LCOV - code coverage report
Current view: top level - media/libav/libavutil - rational.c (source / functions) Hit Total Coverage
Test: output.info Lines: 0 65 0.0 %
Date: 2017-07-14 16:53:18 Functions: 0 8 0.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*
       2             :  * rational numbers
       3             :  * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
       4             :  *
       5             :  * This file is part of Libav.
       6             :  *
       7             :  * Libav is free software; you can redistribute it and/or
       8             :  * modify it under the terms of the GNU Lesser General Public
       9             :  * License as published by the Free Software Foundation; either
      10             :  * version 2.1 of the License, or (at your option) any later version.
      11             :  *
      12             :  * Libav is distributed in the hope that it will be useful,
      13             :  * but WITHOUT ANY WARRANTY; without even the implied warranty of
      14             :  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
      15             :  * Lesser General Public License for more details.
      16             :  *
      17             :  * You should have received a copy of the GNU Lesser General Public
      18             :  * License along with Libav; if not, write to the Free Software
      19             :  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
      20             :  */
      21             : 
      22             : /**
      23             :  * @file
      24             :  * rational numbers
      25             :  * @author Michael Niedermayer <michaelni@gmx.at>
      26             :  */
      27             : 
      28             : #include "avassert.h"
      29             : #include <limits.h>
      30             : 
      31             : #include "common.h"
      32             : #include "mathematics.h"
      33             : #include "rational.h"
      34             : 
      35           0 : int av_reduce(int *dst_num, int *dst_den,
      36             :               int64_t num, int64_t den, int64_t max)
      37             : {
      38           0 :     AVRational a0 = { 0, 1 }, a1 = { 1, 0 };
      39           0 :     int sign = (num < 0) ^ (den < 0);
      40           0 :     int64_t gcd = av_gcd(FFABS(num), FFABS(den));
      41             : 
      42           0 :     if (gcd) {
      43           0 :         num = FFABS(num) / gcd;
      44           0 :         den = FFABS(den) / gcd;
      45             :     }
      46           0 :     if (num <= max && den <= max) {
      47           0 :         a1 = (AVRational) { num, den };
      48           0 :         den = 0;
      49             :     }
      50             : 
      51           0 :     while (den) {
      52           0 :         uint64_t x        = num / den;
      53           0 :         int64_t next_den  = num - den * x;
      54           0 :         int64_t a2n       = x * a1.num + a0.num;
      55           0 :         int64_t a2d       = x * a1.den + a0.den;
      56             : 
      57           0 :         if (a2n > max || a2d > max) {
      58           0 :             if (a1.num) x =          (max - a0.num) / a1.num;
      59           0 :             if (a1.den) x = FFMIN(x, (max - a0.den) / a1.den);
      60             : 
      61           0 :             if (den * (2 * x * a1.den + a0.den) > num * a1.den)
      62           0 :                 a1 = (AVRational) { x * a1.num + a0.num, x * a1.den + a0.den };
      63           0 :             break;
      64             :         }
      65             : 
      66           0 :         a0  = a1;
      67           0 :         a1  = (AVRational) { a2n, a2d };
      68           0 :         num = den;
      69           0 :         den = next_den;
      70             :     }
      71           0 :     av_assert2(av_gcd(a1.num, a1.den) <= 1U);
      72             : 
      73           0 :     *dst_num = sign ? -a1.num : a1.num;
      74           0 :     *dst_den = a1.den;
      75             : 
      76           0 :     return den == 0;
      77             : }
      78             : 
      79           0 : AVRational av_mul_q(AVRational b, AVRational c)
      80             : {
      81           0 :     av_reduce(&b.num, &b.den,
      82           0 :                b.num * (int64_t) c.num,
      83           0 :                b.den * (int64_t) c.den, INT_MAX);
      84           0 :     return b;
      85             : }
      86             : 
      87           0 : AVRational av_div_q(AVRational b, AVRational c)
      88             : {
      89           0 :     return av_mul_q(b, (AVRational) { c.den, c.num });
      90             : }
      91             : 
      92           0 : AVRational av_add_q(AVRational b, AVRational c) {
      93           0 :     av_reduce(&b.num, &b.den,
      94           0 :                b.num * (int64_t) c.den +
      95           0 :                c.num * (int64_t) b.den,
      96           0 :                b.den * (int64_t) c.den, INT_MAX);
      97           0 :     return b;
      98             : }
      99             : 
     100           0 : AVRational av_sub_q(AVRational b, AVRational c)
     101             : {
     102           0 :     return av_add_q(b, (AVRational) { -c.num, c.den });
     103             : }
     104             : 
     105           0 : AVRational av_d2q(double d, int max)
     106             : {
     107             :     AVRational a;
     108             : #define LOG2  0.69314718055994530941723212145817656807550013436025
     109             :     int exponent;
     110             :     int64_t den;
     111           0 :     if (isnan(d))
     112           0 :         return (AVRational) { 0,0 };
     113           0 :     if (isinf(d))
     114           0 :         return (AVRational) { d < 0 ? -1 : 1, 0 };
     115           0 :     exponent = FFMAX( (int)(log(fabs(d) + 1e-20)/LOG2), 0);
     116           0 :     den = 1LL << (61 - exponent);
     117           0 :     av_reduce(&a.num, &a.den, (int64_t)(d * den + 0.5), den, max);
     118             : 
     119           0 :     return a;
     120             : }
     121             : 
     122           0 : int av_nearer_q(AVRational q, AVRational q1, AVRational q2)
     123             : {
     124             :     /* n/d is q, a/b is the median between q1 and q2 */
     125           0 :     int64_t a = q1.num * (int64_t)q2.den + q2.num * (int64_t)q1.den;
     126           0 :     int64_t b = 2 * (int64_t)q1.den * q2.den;
     127             : 
     128             :     /* rnd_up(a*d/b) > n => a*d/b > n */
     129           0 :     int64_t x_up = av_rescale_rnd(a, q.den, b, AV_ROUND_UP);
     130             : 
     131             :     /* rnd_down(a*d/b) < n => a*d/b < n */
     132           0 :     int64_t x_down = av_rescale_rnd(a, q.den, b, AV_ROUND_DOWN);
     133             : 
     134           0 :     return ((x_up > q.num) - (x_down < q.num)) * av_cmp_q(q2, q1);
     135             : }
     136             : 
     137           0 : int av_find_nearest_q_idx(AVRational q, const AVRational* q_list)
     138             : {
     139           0 :     int i, nearest_q_idx = 0;
     140           0 :     for (i = 0; q_list[i].den; i++)
     141           0 :         if (av_nearer_q(q, q_list[i], q_list[nearest_q_idx]) > 0)
     142           0 :             nearest_q_idx = i;
     143             : 
     144           0 :     return nearest_q_idx;
     145             : }

Generated by: LCOV version 1.13