LCOV - code coverage report
Current view: top level - media/libjpeg - jdhuff.c (source / functions) Hit Total Coverage
Test: output.info Lines: 0 275 0.0 %
Date: 2017-07-14 16:53:18 Functions: 0 9 0.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*
       2             :  * jdhuff.c
       3             :  *
       4             :  * This file was part of the Independent JPEG Group's software:
       5             :  * Copyright (C) 1991-1997, Thomas G. Lane.
       6             :  * libjpeg-turbo Modifications:
       7             :  * Copyright (C) 2009-2011, 2016, D. R. Commander.
       8             :  * For conditions of distribution and use, see the accompanying README.ijg
       9             :  * file.
      10             :  *
      11             :  * This file contains Huffman entropy decoding routines.
      12             :  *
      13             :  * Much of the complexity here has to do with supporting input suspension.
      14             :  * If the data source module demands suspension, we want to be able to back
      15             :  * up to the start of the current MCU.  To do this, we copy state variables
      16             :  * into local working storage, and update them back to the permanent
      17             :  * storage only upon successful completion of an MCU.
      18             :  */
      19             : 
      20             : #define JPEG_INTERNALS
      21             : #include "jinclude.h"
      22             : #include "jpeglib.h"
      23             : #include "jdhuff.h"             /* Declarations shared with jdphuff.c */
      24             : #include "jpegcomp.h"
      25             : #include "jstdhuff.c"
      26             : 
      27             : 
      28             : /*
      29             :  * Expanded entropy decoder object for Huffman decoding.
      30             :  *
      31             :  * The savable_state subrecord contains fields that change within an MCU,
      32             :  * but must not be updated permanently until we complete the MCU.
      33             :  */
      34             : 
      35             : typedef struct {
      36             :   int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
      37             : } savable_state;
      38             : 
      39             : /* This macro is to work around compilers with missing or broken
      40             :  * structure assignment.  You'll need to fix this code if you have
      41             :  * such a compiler and you change MAX_COMPS_IN_SCAN.
      42             :  */
      43             : 
      44             : #ifndef NO_STRUCT_ASSIGN
      45             : #define ASSIGN_STATE(dest,src)  ((dest) = (src))
      46             : #else
      47             : #if MAX_COMPS_IN_SCAN == 4
      48             : #define ASSIGN_STATE(dest,src)  \
      49             :         ((dest).last_dc_val[0] = (src).last_dc_val[0], \
      50             :          (dest).last_dc_val[1] = (src).last_dc_val[1], \
      51             :          (dest).last_dc_val[2] = (src).last_dc_val[2], \
      52             :          (dest).last_dc_val[3] = (src).last_dc_val[3])
      53             : #endif
      54             : #endif
      55             : 
      56             : 
      57             : typedef struct {
      58             :   struct jpeg_entropy_decoder pub; /* public fields */
      59             : 
      60             :   /* These fields are loaded into local variables at start of each MCU.
      61             :    * In case of suspension, we exit WITHOUT updating them.
      62             :    */
      63             :   bitread_perm_state bitstate;  /* Bit buffer at start of MCU */
      64             :   savable_state saved;          /* Other state at start of MCU */
      65             : 
      66             :   /* These fields are NOT loaded into local working state. */
      67             :   unsigned int restarts_to_go;  /* MCUs left in this restart interval */
      68             : 
      69             :   /* Pointers to derived tables (these workspaces have image lifespan) */
      70             :   d_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS];
      71             :   d_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS];
      72             : 
      73             :   /* Precalculated info set up by start_pass for use in decode_mcu: */
      74             : 
      75             :   /* Pointers to derived tables to be used for each block within an MCU */
      76             :   d_derived_tbl *dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
      77             :   d_derived_tbl *ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
      78             :   /* Whether we care about the DC and AC coefficient values for each block */
      79             :   boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
      80             :   boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
      81             : } huff_entropy_decoder;
      82             : 
      83             : typedef huff_entropy_decoder *huff_entropy_ptr;
      84             : 
      85             : 
      86             : /*
      87             :  * Initialize for a Huffman-compressed scan.
      88             :  */
      89             : 
      90             : METHODDEF(void)
      91           0 : start_pass_huff_decoder (j_decompress_ptr cinfo)
      92             : {
      93           0 :   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
      94             :   int ci, blkn, dctbl, actbl;
      95             :   d_derived_tbl **pdtbl;
      96             :   jpeg_component_info *compptr;
      97             : 
      98             :   /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
      99             :    * This ought to be an error condition, but we make it a warning because
     100             :    * there are some baseline files out there with all zeroes in these bytes.
