Line data Source code
1 : /*
2 : * Copyright (C) 2007 Michael Niedermayer <michaelni@gmx.at>
3 : * Copyright (C) 2009 Konstantin Shishkov
4 : * based on public domain SHA-1 code by Steve Reid <steve@edmweb.com>
5 : * and on BSD-licensed SHA-2 code by Aaron D. Gifford
6 : *
7 : * This file is part of Libav.
8 : *
9 : * Libav is free software; you can redistribute it and/or
10 : * modify it under the terms of the GNU Lesser General Public
11 : * License as published by the Free Software Foundation; either
12 : * version 2.1 of the License, or (at your option) any later version.
13 : *
14 : * Libav is distributed in the hope that it will be useful,
15 : * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 : * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 : * Lesser General Public License for more details.
18 : *
19 : * You should have received a copy of the GNU Lesser General Public
20 : * License along with Libav; if not, write to the Free Software
21 : * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22 : */
23 :
24 : #include <string.h>
25 :
26 : #include "attributes.h"
27 : #include "avutil.h"
28 : #include "bswap.h"
29 : #include "sha.h"
30 : #include "intreadwrite.h"
31 : #include "mem.h"
32 :
33 : /** hash context */
34 : typedef struct AVSHA {
35 : uint8_t digest_len; ///< digest length in 32-bit words
36 : uint64_t count; ///< number of bytes in buffer
37 : uint8_t buffer[64]; ///< 512-bit buffer of input values used in hash updating
38 : uint32_t state[8]; ///< current hash value
39 : /** function used to update hash for 512-bit input block */
40 : void (*transform)(uint32_t *state, const uint8_t buffer[64]);
41 : } AVSHA;
42 :
43 : #if FF_API_CONTEXT_SIZE
44 : const int av_sha_size = sizeof(AVSHA);
45 : #endif
46 :
47 0 : struct AVSHA *av_sha_alloc(void)
48 : {
49 0 : return av_mallocz(sizeof(struct AVSHA));
50 : }
51 :
52 : #define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits))))
53 :
54 : /* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */
55 : #define blk0(i) (block[i] = AV_RB32(buffer + 4 * (i)))
56 : #define blk(i) (block[i] = rol(block[i-3] ^ block[i-8] ^ block[i-14] ^ block[i-16], 1))
57 :
58 : #define R0(v,w,x,y,z,i) z += ((w&(x^y))^y) + blk0(i) + 0x5A827999 + rol(v, 5); w = rol(w, 30);
59 : #define R1(v,w,x,y,z,i) z += ((w&(x^y))^y) + blk (i) + 0x5A827999 + rol(v, 5); w = rol(w, 30);
60 : #define R2(v,w,x,y,z,i) z += ( w^x ^y) + blk (i) + 0x6ED9EBA1 + rol(v, 5); w = rol(w, 30);
61 : #define R3(v,w,x,y,z,i) z += (((w|x)&y)|(w&x)) + blk (i) + 0x8F1BBCDC + rol(v, 5); w = rol(w, 30);
62 : #define R4(v,w,x,y,z,i) z += ( w^x ^y) + blk (i) + 0xCA62C1D6 + rol(v, 5); w = rol(w, 30);
63 :
64 : /* Hash a single 512-bit block. This is the core of the algorithm. */
65 :
66 0 : static void sha1_transform(uint32_t state[5], const uint8_t buffer[64])
67 : {
68 : uint32_t block[80];
69 : unsigned int i, a, b, c, d, e;
70 :
71 0 : a = state[0];
72 0 : b = state[1];
73 0 : c = state[2];
74 0 : d = state[3];
75 0 : e = state[4];
76 : #if CONFIG_SMALL
77 : for (i = 0; i < 80; i++) {
78 : int t;
79 : if (i < 16)
80 : t = AV_RB32(buffer + 4 * i);
81 : else
82 : t = rol(block[i-3] ^ block[i-8] ^ block[i-14] ^ block[i-16], 1);
