LCOV - code coverage report
Current view: top level - media/libjpeg - jdcoefct.c (source / functions) Hit Total Coverage
Test: output.info Lines: 0 311 0.0 %
Date: 2017-07-14 16:53:18 Functions: 0 9 0.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*
       2             :  * jdcoefct.c
       3             :  *
       4             :  * This file was part of the Independent JPEG Group's software:
       5             :  * Copyright (C) 1994-1997, Thomas G. Lane.
       6             :  * libjpeg-turbo Modifications:
       7             :  * Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
       8             :  * Copyright (C) 2010, 2015-2016, D. R. Commander.
       9             :  * Copyright (C) 2015, Google, Inc.
      10             :  * For conditions of distribution and use, see the accompanying README.ijg
      11             :  * file.
      12             :  *
      13             :  * This file contains the coefficient buffer controller for decompression.
      14             :  * This controller is the top level of the JPEG decompressor proper.
      15             :  * The coefficient buffer lies between entropy decoding and inverse-DCT steps.
      16             :  *
      17             :  * In buffered-image mode, this controller is the interface between
      18             :  * input-oriented processing and output-oriented processing.
      19             :  * Also, the input side (only) is used when reading a file for transcoding.
      20             :  */
      21             : 
      22             : #include "jinclude.h"
      23             : #include "jdcoefct.h"
      24             : #include "jpegcomp.h"
      25             : 
      26             : 
      27             : /* Forward declarations */
      28             : METHODDEF(int) decompress_onepass
      29             :         (j_decompress_ptr cinfo, JSAMPIMAGE output_buf);
      30             : #ifdef D_MULTISCAN_FILES_SUPPORTED
      31             : METHODDEF(int) decompress_data
      32             :         (j_decompress_ptr cinfo, JSAMPIMAGE output_buf);
      33             : #endif
      34             : #ifdef BLOCK_SMOOTHING_SUPPORTED
      35             : LOCAL(boolean) smoothing_ok (j_decompress_ptr cinfo);
      36             : METHODDEF(int) decompress_smooth_data
      37             :         (j_decompress_ptr cinfo, JSAMPIMAGE output_buf);
      38             : #endif
      39             : 
      40             : 
      41             : /*
      42             :  * Initialize for an input processing pass.
      43             :  */
      44             : 
      45             : METHODDEF(void)
      46           0 : start_input_pass (j_decompress_ptr cinfo)
      47             : {
      48           0 :   cinfo->input_iMCU_row = 0;
      49           0 :   start_iMCU_row(cinfo);
      50           0 : }
      51             : 
      52             : 
      53             : /*
      54             :  * Initialize for an output processing pass.
      55             :  */
      56             : 
      57             : METHODDEF(void)
      58           0 : start_output_pass (j_decompress_ptr cinfo)
      59             : {
      60             : #ifdef BLOCK_SMOOTHING_SUPPORTED
      61           0 :   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
      62             : 
      63             :   /* If multipass, check to see whether to use block smoothing on this pass */
      64           0 :   if (coef->pub.coef_arrays != NULL) {
      65           0 :     if (cinfo->do_block_smoothing && smoothing_ok(cinfo))
      66           0 :       coef->pub.decompress_data = decompress_smooth_data;
      67             :     else
      68           0 :       coef->pub.decompress_data = decompress_data;
      69             :   }
      70             : #endif
      71           0 :   cinfo->output_iMCU_row = 0;
      72           0 : }
      73             : 
      74             : 
      75             : /*
      76             :  * Decompress and return some data in the single-pass case.
      77             :  * Always attempts to emit one fully interleaved MCU row ("iMCU" row).
      78             :  * Input and output must run in lockstep since we have only a one-MCU buffer.
      79             :  * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
      80             :  *
      81             :  * NB: output_buf contains a plane for each component in image,
      82             :  * which we index according to the component's SOF position.