     101             :    */
     102           0 :   if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2-1 ||
     103           0 :       cinfo->Ah != 0 || cinfo->Al != 0)
     104           0 :     WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
     105             : 
     106           0 :   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
     107           0 :     compptr = cinfo->cur_comp_info[ci];
     108           0 :     dctbl = compptr->dc_tbl_no;
     109           0 :     actbl = compptr->ac_tbl_no;
     110             :     /* Compute derived values for Huffman tables */
     111             :     /* We may do this more than once for a table, but it's not expensive */
     112           0 :     pdtbl = (d_derived_tbl **)(entropy->dc_derived_tbls) + dctbl;
     113           0 :     jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, pdtbl);
     114           0 :     pdtbl = (d_derived_tbl **)(entropy->ac_derived_tbls) + actbl;
     115           0 :     jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, pdtbl);
     116             :     /* Initialize DC predictions to 0 */
     117           0 :     entropy->saved.last_dc_val[ci] = 0;
     118             :   }
     119             : 
     120             :   /* Precalculate decoding info for each block in an MCU of this scan */
     121           0 :   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
     122           0 :     ci = cinfo->MCU_membership[blkn];
     123           0 :     compptr = cinfo->cur_comp_info[ci];
     124             :     /* Precalculate which table to use for each block */
     125           0 :     entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
     126           0 :     entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
     127             :     /* Decide whether we really care about the coefficient values */
     128           0 :     if (compptr->component_needed) {
     129           0 :       entropy->dc_needed[blkn] = TRUE;
     130             :       /* we don't need the ACs if producing a 1/8th-size image */
     131           0 :       entropy->ac_needed[blkn] = (compptr->_DCT_scaled_size > 1);
     132             :     } else {
     133           0 :       entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
     134             :     }
     135             :   }
     136             : 
     137             :   /* Initialize bitread state variables */
     138           0 :   entropy->bitstate.bits_left = 0;
     139           0 :   entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
     140           0 :   entropy->pub.insufficient_data = FALSE;
     141             : 
     142             :   /* Initialize restart counter */
     143           0 :   entropy->restarts_to_go = cinfo->restart_interval;
     144           0 : }
     145             : 
     146             : 
     147             : /*
     148             :  * Compute the derived values for a Huffman table.
     149             :  * This routine also performs some validation checks on the table.
     150             :  *
     151             :  * Note this is also used by jdphuff.c.
     152             :  */
     153             : 
     154             : GLOBAL(void)
     155           0 : jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, boolean isDC, int tblno,
     156             :                          d_derived_tbl **pdtbl)
     157             : {
     158             :   JHUFF_TBL *htbl;
     159             :   d_derived_tbl *dtbl;
     160             :   int p, i, l, si, numsymbols;
     161             :   int lookbits, ctr;
     162             :   char huffsize[257];
     163             :   unsigned int huffcode[257];
     164             :   unsigned int code;
     165             : 
     166             :   /* Note that huffsize[] and huffcode[] are filled in code-length order,
     167             :    * paralleling the order of the symbols themselves in htbl->huffval[].
     168             :    */
     169             : 
     170             :   /* Find the input Huffman table */
     171           0 :   if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
     172           0 :     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
     173           0 :   htbl =
     174           0 :     isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
     175           0 :   if (htbl == NULL)
     176           0 :     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
     177             : 
     178             :   /* Allocate a workspace if we haven't already done so. */
     179           0 :   if (*pdtbl == NULL)
     180           0 :     *pdtbl = (d_derived_tbl *)
     181           0 :       (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
     182             :                                   sizeof(d_derived_tbl));
     183           0 :   dtbl = *pdtbl;
     184           0 :   dtbl->pub = htbl;             /* fill in back link */
     185             : 
     186             :   /* Figure C.1: make table of Huffman code length for each symbol */
     187             : 
     188           0 :   p = 0;
     189           0 :   for (l = 1; l <= 16; l++) {
     190           0 :     i = (int) htbl->bits[l];
     191           0 :     if (i < 0 || p + i > 256)   /* protect against table overrun */
     192           0 :       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
     193           0 :     while (i--)
     194           0 :       huffsize[p++] = (char) l;
     195             :   }
     196           0 :   huffsize[p] = 0;
     197           0 :   numsymbols = p;
     198             : 
     199             :   /* Figure C.2: generate the codes themselves */
     200             :   /* We also validate that the counts represent a legal Huffman code tree. */
     201             : 
     202           0 :   code = 0;
     203           0 :   si = huffsize[0];
     204           0 :   p = 0;
     205           0 :   while (huffsize[p]) {
     206           0 :     while (((int) huffsize[p]) == si) {
     207           0 :       huffcode[p++] = code;
     208           0 :       code++;
     209             :     }
     210             :     /* code is now 1 more than the last code used for codelength si; but
     211             :      * it must still fit in si bits, since no code is allowed to be all ones.