83 : block[i] = t;
84 : t += e + rol(a, 5);
85 : if (i < 40) {
86 : if (i < 20)
87 : t += ((b&(c^d))^d) + 0x5A827999;
88 : else
89 : t += ( b^c ^d) + 0x6ED9EBA1;
90 : } else {
91 : if (i < 60)
92 : t += (((b|c)&d)|(b&c)) + 0x8F1BBCDC;
93 : else
94 : t += ( b^c ^d) + 0xCA62C1D6;
95 : }
96 : e = d;
97 : d = c;
98 : c = rol(b, 30);
99 : b = a;
100 : a = t;
101 : }
102 : #else
103 0 : for (i = 0; i < 15; i += 5) {
104 0 : R0(a, b, c, d, e, 0 + i);
105 0 : R0(e, a, b, c, d, 1 + i);
106 0 : R0(d, e, a, b, c, 2 + i);
107 0 : R0(c, d, e, a, b, 3 + i);
108 0 : R0(b, c, d, e, a, 4 + i);
109 : }
110 0 : R0(a, b, c, d, e, 15);
111 0 : R1(e, a, b, c, d, 16);
112 0 : R1(d, e, a, b, c, 17);
113 0 : R1(c, d, e, a, b, 18);
114 0 : R1(b, c, d, e, a, 19);
115 0 : for (i = 20; i < 40; i += 5) {
116 0 : R2(a, b, c, d, e, 0 + i);
117 0 : R2(e, a, b, c, d, 1 + i);
118 0 : R2(d, e, a, b, c, 2 + i);
119 0 : R2(c, d, e, a, b, 3 + i);
120 0 : R2(b, c, d, e, a, 4 + i);
121 : }
122 0 : for (; i < 60; i += 5) {
123 0 : R3(a, b, c, d, e, 0 + i);
124 0 : R3(e, a, b, c, d, 1 + i);
125 0 : R3(d, e, a, b, c, 2 + i);
126 0 : R3(c, d, e, a, b, 3 + i);
127 0 : R3(b, c, d, e, a, 4 + i);
128 : }
129 0 : for (; i < 80; i += 5) {
130 0 : R4(a, b, c, d, e, 0 + i);
131 0 : R4(e, a, b, c, d, 1 + i);
132 0 : R4(d, e, a, b, c, 2 + i);
133 0 : R4(c, d, e, a, b, 3 + i);
134 0 : R4(b, c, d, e, a, 4 + i);
135 : }
136 : #endif
137 0 : state[0] += a;
138 0 : state[1] += b;
139 0 : state[2] += c;
140 0 : state[3] += d;
141 0 : state[4] += e;
142 0 : }
143 :
144 : static const uint32_t K256[64] = {
145 : 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
146 : 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
147 : 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
148 : 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
149 : 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
150 : 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
151 : 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
152 : 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
153 : 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
154 : 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
155 : 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
156 : 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
157 : 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
158 : 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
159 : 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
160 : 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
161 : };
162 :
163 :
164 : #define Ch(x,y,z) (((x) & ((y) ^ (z))) ^ (z))
165 : #define Maj(x,y,z) ((((x) | (y)) & (z)) | ((x) & (y)))
166 :
167 : #define Sigma0_256(x) (rol((x), 30) ^ rol((x), 19) ^ rol((x), 10))
168 : #define Sigma1_256(x) (rol((x), 26) ^ rol((x), 21) ^ rol((x), 7))
169 : #define sigma0_256(x) (rol((x), 25) ^ rol((x), 14) ^ ((x) >> 3))
170 : #define sigma1_256(x) (rol((x), 15) ^ rol((x), 13) ^ ((x) >> 10))
171 :
172 : #undef blk
173 : #define blk(i) (block[i] = block[i - 16] + sigma0_256(block[i - 15]) + \
174 : sigma1_256(block[i - 2]) + block[i - 7])
175 :
176 : #define ROUND256(a,b,c,d,e,f,g,h) \
