LCOV - code coverage report
Current view: top level - media/libjpeg - jfdctint.c (source / functions) Hit Total Coverage
Test: output.info Lines: 0 80 0.0 %
Date: 2017-07-14 16:53:18 Functions: 0 1 0.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*
       2             :  * jfdctint.c
       3             :  *
       4             :  * This file was part of the Independent JPEG Group's software.
       5             :  * Copyright (C) 1991-1996, Thomas G. Lane.
       6             :  * libjpeg-turbo Modifications:
       7             :  * Copyright (C) 2015, D. R. Commander.
       8             :  * For conditions of distribution and use, see the accompanying README.ijg
       9             :  * file.
      10             :  *
      11             :  * This file contains a slow-but-accurate integer implementation of the
      12             :  * forward DCT (Discrete Cosine Transform).
      13             :  *
      14             :  * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
      15             :  * on each column.  Direct algorithms are also available, but they are
      16             :  * much more complex and seem not to be any faster when reduced to code.
      17             :  *
      18             :  * This implementation is based on an algorithm described in
      19             :  *   C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
      20             :  *   Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
      21             :  *   Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
      22             :  * The primary algorithm described there uses 11 multiplies and 29 adds.
      23             :  * We use their alternate method with 12 multiplies and 32 adds.
      24             :  * The advantage of this method is that no data path contains more than one
      25             :  * multiplication; this allows a very simple and accurate implementation in
      26             :  * scaled fixed-point arithmetic, with a minimal number of shifts.
      27             :  */
      28             : 
      29             : #define JPEG_INTERNALS
      30             : #include "jinclude.h"
      31             : #include "jpeglib.h"
      32             : #include "jdct.h"               /* Private declarations for DCT subsystem */
      33             : 
      34             : #ifdef DCT_ISLOW_SUPPORTED
      35             : 
      36             : 
      37             : /*
      38             :  * This module is specialized to the case DCTSIZE = 8.
      39             :  */
      40             : 
      41             : #if DCTSIZE != 8
      42             :   Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
      43             : #endif
      44             : 
      45             : 
      46             : /*
      47             :  * The poop on this scaling stuff is as follows:
      48             :  *
      49             :  * Each 1-D DCT step produces outputs which are a factor of sqrt(N)
      50             :  * larger than the true DCT outputs.  The final outputs are therefore
      51             :  * a factor of N larger than desired; since N=8 this can be cured by
      52             :  * a simple right shift at the end of the algorithm.  The advantage of
      53             :  * this arrangement is that we save two multiplications per 1-D DCT,
      54             :  * because the y0 and y4 outputs need not be divided by sqrt(N).
      55             :  * In the IJG code, this factor of 8 is removed by the quantization step
      56             :  * (in jcdctmgr.c), NOT in this module.
      57             :  *
      58             :  * We have to do addition and subtraction of the integer inputs, which
      59             :  * is no problem, and multiplication by fractional constants, which is
      60             :  * a problem to do in integer arithmetic.  We multiply all the constants
      61             :  * by CONST_SCALE and convert them to integer constants (thus retaining
      62             :  * CONST_BITS bits of precision in the constants).  After doing a
      63             :  * multiplication we have to divide the product by CONST_SCALE, with proper
      64             :  * rounding, to produce the correct output.  This division can be done
      65             :  * cheaply as a right shift of CONST_BITS bits.  We postpone shifting
      66             :  * as long as possible so that partial sums can be added together with
      67             :  * full fractional precision.
      68             :  *
      69             :  * The outputs of the first pass are scaled up by PASS1_BITS bits so that
      70             :  * they are represented to better-than-integral precision.  These outputs
      71             :  * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
      72             :  * with the recommended scaling.  (For 12-bit sample data, the intermediate
      73             :  * array is JLONG anyway.)
      74             :  *
      75             :  * To avoid overflow of the 32-bit intermediate results in pass 2, we must
      76             :  * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26.  Error analysis
      77             :  * shows that the values given below are the most effective.
      78             :  */
      79             : 
      80             : #if BITS_IN_JSAMPLE == 8
      81             : #define CONST_BITS  13
      82             : #define PASS1_BITS  2
      83             : #else
      84             : #define CONST_BITS  13
      85             : #define PASS1_BITS  1           /* lose a little precision to avoid overflow */
      86             : #endif
      87             : 
      88             : /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
      89             :  * causing a lot of useless floating-point operations at run time.
      90             :  * To get around this we use the following pre-calculated constants.