      83             :  */
      84             : 
      85             : METHODDEF(int)
      86           0 : decompress_onepass (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
      87             : {
      88           0 :   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
      89             :   JDIMENSION MCU_col_num;       /* index of current MCU within row */
      90           0 :   JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
      91           0 :   JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
      92             :   int blkn, ci, xindex, yindex, yoffset, useful_width;
      93             :   JSAMPARRAY output_ptr;
      94             :   JDIMENSION start_col, output_col;
      95             :   jpeg_component_info *compptr;
      96             :   inverse_DCT_method_ptr inverse_DCT;
      97             : 
      98             :   /* Loop to process as much as one whole iMCU row */
      99           0 :   for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
     100           0 :        yoffset++) {
     101           0 :     for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col;
     102           0 :          MCU_col_num++) {
     103             :       /* Try to fetch an MCU.  Entropy decoder expects buffer to be zeroed. */
     104           0 :       jzero_far((void *) coef->MCU_buffer[0],
     105           0 :                 (size_t) (cinfo->blocks_in_MCU * sizeof(JBLOCK)));
     106           0 :       if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
     107             :         /* Suspension forced; update state counters and exit */
     108           0 :         coef->MCU_vert_offset = yoffset;
     109           0 :         coef->MCU_ctr = MCU_col_num;
     110           0 :         return JPEG_SUSPENDED;
     111             :       }
     112             : 
     113             :       /* Only perform the IDCT on blocks that are contained within the desired
     114             :        * cropping region.
     115             :        */
     116           0 :       if (MCU_col_num >= cinfo->master->first_iMCU_col &&
     117           0 :           MCU_col_num <= cinfo->master->last_iMCU_col) {
     118             :         /* Determine where data should go in output_buf and do the IDCT thing.
     119             :          * We skip dummy blocks at the right and bottom edges (but blkn gets
     120             :          * incremented past them!).  Note the inner loop relies on having
     121             :          * allocated the MCU_buffer[] blocks sequentially.
     122             :          */
     123           0 :         blkn = 0;                 /* index of current DCT block within MCU */
     124           0 :         for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
     125           0 :           compptr = cinfo->cur_comp_info[ci];
     126             :           /* Don't bother to IDCT an uninteresting component. */
     127           0 :           if (! compptr->component_needed) {
     128           0 :             blkn += compptr->MCU_blocks;
     129           0 :             continue;
     130             :           }
     131           0 :           inverse_DCT = cinfo->idct->inverse_DCT[compptr->component_index];
     132           0 :           useful_width = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
     133           0 :                                                       : compptr->last_col_width;
     134           0 :           output_ptr = output_buf[compptr->component_index] +
     135           0 :             yoffset * compptr->_DCT_scaled_size;
     136           0 :           start_col = (MCU_col_num - cinfo->master->first_iMCU_col) *
     137           0 :               compptr->MCU_sample_width;
     138           0 :           for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
     139           0 :             if (cinfo->input_iMCU_row < last_iMCU_row ||
     140           0 :                 yoffset+yindex < compptr->last_row_height) {
     141           0 :               output_col = start_col;
     142           0 :               for (xindex = 0; xindex < useful_width; xindex++) {
     143           0 :                 (*inverse_DCT) (cinfo, compptr,
     144           0 :                                 (JCOEFPTR) coef->MCU_buffer[blkn+xindex],
     145             :                                 output_ptr, output_col);
     146           0 :                 output_col += compptr->_DCT_scaled_size;
     147             :               }
     148             :             }
     149           0 :             blkn += compptr->MCU_width;
     150           0 :             output_ptr += compptr->_DCT_scaled_size;
     151             :           }
     152             :         }
     153             :       }
     154             :     }
     155             :     /* Completed an MCU row, but perhaps not an iMCU row */
     156           0 :     coef->MCU_ctr = 0;
     157             :   }
     158             :   /* Completed the iMCU row, advance counters for next one */
     159           0 :   cinfo->output_iMCU_row++;
     160           0 :   if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
     161           0 :     start_iMCU_row(cinfo);
     162           0 :     return JPEG_ROW_COMPLETED;
     163             :   }
     164             :   /* Completed the scan */
     165           0 :   (*cinfo->inputctl->finish_input_pass) (cinfo);
     166           0 :   return JPEG_SCAN_COMPLETED;
     167             : }
     168             : 
     169             : 
     170             : /*
     171             :  * Dummy consume-input routine for single-pass operation.
     172             :  */
     173             : 
     174             : METHODDEF(int)
     175           0 : dummy_consume_data (j_decompress_ptr cinfo)
     176             : {
     177           0 :   return JPEG_SUSPENDED;        /* Always indicate nothing was done */
     178             : }
     179             : 
     180             : 
     181             : #ifdef D_MULTISCAN_FILES_SUPPORTED
     182             : 
     183             : /*
     184             :  * Consume input data and store it in the full-image coefficient buffer.