     212             :      */
     213           0 :     if (((JLONG) code) >= (((JLONG) 1) << si))
     214           0 :       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
     215           0 :     code <<= 1;
     216           0 :     si++;
     217             :   }
     218             : 
     219             :   /* Figure F.15: generate decoding tables for bit-sequential decoding */
     220             : 
     221           0 :   p = 0;
     222           0 :   for (l = 1; l <= 16; l++) {
     223           0 :     if (htbl->bits[l]) {
     224             :       /* valoffset[l] = huffval[] index of 1st symbol of code length l,
     225             :        * minus the minimum code of length l
     226             :        */
     227           0 :       dtbl->valoffset[l] = (JLONG) p - (JLONG) huffcode[p];
     228           0 :       p += htbl->bits[l];
     229           0 :       dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */
     230             :     } else {
     231           0 :       dtbl->maxcode[l] = -1;    /* -1 if no codes of this length */
     232             :     }
     233             :   }
     234           0 :   dtbl->valoffset[17] = 0;
     235           0 :   dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
     236             : 
     237             :   /* Compute lookahead tables to speed up decoding.
     238             :    * First we set all the table entries to 0, indicating "too long";
     239             :    * then we iterate through the Huffman codes that are short enough and
     240             :    * fill in all the entries that correspond to bit sequences starting
     241             :    * with that code.
     242             :    */
     243             : 
     244           0 :    for (i = 0; i < (1 << HUFF_LOOKAHEAD); i++)
     245           0 :      dtbl->lookup[i] = (HUFF_LOOKAHEAD + 1) << HUFF_LOOKAHEAD;
     246             : 
     247           0 :   p = 0;
     248           0 :   for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
     249           0 :     for (i = 1; i <= (int) htbl->bits[l]; i++, p++) {
     250             :       /* l = current code's length, p = its index in huffcode[] & huffval[]. */
     251             :       /* Generate left-justified code followed by all possible bit sequences */
     252           0 :       lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l);
     253           0 :       for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) {
     254           0 :         dtbl->lookup[lookbits] = (l << HUFF_LOOKAHEAD) | htbl->huffval[p];
     255           0 :         lookbits++;
     256             :       }
     257             :     }
     258             :   }
     259             : 
     260             :   /* Validate symbols as being reasonable.
     261             :    * For AC tables, we make no check, but accept all byte values 0..255.
     262             :    * For DC tables, we require the symbols to be in range 0..15.
     263             :    * (Tighter bounds could be applied depending on the data depth and mode,
     264             :    * but this is sufficient to ensure safe decoding.)
     265             :    */
     266           0 :   if (isDC) {
     267           0 :     for (i = 0; i < numsymbols; i++) {
     268           0 :       int sym = htbl->huffval[i];
     269           0 :       if (sym < 0 || sym > 15)
     270           0 :         ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
     271             :     }
     272             :   }
     273           0 : }
     274             : 
     275             : 
     276             : /*
     277             :  * Out-of-line code for bit fetching (shared with jdphuff.c).
     278             :  * See jdhuff.h for info about usage.
     279             :  * Note: current values of get_buffer and bits_left are passed as parameters,
     280             :  * but are returned in the corresponding fields of the state struct.
     281             :  *
     282             :  * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
     283             :  * of get_buffer to be used.  (On machines with wider words, an even larger
     284             :  * buffer could be used.)  However, on some machines 32-bit shifts are
     285             :  * quite slow and take time proportional to the number of places shifted.