      91             :  * If you change CONST_BITS you may want to add appropriate values.
      92             :  * (With a reasonable C compiler, you can just rely on the FIX() macro...)
      93             :  */
      94             : 
      95             : #if CONST_BITS == 13
      96             : #define FIX_0_298631336  ((JLONG)  2446)        /* FIX(0.298631336) */
      97             : #define FIX_0_390180644  ((JLONG)  3196)        /* FIX(0.390180644) */
      98             : #define FIX_0_541196100  ((JLONG)  4433)        /* FIX(0.541196100) */
      99             : #define FIX_0_765366865  ((JLONG)  6270)        /* FIX(0.765366865) */
     100             : #define FIX_0_899976223  ((JLONG)  7373)        /* FIX(0.899976223) */
     101             : #define FIX_1_175875602  ((JLONG)  9633)        /* FIX(1.175875602) */
     102             : #define FIX_1_501321110  ((JLONG)  12299)       /* FIX(1.501321110) */
     103             : #define FIX_1_847759065  ((JLONG)  15137)       /* FIX(1.847759065) */
     104             : #define FIX_1_961570560  ((JLONG)  16069)       /* FIX(1.961570560) */
     105             : #define FIX_2_053119869  ((JLONG)  16819)       /* FIX(2.053119869) */
     106             : #define FIX_2_562915447  ((JLONG)  20995)       /* FIX(2.562915447) */
     107             : #define FIX_3_072711026  ((JLONG)  25172)       /* FIX(3.072711026) */
     108             : #else
     109             : #define FIX_0_298631336  FIX(0.298631336)
     110             : #define FIX_0_390180644  FIX(0.390180644)
     111             : #define FIX_0_541196100  FIX(0.541196100)
     112             : #define FIX_0_765366865  FIX(0.765366865)
     113             : #define FIX_0_899976223  FIX(0.899976223)
     114             : #define FIX_1_175875602  FIX(1.175875602)
     115             : #define FIX_1_501321110  FIX(1.501321110)
     116             : #define FIX_1_847759065  FIX(1.847759065)
     117             : #define FIX_1_961570560  FIX(1.961570560)
     118             : #define FIX_2_053119869  FIX(2.053119869)
     119             : #define FIX_2_562915447  FIX(2.562915447)
     120             : #define FIX_3_072711026  FIX(3.072711026)
     121             : #endif
     122             : 
     123             : 
     124             : /* Multiply an JLONG variable by an JLONG constant to yield an JLONG result.
     125             :  * For 8-bit samples with the recommended scaling, all the variable
     126             :  * and constant values involved are no more than 16 bits wide, so a
     127             :  * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
     128             :  * For 12-bit samples, a full 32-bit multiplication will be needed.
     129             :  */
     130             : 
     131             : #if BITS_IN_JSAMPLE == 8
     132             : #define MULTIPLY(var,const)  MULTIPLY16C16(var,const)
     133             : #else
     134             : #define MULTIPLY(var,const)  ((var) * (const))
     135             : #endif
     136             : 
     137             : 
     138             : /*
     139             :  * Perform the forward DCT on one block of samples.
     140             :  */
     141             : 
     142             : GLOBAL(void)
     143           0 : jpeg_fdct_islow (DCTELEM *data)
     144             : {
     145             :   JLONG tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
     146             :   JLONG tmp10, tmp11, tmp12, tmp13;
     147             :   JLONG z1, z2, z3, z4, z5;
     148             :   DCTELEM *dataptr;
     149             :   int ctr;
     150             :   SHIFT_TEMPS
     151             : 
     152             :   /* Pass 1: process rows. */
     153             :   /* Note results are scaled up by sqrt(8) compared to a true DCT; */
     154             :   /* furthermore, we scale the results by 2**PASS1_BITS. */
     155             : 
     156           0 :   dataptr = data;
     157           0 :   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
     158           0 :     tmp0 = dataptr[0] + dataptr[7];
     159           0 :     tmp7 = dataptr[0] - dataptr[7];
     160           0 :     tmp1 = dataptr[1] + dataptr[6];
     161           0 :     tmp6 = dataptr[1] - dataptr[6];
     162           0 :     tmp2 = dataptr[2] + dataptr[5];
     163           0 :     tmp5 = dataptr[2] - dataptr[5];
     164           0 :     tmp3 = dataptr[3] + dataptr[4];
     165           0 :     tmp4 = dataptr[3] - dataptr[4];
     166             : 
     167             :     /* Even part per LL&M figure 1 --- note that published figure is faulty;
     168             :      * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
     169             :      */
     170             : 
     171           0 :     tmp10 = tmp0 + tmp3;
     172           0 :     tmp13 = tmp0 - tmp3;
     173           0 :     tmp11 = tmp1 + tmp2;
     174           0 :     tmp12 = tmp1 - tmp2;
     175             : 
     176           0 :     dataptr[0] = (DCTELEM) LEFT_SHIFT(tmp10 + tmp11, PASS1_BITS);
     177           0 :     dataptr[4] = (DCTELEM) LEFT_SHIFT(tmp10 - tmp11, PASS1_BITS);
     178             : 
     179           0 :     z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
     180           0 :     dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
     181             :                                    CONST_BITS-PASS1_BITS);
     182           0 :     dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
     183             :                                    CONST_BITS-PASS1_BITS);
     184             : 
     185             :     /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
     186             :      * cK represents cos(K*pi/16).
