LCOV - code coverage report
Current view: top level - media/libjpeg - jfdctfst.c (source / functions) Hit Total Coverage
Test: output.info Lines: 0 68 0.0 %
Date: 2017-07-14 16:53:18 Functions: 0 1 0.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*
       2             :  * jfdctfst.c
       3             :  *
       4             :  * This file was part of the Independent JPEG Group's software:
       5             :  * Copyright (C) 1994-1996, Thomas G. Lane.
       6             :  * libjpeg-turbo Modifications:
       7             :  * Copyright (C) 2015, D. R. Commander.
       8             :  * For conditions of distribution and use, see the accompanying README.ijg
       9             :  * file.
      10             :  *
      11             :  * This file contains a fast, not so accurate integer implementation of the
      12             :  * forward DCT (Discrete Cosine Transform).
      13             :  *
      14             :  * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
      15             :  * on each column.  Direct algorithms are also available, but they are
      16             :  * much more complex and seem not to be any faster when reduced to code.
      17             :  *
      18             :  * This implementation is based on Arai, Agui, and Nakajima's algorithm for
      19             :  * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in
      20             :  * Japanese, but the algorithm is described in the Pennebaker & Mitchell
      21             :  * JPEG textbook (see REFERENCES section in file README.ijg).  The following
      22             :  * code is based directly on figure 4-8 in P&M.
      23             :  * While an 8-point DCT cannot be done in less than 11 multiplies, it is
      24             :  * possible to arrange the computation so that many of the multiplies are
      25             :  * simple scalings of the final outputs.  These multiplies can then be
      26             :  * folded into the multiplications or divisions by the JPEG quantization
      27             :  * table entries.  The AA&N method leaves only 5 multiplies and 29 adds
      28             :  * to be done in the DCT itself.
      29             :  * The primary disadvantage of this method is that with fixed-point math,
      30             :  * accuracy is lost due to imprecise representation of the scaled
      31             :  * quantization values.  The smaller the quantization table entry, the less
      32             :  * precise the scaled value, so this implementation does worse with high-
      33             :  * quality-setting files than with low-quality ones.
      34             :  */
      35             : 
      36             : #define JPEG_INTERNALS
      37             : #include "jinclude.h"
      38             : #include "jpeglib.h"
      39             : #include "jdct.h"               /* Private declarations for DCT subsystem */
      40             : 
      41             : #ifdef DCT_IFAST_SUPPORTED
      42             : 
      43             : 
      44             : /*
      45             :  * This module is specialized to the case DCTSIZE = 8.
      46             :  */
      47             : 
      48             : #if DCTSIZE != 8
      49             :   Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
      50             : #endif
      51             : 
      52             : 
      53             : /* Scaling decisions are generally the same as in the LL&M algorithm;
      54             :  * see jfdctint.c for more details.  However, we choose to descale
      55             :  * (right shift) multiplication products as soon as they are formed,
      56             :  * rather than carrying additional fractional bits into subsequent additions.
      57             :  * This compromises accuracy slightly, but it lets us save a few shifts.
      58             :  * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
      59             :  * everywhere except in the multiplications proper; this saves a good deal
      60             :  * of work on 16-bit-int machines.
      61             :  *
      62             :  * Again to save a few shifts, the intermediate results between pass 1 and
      63             :  * pass 2 are not upscaled, but are represented only to integral precision.
      64             :  *
      65             :  * A final compromise is to represent the multiplicative constants to only
      66             :  * 8 fractional bits, rather than 13.  This saves some shifting work on some
      67             :  * machines, and may also reduce the cost of multiplication (since there
      68             :  * are fewer one-bits in the constants).
      69             :  */
      70             : 
      71             : #define CONST_BITS  8
      72             : 
      73             : 
      74             : /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
      75             :  * causing a lot of useless floating-point operations at run time.
      76             :  * To get around this we use the following pre-calculated constants.
      77             :  * If you change CONST_BITS you may want to add appropriate values.
      78             :  * (With a reasonable C compiler, you can just rely on the FIX() macro...)
      79             :  */
      80             : 
      81             : #if CONST_BITS == 8
      82             : #define FIX_0_382683433  ((JLONG)   98)         /* FIX(0.382683433) */
      83             : #define FIX_0_541196100  ((JLONG)  139)         /* FIX(0.541196100) */
      84             : #define FIX_0_707106781  ((JLONG)  181)         /* FIX(0.707106781) */
      85             : #define FIX_1_306562965  ((JLONG)  334)         /* FIX(1.306562965) */
      86             : #else
      87             : #define FIX_0_382683433  FIX(0.382683433)
      88             : #define FIX_0_541196100  FIX(0.541196100)
      89             : #define FIX_0_707106781  FIX(0.707106781)
      90             : #define FIX_1_306562965  FIX(1.306562965)
      91             : #endif
      92             : 
      93             : 
      94             : /* We can gain a little more speed, with a further compromise in accuracy,
      95             :  * by omitting the addition in a descaling shift.  This yields an incorrectly
      96             :  * rounded result half the time...
      97             :  */
      98             : 
      99             : #ifndef USE_ACCURATE_ROUNDING
     100             : #undef DESCALE
     101             : #define DESCALE(x,n)  RIGHT_SHIFT(x, n)
     102             : #endif
     103             : 
     104             : 
     105             : /* Multiply a DCTELEM variable by an JLONG constant, and immediately
     106             :  * descale to yield a DCTELEM result.
