LCOV - code coverage report
Current view: top level - media/libjpeg - jfdctflt.c (source / functions) Hit Total Coverage
Test: output.info Lines: 0 68 0.0 %
Date: 2017-07-14 16:53:18 Functions: 0 1 0.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*
       2             :  * jfdctflt.c
       3             :  *
       4             :  * Copyright (C) 1994-1996, Thomas G. Lane.
       5             :  * This file is part of the Independent JPEG Group's software.
       6             :  * For conditions of distribution and use, see the accompanying README.ijg
       7             :  * file.
       8             :  *
       9             :  * This file contains a floating-point implementation of the
      10             :  * forward DCT (Discrete Cosine Transform).
      11             :  *
      12             :  * This implementation should be more accurate than either of the integer
      13             :  * DCT implementations.  However, it may not give the same results on all
      14             :  * machines because of differences in roundoff behavior.  Speed will depend
      15             :  * on the hardware's floating point capacity.
      16             :  *
      17             :  * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
      18             :  * on each column.  Direct algorithms are also available, but they are
      19             :  * much more complex and seem not to be any faster when reduced to code.
      20             :  *
      21             :  * This implementation is based on Arai, Agui, and Nakajima's algorithm for
      22             :  * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in
      23             :  * Japanese, but the algorithm is described in the Pennebaker & Mitchell
      24             :  * JPEG textbook (see REFERENCES section in file README.ijg).  The following
      25             :  * code is based directly on figure 4-8 in P&M.
      26             :  * While an 8-point DCT cannot be done in less than 11 multiplies, it is
      27             :  * possible to arrange the computation so that many of the multiplies are
      28             :  * simple scalings of the final outputs.  These multiplies can then be
      29             :  * folded into the multiplications or divisions by the JPEG quantization
      30             :  * table entries.  The AA&N method leaves only 5 multiplies and 29 adds
      31             :  * to be done in the DCT itself.
      32             :  * The primary disadvantage of this method is that with a fixed-point
      33             :  * implementation, accuracy is lost due to imprecise representation of the
      34             :  * scaled quantization values.  However, that problem does not arise if
      35             :  * we use floating point arithmetic.
      36             :  */
      37             : 
      38             : #define JPEG_INTERNALS
      39             : #include "jinclude.h"
      40             : #include "jpeglib.h"
      41             : #include "jdct.h"               /* Private declarations for DCT subsystem */
      42             : 
      43             : #ifdef DCT_FLOAT_SUPPORTED
      44             : 
      45             : 
      46             : /*
      47             :  * This module is specialized to the case DCTSIZE = 8.
      48             :  */
      49             : 
      50             : #if DCTSIZE != 8
      51             :   Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
      52             : #endif
      53             : 
      54             : 
      55             : /*
      56             :  * Perform the forward DCT on one block of samples.
      57             :  */
      58             : 
      59             : GLOBAL(void)
      60           0 : jpeg_fdct_float (FAST_FLOAT *data)
      61             : {
      62             :   FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
      63             :   FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
      64             :   FAST_FLOAT z1, z2, z3, z4, z5, z11, z13;
      65             :   FAST_FLOAT *dataptr;
      66             :   int ctr;
      67             : 
      68             :   /* Pass 1: process rows. */
      69             : 
      70           0 :   dataptr = data;
      71           0 :   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
      72           0 :     tmp0 = dataptr[0] + dataptr[7];
      73           0 :     tmp7 = dataptr[0] - dataptr[7];
      74           0 :     tmp1 = dataptr[1] + dataptr[6];
      75           0 :     tmp6 = dataptr[1] - dataptr[6];
      76           0 :     tmp2 = dataptr[2] + dataptr[5];
      77           0 :     tmp5 = dataptr[2] - dataptr[5];
      78           0 :     tmp3 = dataptr[3] + dataptr[4];
      79           0 :     tmp4 = dataptr[3] - dataptr[4];
      80             : 
      81             :     /* Even part */
      82             : 
      83           0 :     tmp10 = tmp0 + tmp3;        /* phase 2 */
      84           0 :     tmp13 = tmp0 - tmp3;
      85           0 :     tmp11 = tmp1 + tmp2;
      86           0 :     tmp12 = tmp1 - tmp2;
      87             : 
      88           0 :     dataptr[0] = tmp10 + tmp11; /* phase 3 */
      89           0 :     dataptr[4] = tmp10 - tmp11;
      90             : 
      91           0 :     z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
      92           0 :     dataptr[2] = tmp13 + z1;    /* phase 5 */
      93           0 :     dataptr[6] = tmp13 - z1;
      94             : 
      95             :     /* Odd part */
      96             : 
      97           0 :     tmp10 = tmp4 + tmp5;        /* phase 2 */
      98           0 :     tmp11 = tmp5 + tmp6;
      99           0 :     tmp12 = tmp6 + tmp7;
     100             : 
     101             :     /* The rotator is modified from fig 4-8 to avoid extra negations. */
     102           0 :     z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
     103           0 :     z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
     104           0 :     z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
     105           0 :     z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */
     106             : 
     107           0 :     z11 = tmp7 + z3;            /* phase 5 */
     108           0 :     z13 = tmp7 - z3;
     109             : 
     110           0 :     dataptr[5] = z13 + z2;      /* phase 6 */
     111           0 :     dataptr[3] = z13 - z2;
     112           0 :     dataptr[1] = z11 + z4;
     113           0 :     dataptr[7] = z11 - z4;
     114             : 
     115           0 :     dataptr += DCTSIZE;         /* advance pointer to next row */
     116             :   }
     117             : 
     118             :   /* Pass 2: process columns. */
     119             : 
     120           0 :   dataptr = data;
     121           0 :   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
     122           0 :     tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
     123           0 :     tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
     124           0 :     tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
     125           0 :     tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
     126           0 :     tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
     127           0 :     tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
     128           0 :     tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
     129           0 :     tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
     130             : 
     131             :     /* Even part */
     132             : 
     133           0 :     tmp10 = tmp0 + tmp3;        /* phase 2 */
     134           0 :     tmp13 = tmp0 - tmp3;
     135           0 :     tmp11 = tmp1 + tmp2;
     136           0 :     tmp12 = tmp1 - tmp2;
     137             : 
     138           0 :     dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
     139           0 :     dataptr[DCTSIZE*4] = tmp10 - tmp11;
     140             : 
     141           0 :     z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
     142           0 :     dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
     143           0 :     dataptr[DCTSIZE*6] = tmp13 - z1;
     144             : 
     145             :     /* Odd part */
     146             : 
     147           0 :     tmp10 = tmp4 + tmp5;        /* phase 2 */
     148           0 :     tmp11 = tmp5 + tmp6;
     149           0 :     tmp12 = tmp6 + tmp7;
     150             : 
     151             :     /* The rotator is modified from fig 4-8 to avoid extra negations. */
     152           0 :     z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
     153           0 :     z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
     154           0 :     z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
     155           0 :     z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */
     156             : 
     157           0 :     z11 = tmp7 + z3;            /* phase 5 */
     158           0 :     z13 = tmp7 - z3;
     159             : 
     160           0 :     dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
     161           0 :     dataptr[DCTSIZE*3] = z13 - z2;
     162           0 :     dataptr[DCTSIZE*1] = z11 + z4;
     163           0 :     dataptr[DCTSIZE*7] = z11 - z4;
     164             : 
     165           0 :     dataptr++;                  /* advance pointer to next column */
     166             :   }
     167           0 : }
     168             : 
     169             : #endif /* DCT_FLOAT_SUPPORTED */

Generated by: LCOV version 1.13