177 : T1 += (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[i]; \
178 : (d) += T1; \
179 : (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
180 : i++
181 :
182 : #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
183 : T1 = blk0(i); \
184 : ROUND256(a,b,c,d,e,f,g,h)
185 :
186 : #define ROUND256_16_TO_63(a,b,c,d,e,f,g,h) \
187 : T1 = blk(i); \
188 : ROUND256(a,b,c,d,e,f,g,h)
189 :
190 0 : static void sha256_transform(uint32_t *state, const uint8_t buffer[64])
191 : {
192 : unsigned int i, a, b, c, d, e, f, g, h;
193 : uint32_t block[64];
194 : uint32_t T1;
195 :
196 0 : a = state[0];
197 0 : b = state[1];
198 0 : c = state[2];
199 0 : d = state[3];
200 0 : e = state[4];
201 0 : f = state[5];
202 0 : g = state[6];
203 0 : h = state[7];
204 : #if CONFIG_SMALL
205 : for (i = 0; i < 64; i++) {
206 : uint32_t T2;
207 : if (i < 16)
208 : T1 = blk0(i);
209 : else
210 : T1 = blk(i);
211 : T1 += h + Sigma1_256(e) + Ch(e, f, g) + K256[i];
212 : T2 = Sigma0_256(a) + Maj(a, b, c);
213 : h = g;
214 : g = f;
215 : f = e;
216 : e = d + T1;
217 : d = c;
218 : c = b;
219 : b = a;
220 : a = T1 + T2;
221 : }
222 : #else
223 0 : for (i = 0; i < 16;) {
224 0 : ROUND256_0_TO_15(a, b, c, d, e, f, g, h);
225 0 : ROUND256_0_TO_15(h, a, b, c, d, e, f, g);
226 0 : ROUND256_0_TO_15(g, h, a, b, c, d, e, f);
227 0 : ROUND256_0_TO_15(f, g, h, a, b, c, d, e);
228 0 : ROUND256_0_TO_15(e, f, g, h, a, b, c, d);
229 0 : ROUND256_0_TO_15(d, e, f, g, h, a, b, c);
230 0 : ROUND256_0_TO_15(c, d, e, f, g, h, a, b);
231 0 : ROUND256_0_TO_15(b, c, d, e, f, g, h, a);
232 : }
233 :
234 0 : for (; i < 64;) {
235 0 : ROUND256_16_TO_63(a, b, c, d, e, f, g, h);
236 0 : ROUND256_16_TO_63(h, a, b, c, d, e, f, g);
237 0 : ROUND256_16_TO_63(g, h, a, b, c, d, e, f);
238 0 : ROUND256_16_TO_63(f, g, h, a, b, c, d, e);
239 0 : ROUND256_16_TO_63(e, f, g, h, a, b, c, d);
240 0 : ROUND256_16_TO_63(d, e, f, g, h, a, b, c);
241 0 : ROUND256_16_TO_63(c, d, e, f, g, h, a, b);
242 0 : ROUND256_16_TO_63(b, c, d, e, f, g, h, a);
243 : }
244 : #endif
245 0 : state[0] += a;
246 0 : state[1] += b;
247 0 : state[2] += c;
248 0 : state[3] += d;
249 0 : state[4] += e;
250 0 : state[5] += f;
251 0 : state[6] += g;
252 0 : state[7] += h;
253 0 : }
254 :
255 :
256 0 : av_cold int av_sha_init(AVSHA *ctx, int bits)
257 : {
258 0 : ctx->digest_len = bits >> 5;
259 0 : switch (bits) {
260 : case 160: // SHA-1
261 0 : ctx->state[0] = 0x67452301;
262 0 : ctx->state[1] = 0xEFCDAB89;
263 0 : ctx->state[2] = 0x98BADCFE;
264 0 : ctx->state[3] = 0x10325476;
265 0 : ctx->state[4] = 0xC3D2E1F0;
266 0 : ctx->transform = sha1_transform;
267 0 : break;
268 : case 224: // SHA-224
269 0 : ctx->state[0] = 0xC1059ED8;
270 0 : ctx->state[1] = 0x367CD507;
271 0 : ctx->state[2] = 0x3070DD17;
272 0 : ctx->state[3] = 0xF70E5939;
273 0 : ctx->state[4] = 0xFFC00B31;
274 0 : ctx->state[5] = 0x68581511;
275 0 : ctx->state[6] = 0x64F98FA7;
276 0 : ctx->state[7] = 0xBEFA4FA4;
277 0 : ctx->transform = sha256_transform;
278 0 : break;
279 : case 256: // SHA-256
280 0 : ctx->state[0] = 0x6A09E667;
281 0 : ctx->state[1] = 0xBB67AE85;
282 0 : ctx->state[2] = 0x3C6EF372;
283 0 : ctx->state[3] = 0xA54FF53A;