     286             :  * (This is true with most PC compilers, for instance.)  In this case it may
     287             :  * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
     288             :  * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
     289             :  */
     290             : 
     291             : #ifdef SLOW_SHIFT_32
     292             : #define MIN_GET_BITS  15        /* minimum allowable value */
     293             : #else
     294             : #define MIN_GET_BITS  (BIT_BUF_SIZE-7)
     295             : #endif
     296             : 
     297             : 
     298             : GLOBAL(boolean)
     299           0 : jpeg_fill_bit_buffer (bitread_working_state *state,
     300             :                       register bit_buf_type get_buffer, register int bits_left,
     301             :                       int nbits)
     302             : /* Load up the bit buffer to a depth of at least nbits */
     303             : {
     304             :   /* Copy heavily used state fields into locals (hopefully registers) */
     305           0 :   register const JOCTET *next_input_byte = state->next_input_byte;
     306           0 :   register size_t bytes_in_buffer = state->bytes_in_buffer;
     307           0 :   j_decompress_ptr cinfo = state->cinfo;
     308             : 
     309             :   /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
     310             :   /* (It is assumed that no request will be for more than that many bits.) */
     311             :   /* We fail to do so only if we hit a marker or are forced to suspend. */
     312             : 
     313           0 :   if (cinfo->unread_marker == 0) {      /* cannot advance past a marker */
     314           0 :     while (bits_left < MIN_GET_BITS) {
     315             :       register int c;
     316             : 
     317             :       /* Attempt to read a byte */
     318           0 :       if (bytes_in_buffer == 0) {
     319           0 :         if (! (*cinfo->src->fill_input_buffer) (cinfo))
     320           0 :           return FALSE;
     321           0 :         next_input_byte = cinfo->src->next_input_byte;
     322           0 :         bytes_in_buffer = cinfo->src->bytes_in_buffer;
     323             :       }
     324           0 :       bytes_in_buffer--;
     325           0 :       c = GETJOCTET(*next_input_byte++);
     326             : 
     327             :       /* If it's 0xFF, check and discard stuffed zero byte */
     328           0 :       if (c == 0xFF) {
     329             :         /* Loop here to discard any padding FF's on terminating marker,
     330             :          * so that we can save a valid unread_marker value.  NOTE: we will
     331             :          * accept multiple FF's followed by a 0 as meaning a single FF data
     332             :          * byte.  This data pattern is not valid according to the standard.
     333             :          */
     334             :         do {
     335           0 :           if (bytes_in_buffer == 0) {
     336           0 :             if (! (*cinfo->src->fill_input_buffer) (cinfo))
     337           0 :               return FALSE;
     338           0 :             next_input_byte = cinfo->src->next_input_byte;
     339           0 :             bytes_in_buffer = cinfo->src->bytes_in_buffer;
     340             :           }
     341           0 :           bytes_in_buffer--;
     342           0 :           c = GETJOCTET(*next_input_byte++);
     343           0 :         } while (c == 0xFF);
     344             : 
     345           0 :         if (c == 0) {
     346             :           /* Found FF/00, which represents an FF data byte */
     347           0 :           c = 0xFF;
     348             :         } else {
     349             :           /* Oops, it's actually a marker indicating end of compressed data.
     350             :            * Save the marker code for later use.
     351             :            * Fine point: it might appear that we should save the marker into
     352             :            * bitread working state, not straight into permanent state.  But
     353             :            * once we have hit a marker, we cannot need to suspend within the
     354             :            * current MCU, because we will read no more bytes from the data
     355             :            * source.  So it is OK to update permanent state right away.
     356             :            */
     357           0 :           cinfo->unread_marker = c;
     358             :           /* See if we need to insert some fake zero bits. */
     359           0 :           goto no_more_bytes;
     360             :         }
     361             :       }
     362             : 
     363             :       /* OK, load c into get_buffer */
     364           0 :       get_buffer = (get_buffer << 8) | c;
     365           0 :       bits_left += 8;
     366             :     } /* end while */
     367             :   } else {
     368             :   no_more_bytes:
     369             :     /* We get here if we've read the marker that terminates the compressed
     370             :      * data segment.  There should be enough bits in the buffer register
     371             :      * to satisfy the request; if so, no problem.
     372             :      */
     373           0 :     if (nbits > bits_left) {
     374             :       /* Uh-oh.  Report corrupted data to user and stuff zeroes into
     375             :        * the data stream, so that we can produce some kind of image.
     376             :        * We use a nonvolatile flag to ensure that only one warning message
     377             :        * appears per data segment.