     185             :  * We read as much as one fully interleaved MCU row ("iMCU" row) per call,
     186             :  * ie, v_samp_factor block rows for each component in the scan.
     187             :  * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
     188             :  */
     189             : 
     190             : METHODDEF(int)
     191           0 : consume_data (j_decompress_ptr cinfo)
     192             : {
     193           0 :   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
     194             :   JDIMENSION MCU_col_num;       /* index of current MCU within row */
     195             :   int blkn, ci, xindex, yindex, yoffset;
     196             :   JDIMENSION start_col;
     197             :   JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
     198             :   JBLOCKROW buffer_ptr;
     199             :   jpeg_component_info *compptr;
     200             : 
     201             :   /* Align the virtual buffers for the components used in this scan. */
     202           0 :   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
     203           0 :     compptr = cinfo->cur_comp_info[ci];
     204           0 :     buffer[ci] = (*cinfo->mem->access_virt_barray)
     205           0 :       ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
     206           0 :        cinfo->input_iMCU_row * compptr->v_samp_factor,
     207           0 :        (JDIMENSION) compptr->v_samp_factor, TRUE);
     208             :     /* Note: entropy decoder expects buffer to be zeroed,
     209             :      * but this is handled automatically by the memory manager
     210             :      * because we requested a pre-zeroed array.
     211             :      */
     212             :   }
     213             : 
     214             :   /* Loop to process one whole iMCU row */
     215           0 :   for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
     216           0 :        yoffset++) {
     217           0 :     for (MCU_col_num = coef->MCU_ctr; MCU_col_num < cinfo->MCUs_per_row;
     218           0 :          MCU_col_num++) {
     219             :       /* Construct list of pointers to DCT blocks belonging to this MCU */
     220           0 :       blkn = 0;                 /* index of current DCT block within MCU */
     221           0 :       for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
     222           0 :         compptr = cinfo->cur_comp_info[ci];
     223           0 :         start_col = MCU_col_num * compptr->MCU_width;
     224           0 :         for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
     225           0 :           buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
     226           0 :           for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
     227           0 :             coef->MCU_buffer[blkn++] = buffer_ptr++;
     228             :           }
     229             :         }
     230             :       }
     231             :       /* Try to fetch the MCU. */
     232           0 :       if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
     233             :         /* Suspension forced; update state counters and exit */
     234           0 :         coef->MCU_vert_offset = yoffset;
     235           0 :         coef->MCU_ctr = MCU_col_num;
     236           0 :         return JPEG_SUSPENDED;
     237             :       }
     238             :     }
     239             :     /* Completed an MCU row, but perhaps not an iMCU row */
     240           0 :     coef->MCU_ctr = 0;
     241             :   }
     242             :   /* Completed the iMCU row, advance counters for next one */
     243           0 :   if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
     244           0 :     start_iMCU_row(cinfo);
     245           0 :     return JPEG_ROW_COMPLETED;
     246             :   }
     247             :   /* Completed the scan */
     248           0 :   (*cinfo->inputctl->finish_input_pass) (cinfo);
     249           0 :   return JPEG_SCAN_COMPLETED;
     250             : }
     251             : 
     252             : 
     253             : /*
     254             :  * Decompress and return some data in the multi-pass case.
     255             :  * Always attempts to emit one fully interleaved MCU row ("iMCU" row).
     256             :  * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
     257             :  *
     258             :  * NB: output_buf contains a plane for each component in image.