284 0 : ctx->state[4] = 0x510E527F;
285 0 : ctx->state[5] = 0x9B05688C;
286 0 : ctx->state[6] = 0x1F83D9AB;
287 0 : ctx->state[7] = 0x5BE0CD19;
288 0 : ctx->transform = sha256_transform;
289 0 : break;
290 : default:
291 0 : return -1;
292 : }
293 0 : ctx->count = 0;
294 0 : return 0;
295 : }
296 :
297 0 : void av_sha_update(AVSHA* ctx, const uint8_t* data, unsigned int len)
298 : {
299 : unsigned int i, j;
300 :
301 0 : j = ctx->count & 63;
302 0 : ctx->count += len;
303 : #if CONFIG_SMALL
304 : for (i = 0; i < len; i++) {
305 : ctx->buffer[j++] = data[i];
306 : if (64 == j) {
307 : ctx->transform(ctx->state, ctx->buffer);
308 : j = 0;
309 : }
310 : }
311 : #else
312 0 : if ((j + len) > 63) {
313 0 : memcpy(&ctx->buffer[j], data, (i = 64 - j));
314 0 : ctx->transform(ctx->state, ctx->buffer);
315 0 : for (; i + 63 < len; i += 64)
316 0 : ctx->transform(ctx->state, &data[i]);
317 0 : j = 0;
318 : } else
319 0 : i = 0;
320 0 : memcpy(&ctx->buffer[j], &data[i], len - i);
321 : #endif
322 0 : }
323 :
324 0 : void av_sha_final(AVSHA* ctx, uint8_t *digest)
325 : {
326 : int i;
327 0 : uint64_t finalcount = av_be2ne64(ctx->count << 3);
328 :
329 0 : av_sha_update(ctx, "\200", 1);
330 0 : while ((ctx->count & 63) != 56)
331 0 : av_sha_update(ctx, "", 1);
332 0 : av_sha_update(ctx, (uint8_t *)&finalcount, 8); /* Should cause a transform() */
333 0 : for (i = 0; i < ctx->digest_len; i++)
334 0 : AV_WB32(digest + i*4, ctx->state[i]);
335 0 : }
336 :
337 : #ifdef TEST
338 : #include <stdio.h>
339 :
340 : int main(void)
341 : {
342 : int i, j, k;
343 : AVSHA ctx;
344 : unsigned char digest[32];
345 : const int lengths[3] = { 160, 224, 256 };
346 :
347 : for (j = 0; j < 3; j++) {
348 : printf("Testing SHA-%d\n", lengths[j]);
349 : for (k = 0; k < 3; k++) {
350 : av_sha_init(&ctx, lengths[j]);
351 : if (k == 0)
352 : av_sha_update(&ctx, "abc", 3);
353 : else if (k == 1)
354 : av_sha_update(&ctx, "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", 56);
355 : else
356 : for (i = 0; i < 1000*1000; i++)
357 : av_sha_update(&ctx, "a", 1);
358 : av_sha_final(&ctx, digest);
359 : for (i = 0; i < lengths[j] >> 3; i++)
360 : printf("%02X", digest[i]);
361 : putchar('\n');
362 : }
363 : switch (j) {
364 : case 0:
365 : //test vectors (from FIPS PUB 180-1)
366 : printf("A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D\n"
367 : "84983E44 1C3BD26E BAAE4AA1 F95129E5 E54670F1\n"
368 : "34AA973C D4C4DAA4 F61EEB2B DBAD2731 6534016F\n");
369 : break;
370 : case 1:
371 : //test vectors (from FIPS PUB 180-2 Appendix A)
372 : printf("23097d22 3405d822 8642a477 bda255b3 2aadbce4 bda0b3f7 e36c9da7\n"
373 : "75388b16 512776cc 5dba5da1 fd890150 b0c6455c b4f58b19 52522525\n"
374 : "20794655 980c91d8 bbb4c1ea 97618a4b f03f4258 1948b2ee 4ee7ad67\n");
375 : break;
376 : case 2:
377 : //test vectors (from FIPS PUB 180-2)
378 : printf("ba7816bf 8f01cfea 414140de 5dae2223 b00361a3 96177a9c b410ff61 f20015ad\n"
379 : "248d6a61 d20638b8 e5c02693 0c3e6039 a33ce459 64ff2167 f6ecedd4 19db06c1\n"
380 : "cdc76e5c 9914fb92 81a1c7e2 84d73e67 f1809a48 a497200e 046d39cc c7112cd0\n");
381 : break;
382 : }
383 : }
384 :
385 : return 0;
386 : }
387 : #endif
|