     378             :        */
     379           0 :       if (! cinfo->entropy->insufficient_data) {
     380           0 :         WARNMS(cinfo, JWRN_HIT_MARKER);
     381           0 :         cinfo->entropy->insufficient_data = TRUE;
     382             :       }
     383             :       /* Fill the buffer with zero bits */
     384           0 :       get_buffer <<= MIN_GET_BITS - bits_left;
     385           0 :       bits_left = MIN_GET_BITS;
     386             :     }
     387             :   }
     388             : 
     389             :   /* Unload the local registers */
     390           0 :   state->next_input_byte = next_input_byte;
     391           0 :   state->bytes_in_buffer = bytes_in_buffer;
     392           0 :   state->get_buffer = get_buffer;
     393           0 :   state->bits_left = bits_left;
     394             : 
     395           0 :   return TRUE;
     396             : }
     397             : 
     398             : 
     399             : /* Macro version of the above, which performs much better but does not
     400             :    handle markers.  We have to hand off any blocks with markers to the
     401             :    slower routines. */
     402             : 
     403             : #define GET_BYTE \
     404             : { \
     405             :   register int c0, c1; \
     406             :   c0 = GETJOCTET(*buffer++); \
     407             :   c1 = GETJOCTET(*buffer); \
     408             :   /* Pre-execute most common case */ \
     409             :   get_buffer = (get_buffer << 8) | c0; \
     410             :   bits_left += 8; \
     411             :   if (c0 == 0xFF) { \
     412             :     /* Pre-execute case of FF/00, which represents an FF data byte */ \
     413             :     buffer++; \
     414             :     if (c1 != 0) { \
     415             :       /* Oops, it's actually a marker indicating end of compressed data. */ \
     416             :       cinfo->unread_marker = c1; \
     417             :       /* Back out pre-execution and fill the buffer with zero bits */ \
     418             :       buffer -= 2; \
     419             :       get_buffer &= ~0xFF; \
     420             :     } \
     421             :   } \
     422             : }
     423             : 
     424             : #if SIZEOF_SIZE_T==8 || defined(_WIN64)
     425             : 
     426             : /* Pre-fetch 48 bytes, because the holding register is 64-bit */
     427             : #define FILL_BIT_BUFFER_FAST \
     428             :   if (bits_left <= 16) { \
     429             :     GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE \
     430             :   }
     431             : 
     432             : #else
     433             : 
     434             : /* Pre-fetch 16 bytes, because the holding register is 32-bit */
     435             : #define FILL_BIT_BUFFER_FAST \
     436             :   if (bits_left <= 16) { \
     437             :     GET_BYTE GET_BYTE \
     438             :   }
     439             : 
     440             : #endif
     441             : 
     442             : 
     443             : /*
     444             :  * Out-of-line code for Huffman code decoding.
     445             :  * See jdhuff.h for info about usage.
     446             :  */
     447             : 
     448             : GLOBAL(int)
     449           0 : jpeg_huff_decode (bitread_working_state *state,
     450             :                   register bit_buf_type get_buffer, register int bits_left,
     451             :                   d_derived_tbl *htbl, int min_bits)
     452             : {
     453           0 :   register int l = min_bits;
     454             :   register JLONG code;
     455             : 
     456             :   /* HUFF_DECODE has determined that the code is at least min_bits */
     457             :   /* bits long, so fetch that many bits in one swoop. */
     458             : 
     459           0 :   CHECK_BIT_BUFFER(*state, l, return -1);
     460           0 :   code = GET_BITS(l);
     461             : 
     462             :   /* Collect the rest of the Huffman code one bit at a time. */
     463             :   /* This is per Figure F.16 in the JPEG spec. */
     464             : 
     465           0 :   while (code > htbl->maxcode[l]) {
     466           0 :     code <<= 1;
     467           0 :     CHECK_BIT_BUFFER(*state, 1, return -1);
     468           0 :     code |= GET_BITS(1);
     469           0 :     l++;
     470             :   }
     471             : 
     472             :   /* Unload the local registers */
     473           0 :   state->get_buffer = get_buffer;
     474           0 :   state->bits_left = bits_left;
     475             : 
     476             :   /* With garbage input we may reach the sentinel value l = 17. */
     477             : 
     478           0 :   if (l > 16) {
     479           0 :     WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
     480           0 :     return 0;                   /* fake a zero as the safest result */
     481             :   }
     482             : 
     483           0 :   return htbl->pub->huffval[ (int) (code + htbl->valoffset[l]) ];
     484             : }
     485             : 
     486             : 
     487             : /*
     488             :  * Figure F.12: extend sign bit.
     489             :  * On some machines, a shift and add will be faster than a table lookup.