     259             :  */
     260             : 
     261             : METHODDEF(int)
     262           0 : decompress_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
     263             : {
     264           0 :   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
     265           0 :   JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
     266             :   JDIMENSION block_num;
     267             :   int ci, block_row, block_rows;
     268             :   JBLOCKARRAY buffer;
     269             :   JBLOCKROW buffer_ptr;
     270             :   JSAMPARRAY output_ptr;
     271             :   JDIMENSION output_col;
     272             :   jpeg_component_info *compptr;
     273             :   inverse_DCT_method_ptr inverse_DCT;
     274             : 
     275             :   /* Force some input to be done if we are getting ahead of the input. */
     276           0 :   while (cinfo->input_scan_number < cinfo->output_scan_number ||
     277           0 :          (cinfo->input_scan_number == cinfo->output_scan_number &&
     278           0 :           cinfo->input_iMCU_row <= cinfo->output_iMCU_row)) {
     279           0 :     if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED)
     280           0 :       return JPEG_SUSPENDED;
     281             :   }
     282             : 
     283             :   /* OK, output from the virtual arrays. */
     284           0 :   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
     285           0 :        ci++, compptr++) {
     286             :     /* Don't bother to IDCT an uninteresting component. */
     287           0 :     if (! compptr->component_needed)
     288           0 :       continue;
     289             :     /* Align the virtual buffer for this component. */
     290           0 :     buffer = (*cinfo->mem->access_virt_barray)
     291             :       ((j_common_ptr) cinfo, coef->whole_image[ci],
     292           0 :        cinfo->output_iMCU_row * compptr->v_samp_factor,
     293           0 :        (JDIMENSION) compptr->v_samp_factor, FALSE);
     294             :     /* Count non-dummy DCT block rows in this iMCU row. */
     295           0 :     if (cinfo->output_iMCU_row < last_iMCU_row)
     296           0 :       block_rows = compptr->v_samp_factor;
     297             :     else {
     298             :       /* NB: can't use last_row_height here; it is input-side-dependent! */
     299           0 :       block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
     300           0 :       if (block_rows == 0) block_rows = compptr->v_samp_factor;
     301             :     }
     302           0 :     inverse_DCT = cinfo->idct->inverse_DCT[ci];
     303           0 :     output_ptr = output_buf[ci];
     304             :     /* Loop over all DCT blocks to be processed. */
     305           0 :     for (block_row = 0; block_row < block_rows; block_row++) {
     306           0 :       buffer_ptr = buffer[block_row] + cinfo->master->first_MCU_col[ci];
     307           0 :       output_col = 0;
     308           0 :       for (block_num = cinfo->master->first_MCU_col[ci];
     309           0 :            block_num <= cinfo->master->last_MCU_col[ci]; block_num++) {
     310           0 :         (*inverse_DCT) (cinfo, compptr, (JCOEFPTR) buffer_ptr,
     311             :                         output_ptr, output_col);
     312           0 :         buffer_ptr++;
     313           0 :         output_col += compptr->_DCT_scaled_size;
     314             :       }
     315           0 :       output_ptr += compptr->_DCT_scaled_size;
     316             :     }
     317             :   }
     318             : 
     319           0 :   if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
     320           0 :     return JPEG_ROW_COMPLETED;
     321           0 :   return JPEG_SCAN_COMPLETED;
     322             : }
     323             : 
     324             : #endif /* D_MULTISCAN_FILES_SUPPORTED */
     325             : 
     326             : 
     327             : #ifdef BLOCK_SMOOTHING_SUPPORTED
     328             : 
     329             : /*
     330             :  * This code applies interblock smoothing as described by section K.8
     331             :  * of the JPEG standard: the first 5 AC coefficients are estimated from
     332             :  * the DC values of a DCT block and its 8 neighboring blocks.
     333             :  * We apply smoothing only for progressive JPEG decoding, and only if
     334             :  * the coefficients it can estimate are not yet known to full precision.
     335             :  */
     336             : 
     337             : /* Natural-order array positions of the first 5 zigzag-order coefficients */
     338             : #define Q01_POS  1
     339             : #define Q10_POS  8
     340             : #define Q20_POS  16
     341             : #define Q11_POS  9
     342             : #define Q02_POS  2
     343             : 
     344             : /*
     345             :  * Determine whether block smoothing is applicable and safe.
     346             :  * We also latch the current states of the coef_bits[] entries for the
     347             :  * AC coefficients; otherwise, if the input side of the decompressor
     348             :  * advances into a new scan, we might think the coefficients are known
     349             :  * more accurately than they really are.