     187             :      * i0..i3 in the paper are tmp4..tmp7 here.
     188             :      */
     189             : 
     190           0 :     z1 = tmp4 + tmp7;
     191           0 :     z2 = tmp5 + tmp6;
     192           0 :     z3 = tmp4 + tmp6;
     193           0 :     z4 = tmp5 + tmp7;
     194           0 :     z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
     195             : 
     196           0 :     tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
     197           0 :     tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
     198           0 :     tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
     199           0 :     tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
     200           0 :     z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
     201           0 :     z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
     202           0 :     z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
     203           0 :     z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
     204             : 
     205           0 :     z3 += z5;
     206           0 :     z4 += z5;
     207             : 
     208           0 :     dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS);
     209           0 :     dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS);
     210           0 :     dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS);
     211           0 :     dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS);
     212             : 
     213           0 :     dataptr += DCTSIZE;         /* advance pointer to next row */
     214             :   }
     215             : 
     216             :   /* Pass 2: process columns.
     217             :    * We remove the PASS1_BITS scaling, but leave the results scaled up
     218             :    * by an overall factor of 8.
     219             :    */
     220             : 
     221           0 :   dataptr = data;
     222           0 :   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
     223           0 :     tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
     224           0 :     tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
     225           0 :     tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
     226           0 :     tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
     227           0 :     tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
     228           0 :     tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
     229           0 :     tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
     230           0 :     tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
     231             : 
     232             :     /* Even part per LL&M figure 1 --- note that published figure is faulty;
     233             :      * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
     234             :      */
     235             : 
     236           0 :     tmp10 = tmp0 + tmp3;
     237           0 :     tmp13 = tmp0 - tmp3;
     238           0 :     tmp11 = tmp1 + tmp2;
     239           0 :     tmp12 = tmp1 - tmp2;
     240             : 
     241           0 :     dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS);
     242           0 :     dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS);
     243             : 
     244           0 :     z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
     245           0 :     dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
     246             :                                            CONST_BITS+PASS1_BITS);
     247           0 :     dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
     248             :                                            CONST_BITS+PASS1_BITS);
     249             : 
     250             :     /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
     251             :      * cK represents cos(K*pi/16).
     252             :      * i0..i3 in the paper are tmp4..tmp7 here.
     253             :      */
     254             : 
     255           0 :     z1 = tmp4 + tmp7;
     256           0 :     z2 = tmp5 + tmp6;
     257           0 :     z3 = tmp4 + tmp6;
     258           0 :     z4 = tmp5 + tmp7;
     259           0 :     z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
     260             : 
     261           0 :     tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
     262           0 :     tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
     263           0 :     tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
     264           0 :     tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
     265           0 :     z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
     266           0 :     z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
     267           0 :     z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
     268           0 :     z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
     269             : 
     270           0 :     z3 += z5;
     271           0 :     z4 += z5;
     272             : 
     273           0 :     dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp4 + z1 + z3,
     274             :                                            CONST_BITS+PASS1_BITS);
     275           0 :     dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp5 + z2 + z4,
     276             :                                            CONST_BITS+PASS1_BITS);
     277           0 :     dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp6 + z2 + z3,
     278             :                                            CONST_BITS+PASS1_BITS);
     279           0 :     dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp7 + z1 + z4,
     280             :                                            CONST_BITS+PASS1_BITS);
     281             : 
     282           0 :     dataptr++;                  /* advance pointer to next column */
     283             :   }
     284           0 : }
     285             : 
     286             : #endif /* DCT_ISLOW_SUPPORTED */

Generated by: LCOV version 1.13