     490             :  */
     491             : 
     492             : #define AVOID_TABLES
     493             : #ifdef AVOID_TABLES
     494             : 
     495             : #define NEG_1 ((unsigned int)-1)
     496             : #define HUFF_EXTEND(x,s)  ((x) + ((((x) - (1<<((s)-1))) >> 31) & (((NEG_1)<<(s)) + 1)))
     497             : 
     498             : #else
     499             : 
     500             : #define HUFF_EXTEND(x,s)  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
     501             : 
     502             : static const int extend_test[16] =   /* entry n is 2**(n-1) */
     503             :   { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
     504             :     0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 };
     505             : 
     506             : static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */
     507             :   { 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1,
     508             :     ((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1,
     509             :     ((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1,
     510             :     ((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 };
     511             : 
     512             : #endif /* AVOID_TABLES */
     513             : 
     514             : 
     515             : /*
     516             :  * Check for a restart marker & resynchronize decoder.
     517             :  * Returns FALSE if must suspend.
     518             :  */
     519             : 
     520             : LOCAL(boolean)
     521           0 : process_restart (j_decompress_ptr cinfo)
     522             : {
     523           0 :   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
     524             :   int ci;
     525             : 
     526             :   /* Throw away any unused bits remaining in bit buffer; */
     527             :   /* include any full bytes in next_marker's count of discarded bytes */
     528           0 :   cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
     529           0 :   entropy->bitstate.bits_left = 0;
     530             : 
     531             :   /* Advance past the RSTn marker */
     532           0 :   if (! (*cinfo->marker->read_restart_marker) (cinfo))
     533           0 :     return FALSE;
     534             : 
     535             :   /* Re-initialize DC predictions to 0 */
     536           0 :   for (ci = 0; ci < cinfo->comps_in_scan; ci++)
     537           0 :     entropy->saved.last_dc_val[ci] = 0;
     538             : 
     539             :   /* Reset restart counter */
     540           0 :   entropy->restarts_to_go = cinfo->restart_interval;
     541             : 
     542             :   /* Reset out-of-data flag, unless read_restart_marker left us smack up
     543             :    * against a marker.  In that case we will end up treating the next data
     544             :    * segment as empty, and we can avoid producing bogus output pixels by
     545             :    * leaving the flag set.
     546             :    */
     547           0 :   if (cinfo->unread_marker == 0)
     548           0 :     entropy->pub.insufficient_data = FALSE;
     549             : 
     550           0 :   return TRUE;
     551             : }
     552             : 
     553             : 
     554             : LOCAL(boolean)
     555           0 : decode_mcu_slow (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
     556             : {
     557           0 :   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
     558             :   BITREAD_STATE_VARS;
     559             :   int blkn;
     560             :   savable_state state;
     561             :   /* Outer loop handles each block in the MCU */
     562             : 
     563             :   /* Load up working state */
     564           0 :   BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
     565           0 :   ASSIGN_STATE(state, entropy->saved);
     566             : 
     567           0 :   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
     568           0 :     JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
     569           0 :     d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
     570           0 :     d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
     571             :     register int s, k, r;
     572             : 
     573             :     /* Decode a single block's worth of coefficients */
     574             : 
     575             :     /* Section F.2.2.1: decode the DC coefficient difference */
     576           0 :     HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
     577           0 :     if (s) {
     578           0 :       CHECK_BIT_BUFFER(br_state, s, return FALSE);
     579           0 :       r = GET_BITS(s);
     580           0 :       s = HUFF_EXTEND(r, s);
     581             :     }
     582             : 
     583           0 :     if (entropy->dc_needed[blkn]) {
     584             :       /* Convert DC difference to actual value, update last_dc_val */
     585           0 :       int ci = cinfo->MCU_membership[blkn];
     586           0 :       s += state.last_dc_val[ci];
     587           0 :       state.last_dc_val[ci] = s;
     588           0 :       if (block) {
     589             :         /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
     590           0 :         (*block)[0] = (JCOEF) s;
     591             :       }
     592             :     }
     593             : 
     594           0 :     if (entropy->ac_needed[blkn] && block) {
     595             : 
     596             :       /* Section F.2.2.2: decode the AC coefficients */
     597             :       /* Since zeroes are skipped, output area must be cleared beforehand */
     598           0 :       for (k = 1; k < DCTSIZE2; k++) {
     599           0 :         HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
     600             : 
     601           0 :         r = s >> 4;
     602           0 :         s &= 15;
     603             : 
     604           0 :         if (s) {
     605           0 :           k += r;
     606           0 :           CHECK_BIT_BUFFER(br_state, s, return FALSE);
     607           0 :           r = GET_BITS(s);
     608           0 :           s = HUFF_EXTEND(r, s);
     609             :           /* Output coefficient in natural (dezigzagged) order.