     350             :  */
     351             : 
     352             : LOCAL(boolean)
     353           0 : smoothing_ok (j_decompress_ptr cinfo)
     354             : {
     355           0 :   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
     356           0 :   boolean smoothing_useful = FALSE;
     357             :   int ci, coefi;
     358             :   jpeg_component_info *compptr;
     359             :   JQUANT_TBL *qtable;
     360             :   int *coef_bits;
     361             :   int *coef_bits_latch;
     362             : 
     363           0 :   if (! cinfo->progressive_mode || cinfo->coef_bits == NULL)
     364           0 :     return FALSE;
     365             : 
     366             :   /* Allocate latch area if not already done */
     367           0 :   if (coef->coef_bits_latch == NULL)
     368           0 :     coef->coef_bits_latch = (int *)
     369           0 :       (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
     370           0 :                                   cinfo->num_components *
     371             :                                   (SAVED_COEFS * sizeof(int)));
     372           0 :   coef_bits_latch = coef->coef_bits_latch;
     373             : 
     374           0 :   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
     375           0 :        ci++, compptr++) {
     376             :     /* All components' quantization values must already be latched. */
     377           0 :     if ((qtable = compptr->quant_table) == NULL)
     378           0 :       return FALSE;
     379             :     /* Verify DC & first 5 AC quantizers are nonzero to avoid zero-divide. */
     380           0 :     if (qtable->quantval[0] == 0 ||
     381           0 :         qtable->quantval[Q01_POS] == 0 ||
     382           0 :         qtable->quantval[Q10_POS] == 0 ||
     383           0 :         qtable->quantval[Q20_POS] == 0 ||
     384           0 :         qtable->quantval[Q11_POS] == 0 ||
     385           0 :         qtable->quantval[Q02_POS] == 0)
     386           0 :       return FALSE;
     387             :     /* DC values must be at least partly known for all components. */
     388           0 :     coef_bits = cinfo->coef_bits[ci];
     389           0 :     if (coef_bits[0] < 0)
     390           0 :       return FALSE;
     391             :     /* Block smoothing is helpful if some AC coefficients remain inaccurate. */
     392           0 :     for (coefi = 1; coefi <= 5; coefi++) {
     393           0 :       coef_bits_latch[coefi] = coef_bits[coefi];
     394           0 :       if (coef_bits[coefi] != 0)
     395           0 :         smoothing_useful = TRUE;
     396             :     }
     397           0 :     coef_bits_latch += SAVED_COEFS;
     398             :   }
     399             : 
     400           0 :   return smoothing_useful;
     401             : }
     402             : 
     403             : 
     404             : /*
     405             :  * Variant of decompress_data for use when doing block smoothing.
     406             :  */
     407             : 
     408             : METHODDEF(int)
     409           0 : decompress_smooth_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
     410             : {
     411           0 :   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
     412           0 :   JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
     413             :   JDIMENSION block_num, last_block_column;
     414             :   int ci, block_row, block_rows, access_rows;
     415             :   JBLOCKARRAY buffer;
     416             :   JBLOCKROW buffer_ptr, prev_block_row, next_block_row;
     417             :   JSAMPARRAY output_ptr;
     418             :   JDIMENSION output_col;
     419             :   jpeg_component_info *compptr;
     420             :   inverse_DCT_method_ptr inverse_DCT;
     421             :   boolean first_row, last_row;
     422             :   JCOEF *workspace;
     423             :   int *coef_bits;
     424             :   JQUANT_TBL *quanttbl;
     425             :   JLONG Q00,Q01,Q02,Q10,Q11,Q20, num;
     426             :   int DC1,DC2,DC3,DC4,DC5,DC6,DC7,DC8,DC9;
     427             :   int Al, pred;
     428             : 
     429             :   /* Keep a local variable to avoid looking it up more than once */
     430           0 :   workspace = coef->workspace;
     431             : 
     432             :   /* Force some input to be done if we are getting ahead of the input. */
     433           0 :   while (cinfo->input_scan_number <= cinfo->output_scan_number &&
     434           0 :          ! cinfo->inputctl->eoi_reached) {
     435           0 :     if (cinfo->input_scan_number == cinfo->output_scan_number) {
     436             :       /* If input is working on current scan, we ordinarily want it to
     437             :        * have completed the current row.  But if input scan is DC,
     438             :        * we want it to keep one row ahead so that next block row's DC
     439             :        * values are up to date.