     107             :  */
     108             : 
     109             : #define MULTIPLY(var,const)  ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
     110             : 
     111             : 
     112             : /*
     113             :  * Perform the forward DCT on one block of samples.
     114             :  */
     115             : 
     116             : GLOBAL(void)
     117           0 : jpeg_fdct_ifast (DCTELEM *data)
     118             : {
     119             :   DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
     120             :   DCTELEM tmp10, tmp11, tmp12, tmp13;
     121             :   DCTELEM z1, z2, z3, z4, z5, z11, z13;
     122             :   DCTELEM *dataptr;
     123             :   int ctr;
     124             :   SHIFT_TEMPS
     125             : 
     126             :   /* Pass 1: process rows. */
     127             : 
     128           0 :   dataptr = data;
     129           0 :   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
     130           0 :     tmp0 = dataptr[0] + dataptr[7];
     131           0 :     tmp7 = dataptr[0] - dataptr[7];
     132           0 :     tmp1 = dataptr[1] + dataptr[6];
     133           0 :     tmp6 = dataptr[1] - dataptr[6];
     134           0 :     tmp2 = dataptr[2] + dataptr[5];
     135           0 :     tmp5 = dataptr[2] - dataptr[5];
     136           0 :     tmp3 = dataptr[3] + dataptr[4];
     137           0 :     tmp4 = dataptr[3] - dataptr[4];
     138             : 
     139             :     /* Even part */
     140             : 
     141           0 :     tmp10 = tmp0 + tmp3;        /* phase 2 */
     142           0 :     tmp13 = tmp0 - tmp3;
     143           0 :     tmp11 = tmp1 + tmp2;
     144           0 :     tmp12 = tmp1 - tmp2;
     145             : 
     146           0 :     dataptr[0] = tmp10 + tmp11; /* phase 3 */
     147           0 :     dataptr[4] = tmp10 - tmp11;
     148             : 
     149           0 :     z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
     150           0 :     dataptr[2] = tmp13 + z1;    /* phase 5 */
     151           0 :     dataptr[6] = tmp13 - z1;
     152             : 
     153             :     /* Odd part */
     154             : 
     155           0 :     tmp10 = tmp4 + tmp5;        /* phase 2 */
     156           0 :     tmp11 = tmp5 + tmp6;
     157           0 :     tmp12 = tmp6 + tmp7;
     158             : 
     159             :     /* The rotator is modified from fig 4-8 to avoid extra negations. */
     160           0 :     z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
     161           0 :     z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
     162           0 :     z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
     163           0 :     z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
     164             : 
     165           0 :     z11 = tmp7 + z3;            /* phase 5 */
     166           0 :     z13 = tmp7 - z3;
     167             : 
     168           0 :     dataptr[5] = z13 + z2;      /* phase 6 */
     169           0 :     dataptr[3] = z13 - z2;
     170           0 :     dataptr[1] = z11 + z4;
     171           0 :     dataptr[7] = z11 - z4;
     172             : 
     173           0 :     dataptr += DCTSIZE;         /* advance pointer to next row */
     174             :   }
     175             : 
     176             :   /* Pass 2: process columns. */
     177             : 
     178           0 :   dataptr = data;
     179           0 :   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
     180           0 :     tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
     181           0 :     tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
     182           0 :     tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
     183           0 :     tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
     184           0 :     tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
     185           0 :     tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
     186           0 :     tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
     187           0 :     tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
     188             : 
     189             :     /* Even part */
     190             : 
     191           0 :     tmp10 = tmp0 + tmp3;        /* phase 2 */
     192           0 :     tmp13 = tmp0 - tmp3;
     193           0 :     tmp11 = tmp1 + tmp2;
     194           0 :     tmp12 = tmp1 - tmp2;
     195             : 
     196           0 :     dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
     197           0 :     dataptr[DCTSIZE*4] = tmp10 - tmp11;
     198             : 
     199           0 :     z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
     200           0 :     dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
     201           0 :     dataptr[DCTSIZE*6] = tmp13 - z1;
     202             : 
     203             :     /* Odd part */
     204             : 
     205           0 :     tmp10 = tmp4 + tmp5;        /* phase 2 */
     206           0 :     tmp11 = tmp5 + tmp6;
     207           0 :     tmp12 = tmp6 + tmp7;
     208             : 
     209             :     /* The rotator is modified from fig 4-8 to avoid extra negations. */
     210           0 :     z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
     211           0 :     z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
     212           0 :     z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
     213           0 :     z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
     214             : 
     215           0 :     z11 = tmp7 + z3;            /* phase 5 */
     216           0 :     z13 = tmp7 - z3;
     217             : 
     218           0 :     dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
     219           0 :     dataptr[DCTSIZE*3] = z13 - z2;
     220           0 :     dataptr[DCTSIZE*1] = z11 + z4;
     221           0 :     dataptr[DCTSIZE*7] = z11 - z4;
     222             : 
     223           0 :     dataptr++;                  /* advance pointer to next column */
     224             :   }
     225           0 : }
     226             : 
     227             : #endif /* DCT_IFAST_SUPPORTED */

Generated by: LCOV version 1.13