     610             :            * Note: the extra entries in jpeg_natural_order[] will save us
     611             :            * if k >= DCTSIZE2, which could happen if the data is corrupted.
     612             :            */
     613           0 :           (*block)[jpeg_natural_order[k]] = (JCOEF) s;
     614             :         } else {
     615           0 :           if (r != 15)
     616           0 :             break;
     617           0 :           k += 15;
     618             :         }
     619             :       }
     620             : 
     621             :     } else {
     622             : 
     623             :       /* Section F.2.2.2: decode the AC coefficients */
     624             :       /* In this path we just discard the values */
     625           0 :       for (k = 1; k < DCTSIZE2; k++) {
     626           0 :         HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
     627             : 
     628           0 :         r = s >> 4;
     629           0 :         s &= 15;
     630             : 
     631           0 :         if (s) {
     632           0 :           k += r;
     633           0 :           CHECK_BIT_BUFFER(br_state, s, return FALSE);
     634           0 :           DROP_BITS(s);
     635             :         } else {
     636           0 :           if (r != 15)
     637           0 :             break;
     638           0 :           k += 15;
     639             :         }
     640             :       }
     641             :     }
     642             :   }
     643             : 
     644             :   /* Completed MCU, so update state */
     645           0 :   BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
     646           0 :   ASSIGN_STATE(entropy->saved, state);
     647           0 :   return TRUE;
     648             : }
     649             : 
     650             : 
     651             : LOCAL(boolean)
     652           0 : decode_mcu_fast (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
     653             : {
     654           0 :   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
     655             :   BITREAD_STATE_VARS;
     656             :   JOCTET *buffer;
     657             :   int blkn;
     658             :   savable_state state;
     659             :   /* Outer loop handles each block in the MCU */
     660             : 
     661             :   /* Load up working state */
     662           0 :   BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
     663           0 :   buffer = (JOCTET *) br_state.next_input_byte;
     664           0 :   ASSIGN_STATE(state, entropy->saved);
     665             : 
     666           0 :   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
     667           0 :     JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
     668           0 :     d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
     669           0 :     d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
     670             :     register int s, k, r, l;
     671             : 
     672           0 :     HUFF_DECODE_FAST(s, l, dctbl, slow_decode_mcu);
     673           0 :     if (s) {
     674           0 :       FILL_BIT_BUFFER_FAST
     675           0 :       r = GET_BITS(s);
     676           0 :       s = HUFF_EXTEND(r, s);
     677             :     }
     678             : 
     679           0 :     if (entropy->dc_needed[blkn]) {
     680           0 :       int ci = cinfo->MCU_membership[blkn];
     681           0 :       s += state.last_dc_val[ci];
     682           0 :       state.last_dc_val[ci] = s;
     683           0 :       if (block)
     684           0 :         (*block)[0] = (JCOEF) s;
     685             :     }
     686             : 
     687           0 :     if (entropy->ac_needed[blkn] && block) {
     688             : 
     689           0 :       for (k = 1; k < DCTSIZE2; k++) {
     690           0 :         HUFF_DECODE_FAST(s, l, actbl, slow_decode_mcu);
     691           0 :         r = s >> 4;
     692           0 :         s &= 15;
     693             : 
     694           0 :         if (s) {
     695           0 :           k += r;
     696           0 :           FILL_BIT_BUFFER_FAST
     697           0 :           r = GET_BITS(s);
     698           0 :           s = HUFF_EXTEND(r, s);
     699           0 :           (*block)[jpeg_natural_order[k]] = (JCOEF) s;
     700             :         } else {
     701           0 :           if (r != 15) break;
     702           0 :           k += 15;
     703             :         }
     704             :       }
     705             : 
     706             :     } else {
     707             : 
     708           0 :       for (k = 1; k < DCTSIZE2; k++) {
     709           0 :         HUFF_DECODE_FAST(s, l, actbl, slow_decode_mcu);
     710           0 :         r = s >> 4;
     711           0 :         s &= 15;
     712             : 
     713           0 :         if (s) {
     714           0 :           k += r;
     715           0 :           FILL_BIT_BUFFER_FAST
     716           0 :           DROP_BITS(s);
     717             :         } else {
     718           0 :           if (r != 15) break;
     719           0 :           k += 15;
     720             :         }
     721             :       }
     722             :     }
     723             :   }
     724             : 
     725           0 :   if (cinfo->unread_marker != 0) {
     726             : slow_decode_mcu:
     727           0 :     cinfo->unread_marker = 0;
     728           0 :     return FALSE;
     729             :   }
     730             : 
     731           0 :   br_state.bytes_in_buffer -= (buffer - br_state.next_input_byte);
     732           0 :   br_state.next_input_byte = buffer;
     733           0 :   BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
     734           0 :   ASSIGN_STATE(entropy->saved, state);
     735           0 :   return TRUE;
     736             : }
     737             : 
     738             : 
     739             : /*
     740             :  * Decode and return one MCU's worth of Huffman-compressed coefficients.