     440             :        */
     441           0 :       JDIMENSION delta = (cinfo->Ss == 0) ? 1 : 0;
     442           0 :       if (cinfo->input_iMCU_row > cinfo->output_iMCU_row+delta)
     443           0 :         break;
     444             :     }
     445           0 :     if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED)
     446           0 :       return JPEG_SUSPENDED;
     447             :   }
     448             : 
     449             :   /* OK, output from the virtual arrays. */
     450           0 :   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
     451           0 :        ci++, compptr++) {
     452             :     /* Don't bother to IDCT an uninteresting component. */
     453           0 :     if (! compptr->component_needed)
     454           0 :       continue;
     455             :     /* Count non-dummy DCT block rows in this iMCU row. */
     456           0 :     if (cinfo->output_iMCU_row < last_iMCU_row) {
     457           0 :       block_rows = compptr->v_samp_factor;
     458           0 :       access_rows = block_rows * 2; /* this and next iMCU row */
     459           0 :       last_row = FALSE;
     460             :     } else {
     461             :       /* NB: can't use last_row_height here; it is input-side-dependent! */
     462           0 :       block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
     463           0 :       if (block_rows == 0) block_rows = compptr->v_samp_factor;
     464           0 :       access_rows = block_rows; /* this iMCU row only */
     465           0 :       last_row = TRUE;
     466             :     }
     467             :     /* Align the virtual buffer for this component. */
     468           0 :     if (cinfo->output_iMCU_row > 0) {
     469           0 :       access_rows += compptr->v_samp_factor; /* prior iMCU row too */
     470           0 :       buffer = (*cinfo->mem->access_virt_barray)
     471             :         ((j_common_ptr) cinfo, coef->whole_image[ci],
     472           0 :          (cinfo->output_iMCU_row - 1) * compptr->v_samp_factor,
     473             :          (JDIMENSION) access_rows, FALSE);
     474           0 :       buffer += compptr->v_samp_factor; /* point to current iMCU row */
     475           0 :       first_row = FALSE;
     476             :     } else {
     477           0 :       buffer = (*cinfo->mem->access_virt_barray)
     478             :         ((j_common_ptr) cinfo, coef->whole_image[ci],
     479             :          (JDIMENSION) 0, (JDIMENSION) access_rows, FALSE);
     480           0 :       first_row = TRUE;
     481             :     }
     482             :     /* Fetch component-dependent info */
     483           0 :     coef_bits = coef->coef_bits_latch + (ci * SAVED_COEFS);
     484           0 :     quanttbl = compptr->quant_table;
     485           0 :     Q00 = quanttbl->quantval[0];
     486           0 :     Q01 = quanttbl->quantval[Q01_POS];
     487           0 :     Q10 = quanttbl->quantval[Q10_POS];
     488           0 :     Q20 = quanttbl->quantval[Q20_POS];
     489           0 :     Q11 = quanttbl->quantval[Q11_POS];
     490           0 :     Q02 = quanttbl->quantval[Q02_POS];
     491           0 :     inverse_DCT = cinfo->idct->inverse_DCT[ci];
     492           0 :     output_ptr = output_buf[ci];
     493             :     /* Loop over all DCT blocks to be processed. */
     494           0 :     for (block_row = 0; block_row < block_rows; block_row++) {
     495           0 :       buffer_ptr = buffer[block_row] + cinfo->master->first_MCU_col[ci];
     496           0 :       if (first_row && block_row == 0)
     497           0 :         prev_block_row = buffer_ptr;
     498             :       else
     499           0 :         prev_block_row = buffer[block_row-1];
     500           0 :       if (last_row && block_row == block_rows-1)
     501           0 :         next_block_row = buffer_ptr;
     502             :       else
     503           0 :         next_block_row = buffer[block_row+1];
     504             :       /* We fetch the surrounding DC values using a sliding-register approach.
     505             :        * Initialize all nine here so as to do the right thing on narrow pics.
     506             :        */
     507           0 :       DC1 = DC2 = DC3 = (int) prev_block_row[0][0];
     508           0 :       DC4 = DC5 = DC6 = (int) buffer_ptr[0][0];
     509           0 :       DC7 = DC8 = DC9 = (int) next_block_row[0][0];
     510           0 :       output_col = 0;
     511           0 :       last_block_column = compptr->width_in_blocks - 1;
     512           0 :       for (block_num = cinfo->master->first_MCU_col[ci];
     513           0 :            block_num <= cinfo->master->last_MCU_col[ci]; block_num++) {
     514             :         /* Fetch current DCT block into workspace so we can modify it. */
     515           0 :         jcopy_block_row(buffer_ptr, (JBLOCKROW) workspace, (JDIMENSION) 1);
     516             :         /* Update DC values */
     517           0 :         if (block_num < last_block_column) {
     518           0 :           DC3 = (int) prev_block_row[1][0];
     519           0 :           DC6 = (int) buffer_ptr[1][0];
     520           0 :           DC9 = (int) next_block_row[1][0];
     521             :         }
     522             :         /* Compute coefficient estimates per K.8.
     523             :          * An estimate is applied only if coefficient is still zero,
     524             :          * and is not known to be fully accurate.
