math.h>
23 : #include "libavutil/mathematics.h"
24 : #include "rdft.h"
25 :
26 : /**
27 : * @file
28 : * (Inverse) Real Discrete Fourier Transforms.
29 : */
30 :
31 : /* sin(2*pi*x/n) for 0<=x<n/4, followed by n/2<=x<3n/4 */
32 : #if !CONFIG_HARDCODED_TABLES
33 : SINTABLE(16);
34 : SINTABLE(32);
35 : SINTABLE(64);
36 : SINTABLE(128);
37 : SINTABLE(256);
38 : SINTABLE(512);
39 : SINTABLE(1024);
40 : SINTABLE(2048);
41 : SINTABLE(4096);
42 : SINTABLE(8192);
43 : SINTABLE(16384);
44 : SINTABLE(32768);
45 : SINTABLE(65536);
46 : #endif
47 : static SINTABLE_CONST FFTSample * const ff_sin_tabs[] = {
48 : NULL, NULL, NULL, NULL,
49 : ff_sin_16, ff_sin_32, ff_sin_64, ff_sin_128, ff_sin_256, ff_sin_512, ff_sin_1024,
50 : ff_sin_2048, ff_sin_4096, ff_sin_8192, ff_sin_16384, ff_sin_32768, ff_sin_65536,
51 : };
52 :
53 : /** Map one real FFT into two parallel real even and odd FFTs. Then interleave
54 : * the two real FFTs into one complex FFT. Unmangle the results.
55 : * ref: http://www.engineeringproductivitytools.com/stuff/T0001/PT10.HTM
56 : */
57 0 : static void rdft_calc_c(RDFTContext *s, FFTSample *data)
58 : {
59 : int i, i1, i2;
60 : FFTComplex ev, od;
61 0 : const int n = 1 << s->nbits;
62 0 : const float k1 = 0.5;
63 0 : const float k2 = 0.5 - s->inverse;
64 0 : const FFTSample *tcos = s->tcos;
65 0 : const FFTSample *tsin = s->tsin;
66 :
67 0 : if (!s->inverse) {
68 0 : s->fft.fft_permute(&s->fft, (FFTComplex*)data);
69 0 : s->fft.fft_calc(&s->fft, (FFTComplex*)data);
70 : }
71 : /* i=0 is a special case because of packing, the DC term is real, so we
72 : are going to throw the N/2 term (also real) in with it. */
73 0 : ev.re = data[0];
74 0 : data[0] = ev.re+data[1];
75 0 : data[1] = ev.re-data[1];
76 0 : for (i = 1; i < (n>>2); i++) {
77 0 : i1 = 2*i;
78 0 : i2 = n-i1;
79 : /* Separate even and odd FFTs */
80 0 : ev.re = k1*(data[i1 ]+data[i2 ]);
81 0 : od.im = -k2*(data[i1 ]-data[i2 ]);
82 0 : ev.im = k1*(data[i1+1]-data[i2+1]);
83 0 : od.re = k2*(data[i1+1]+data[i2+1]);
84 : /* Apply twiddle factors to the odd FFT and add to the even FFT */
85 0 : data[i1 ] = ev.re + od.re*tcos[i] - od.im*tsin[i];
86 0 : data[i1+1] = ev.im + od.im*tcos[i] + od.re*tsin[i];
87 0 : data[i2 ] = ev.re - od.re*tcos[i] + od.im*tsin[i];
88 0 : data[i2+1] = -ev.im + od.im*tcos[i] + od.re*tsin[i];
89 : }
90 0 : data[2*i+1]=s->sign_convention*data[2*i+1];
91 0 : if (s->inverse) {
92 0 : data[0] *= k1;
93 0 : data[1] *= k1;
94 0 : s->fft.fft_permute(&s->fft, (FFTComplex*)data);
95 0 : s->fft.fft_calc(&s->fft, (FFTComplex*)data);
96 : }
97 0 : }
98 :
99 0 : av_cold int ff_rdft_init(RDFTContext *s, int nbits, enum RDFTransformType trans)
100 : {
101 0 : int n = 1 << nbits;
102 : int i;
103 0 : const double theta = (trans == DFT_R2C || trans == DFT_C2R ? -1 : 1)*2*M_PI/n;
104 :
105 0 : s->nbits = nbits;
106 0 : s->inverse = trans == IDFT_C2R || trans == DFT_C2R;
107 0 : s->sign_convention = trans == IDFT_R2C || trans == DFT_C2R ? 1 : -1;
108 :
109 0 : if (nbits < 4 || nbits > 16)
110 0 : return -1;
111 :
112 0 : if (ff_fft_init(&s->fft, nbits-1, trans == IDFT_C2R || trans == IDFT_R2C) < 0)
113 0 : return -1;
114 :
115 0 : ff_init_ff_cos_tabs(nbits);
116 0 : s->tcos = ff_cos_tabs[nbits];
117 0 : s->tsin = ff_sin_tabs[nbits]+(trans == DFT_R2C || trans == DFT_C2R)*(n>>2);
118 : #if !CONFIG_HARDCODED_TABLES
119 0 : for (i = 0; i < (n>>2); i++) {
120 0 : s->tsin[i] = sin(i*theta);
121 : }
122 : #endif
123 0 : s->rdft_calc = rdft_calc_c;
124 :
125 : if (ARCH_ARM) ff_rdft_init_arm(s);
126 :
127 0 : return 0;
128 : }
129 :
130 0 : av_cold void ff_rdft_end(RDFTContext *s)
131 : {
132 0 : ff_fft_end(&s->fft);
133 0 : }
|