     741             :  * The coefficients are reordered from zigzag order into natural array order,
     742             :  * but are not dequantized.
     743             :  *
     744             :  * The i'th block of the MCU is stored into the block pointed to by
     745             :  * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
     746             :  * (Wholesale zeroing is usually a little faster than retail...)
     747             :  *
     748             :  * Returns FALSE if data source requested suspension.  In that case no
     749             :  * changes have been made to permanent state.  (Exception: some output
     750             :  * coefficients may already have been assigned.  This is harmless for
     751             :  * this module, since we'll just re-assign them on the next call.)
     752             :  */
     753             : 
     754             : #define BUFSIZE (DCTSIZE2 * 8)
     755             : 
     756             : METHODDEF(boolean)
     757           0 : decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
     758             : {
     759           0 :   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
     760           0 :   int usefast = 1;
     761             : 
     762             :   /* Process restart marker if needed; may have to suspend */
     763           0 :   if (cinfo->restart_interval) {
     764           0 :     if (entropy->restarts_to_go == 0)
     765           0 :       if (! process_restart(cinfo))
     766           0 :         return FALSE;
     767           0 :     usefast = 0;
     768             :   }
     769             : 
     770           0 :   if (cinfo->src->bytes_in_buffer < BUFSIZE * (size_t)cinfo->blocks_in_MCU
     771           0 :     || cinfo->unread_marker != 0)
     772           0 :     usefast = 0;
     773             : 
     774             :   /* If we've run out of data, just leave the MCU set to zeroes.
     775             :    * This way, we return uniform gray for the remainder of the segment.
     776             :    */
     777           0 :   if (! entropy->pub.insufficient_data) {
     778             : 
     779           0 :     if (usefast) {
     780           0 :       if (!decode_mcu_fast(cinfo, MCU_data)) goto use_slow;
     781             :     }
     782             :     else {
     783             :       use_slow:
     784           0 :       if (!decode_mcu_slow(cinfo, MCU_data)) return FALSE;
     785             :     }
     786             : 
     787             :   }
     788             : 
     789             :   /* Account for restart interval (no-op if not using restarts) */
     790           0 :   entropy->restarts_to_go--;
     791             : 
     792           0 :   return TRUE;
     793             : }
     794             : 
     795             : 
     796             : /*
     797             :  * Module initialization routine for Huffman entropy decoding.
     798             :  */
     799             : 
     800             : GLOBAL(void)
     801           0 : jinit_huff_decoder (j_decompress_ptr cinfo)
     802             : {
     803             :   huff_entropy_ptr entropy;
     804             :   int i;
     805             : 
     806             :   /* Motion JPEG frames typically do not include the Huffman tables if they
     807             :      are the default tables.  Thus, if the tables are not set by the time
     808             :      the Huffman decoder is initialized (usually within the body of
     809             :      jpeg_start_decompress()), we set them to default values. */
     810           0 :   std_huff_tables((j_common_ptr) cinfo);
     811             : 
     812           0 :   entropy = (huff_entropy_ptr)
     813           0 :     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
     814             :                                 sizeof(huff_entropy_decoder));
     815           0 :   cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
     816           0 :   entropy->pub.start_pass = start_pass_huff_decoder;
     817           0 :   entropy->pub.decode_mcu = decode_mcu;
     818             : 
     819             :   /* Mark tables unallocated */
     820           0 :   for (i = 0; i < NUM_HUFF_TBLS; i++) {
     821           0 :     entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
     822             :   }
     823           0 : }

Generated by: LCOV version 1.13