     525             :          */
     526             :         /* AC01 */
     527           0 :         if ((Al=coef_bits[1]) != 0 && workspace[1] == 0) {
     528           0 :           num = 36 * Q00 * (DC4 - DC6);
     529           0 :           if (num >= 0) {
     530           0 :             pred = (int) (((Q01<<7) + num) / (Q01<<8));
     531           0 :             if (Al > 0 && pred >= (1<<Al))
     532           0 :               pred = (1<<Al)-1;
     533             :           } else {
     534           0 :             pred = (int) (((Q01<<7) - num) / (Q01<<8));
     535           0 :             if (Al > 0 && pred >= (1<<Al))
     536           0 :               pred = (1<<Al)-1;
     537           0 :             pred = -pred;
     538             :           }
     539           0 :           workspace[1] = (JCOEF) pred;
     540             :         }
     541             :         /* AC10 */
     542           0 :         if ((Al=coef_bits[2]) != 0 && workspace[8] == 0) {
     543           0 :           num = 36 * Q00 * (DC2 - DC8);
     544           0 :           if (num >= 0) {
     545           0 :             pred = (int) (((Q10<<7) + num) / (Q10<<8));
     546           0 :             if (Al > 0 && pred >= (1<<Al))
     547           0 :               pred = (1<<Al)-1;
     548             :           } else {
     549           0 :             pred = (int) (((Q10<<7) - num) / (Q10<<8));
     550           0 :             if (Al > 0 && pred >= (1<<Al))
     551           0 :               pred = (1<<Al)-1;
     552           0 :             pred = -pred;
     553             :           }
     554           0 :           workspace[8] = (JCOEF) pred;
     555             :         }
     556             :         /* AC20 */
     557           0 :         if ((Al=coef_bits[3]) != 0 && workspace[16] == 0) {
     558           0 :           num = 9 * Q00 * (DC2 + DC8 - 2*DC5);
     559           0 :           if (num >= 0) {
     560           0 :             pred = (int) (((Q20<<7) + num) / (Q20<<8));
     561           0 :             if (Al > 0 && pred >= (1<<Al))
     562           0 :               pred = (1<<Al)-1;
     563             :           } else {
     564           0 :             pred = (int) (((Q20<<7) - num) / (Q20<<8));
     565           0 :             if (Al > 0 && pred >= (1<<Al))
     566           0 :               pred = (1<<Al)-1;
     567           0 :             pred = -pred;
     568             :           }
     569           0 :           workspace[16] = (JCOEF) pred;
     570             :         }
     571             :         /* AC11 */
     572           0 :         if ((Al=coef_bits[4]) != 0 && workspace[9] == 0) {
     573           0 :           num = 5 * Q00 * (DC1 - DC3 - DC7 + DC9);
     574           0 :           if (num >= 0) {
     575           0 :             pred = (int) (((Q11<<7) + num) / (Q11<<8));
     576           0 :             if (Al > 0 && pred >= (1<<Al))
     577           0 :               pred = (1<<Al)-1;
     578             :           } else {
     579           0 :             pred = (int) (((Q11<<7) - num) / (Q11<<8));
     580           0 :             if (Al > 0 && pred >= (1<<Al))
     581           0 :               pred = (1<<Al)-1;
     582           0 :             pred = -pred;
     583             :           }
     584           0 :           workspace[9] = (JCOEF) pred;
     585             :         }
     586             :         /* AC02 */
     587           0 :         if ((Al=coef_bits[5]) != 0 && workspace[2] == 0) {
     588           0 :           num = 9 * Q00 * (DC4 + DC6 - 2*DC5);
     589           0 :           if (num >= 0) {
     590           0 :             pred = (int) (((Q02<<7) + num) / (Q02<<8));
     591           0 :             if (Al > 0 && pred >= (1<<Al))
     592           0 :               pred = (1<<Al)-1;
     593             :           } else {
     594           0 :             pred = (int) (((Q02<<7) - num) / (Q02<<8));
     595           0 :             if (Al > 0 && pred >= (1<<Al))
     596           0 :               pred = (1<<Al)-1;
     597           0 :             pred = -pred;
     598             :           }
     599           0 :           workspace[2] = (JCOEF) pred;
     600             :         }
     601             :         /* OK, do the IDCT */
     602           0 :         (*inverse_DCT) (cinfo, compptr, (JCOEFPTR) workspace,
     603             :                         output_ptr, output_col);
     604             :         /* Advance for next column */
     605           0 :         DC1 = DC2; DC2 = DC3;
     606           0 :         DC4 = DC5; DC5 = DC6;
     607           0 :         DC7 = DC8; DC8 = DC9;
     608           0 :         buffer_ptr++, prev_block_row++, next_block_row++;
     609           0 :         output_col += compptr->_DCT_scaled_size;
     610             :       }
     611           0 :       output_ptr += compptr->_DCT_scaled_size;
     612             :     }
     613             :   }
     614             : 
     615           0 :   if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
     616           0 :     return JPEG_ROW_COMPLETED;
     617           0 :   return JPEG_SCAN_COMPLETED;
     618             : }
     619             : 
     620             : #endif /* BLOCK_SMOOTHING_SUPPORTED */
     621             : 
     622             : 
     623             : /*
     624             :  * Initialize coefficient buffer controller.
     625             :  */
     626             : 
     627             : GLOBAL(void)
     628           0 : jinit_d_coef_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
     629             : {
     630             :   my_coef_ptr coef;
     631             : 
     632           0 :   coef = (my_coef_ptr)
     633           0 :     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
     634             :                                 sizeof(my_coef_controller));
     635           0 :   cinfo->coef = (struct jpeg_d_coef_controller *) coef;
     636           0 :   coef->pub.start_input_pass = start_input_pass;
     637           0 :   coef->pub.start_output_pass = start_output_pass;
     638             : #ifdef BLOCK_SMOOTHING_SUPPORTED
     639           0 :   coef->coef_bits_latch = NULL;
     640             : #endif
     641             : 
     642             :   /* Create the coefficient buffer. */
     643           0 :   if (need_full_buffer) {
     644             : #ifdef D_MULTISCAN_FILES_SUPPORTED
     645             :     /* Allocate a full-image virtual array for each component, */
     646             :     /* padded to a multiple of samp_factor DCT blocks in each direction. */
     647             :     /* Note we ask for a pre-zeroed array. */
     648             :     int ci, access_rows;
     649             :     jpeg_component_info *compptr;
     650             : 
     651           0 :     for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
     652           0 :          ci++, compptr++) {
     653           0 :       access_rows = compptr->v_samp_factor;
     654             : #ifdef BLOCK_SMOOTHING_SUPPORTED
     655             :       /* If block smoothing could be used, need a bigger window */
     656           0 :       if (cinfo->progressive_mode)
     657           0 :         access_rows *= 3;
     658             : #endif
     659           0 :       coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
     660             :         ((j_common_ptr) cinfo, JPOOL_IMAGE, TRUE,
     661           0 :          (JDIMENSION) jround_up((long) compptr->width_in_blocks,
     662           0 :                                 (long) compptr->h_samp_factor),
     663           0 :          (JDIMENSION) jround_up((long) compptr->height_in_blocks,
     664           0 :                                 (long) compptr->v_samp_factor),
     665             :          (JDIMENSION) access_rows);
     666             :     }
     667           0 :     coef->pub.consume_data = consume_data;
     668           0 :     coef->pub.decompress_data = decompress_data;
     669           0 :     coef->pub.coef_arrays = coef->whole_image; /* link to virtual arrays */
     670             : #else
     671             :     ERREXIT(cinfo, JERR_NOT_COMPILED);
     672             : #endif
     673             :   } else {
     674             :     /* We only need a single-MCU buffer. */
     675             :     JBLOCKROW buffer;
     676             :     int i;
     677             : 
     678           0 :     buffer = (JBLOCKROW)
     679           0 :       (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
     680             :                                   D_MAX_BLOCKS_IN_MCU * sizeof(JBLOCK));
     681           0 :     for (i = 0; i < D_MAX_BLOCKS_IN_MCU; i++) {
     682           0 :       coef->MCU_buffer[i] = buffer + i;
     683             :     }
     684           0 :     coef->pub.consume_data = dummy_consume_data;
     685           0 :     coef->pub.decompress_data = decompress_onepass;
     686           0 :     coef->pub.coef_arrays = NULL; /* flag for no virtual arrays */
     687             :   }
     688             : 
     689             :   /* Allocate the workspace buffer */
     690           0 :   coef->workspace = (JCOEF *)
     691           0 :     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
     692             :                                 sizeof(JCOEF) * DCTSIZE2);
     693           0 : }

Generated by: LCOV version 1.13