LCOV - code coverage report
Current view: top level - media/libjpeg - jidctflt.c (source / functions) Hit Total Coverage
Test: output.info Lines: 0 96 0.0 %
Date: 2017-07-14 16:53:18 Functions: 0 1 0.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*
       2             :  * jidctflt.c
       3             :  *
       4             :  * This file was part of the Independent JPEG Group's software:
       5             :  * Copyright (C) 1994-1998, Thomas G. Lane.
       6             :  * Modified 2010 by Guido Vollbeding.
       7             :  * libjpeg-turbo Modifications:
       8             :  * Copyright (C) 2014, D. R. Commander.
       9             :  * For conditions of distribution and use, see the accompanying README.ijg
      10             :  * file.
      11             :  *
      12             :  * This file contains a floating-point implementation of the
      13             :  * inverse DCT (Discrete Cosine Transform).  In the IJG code, this routine
      14             :  * must also perform dequantization of the input coefficients.
      15             :  *
      16             :  * This implementation should be more accurate than either of the integer
      17             :  * IDCT implementations.  However, it may not give the same results on all
      18             :  * machines because of differences in roundoff behavior.  Speed will depend
      19             :  * on the hardware's floating point capacity.
      20             :  *
      21             :  * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
      22             :  * on each row (or vice versa, but it's more convenient to emit a row at
      23             :  * a time).  Direct algorithms are also available, but they are much more
      24             :  * complex and seem not to be any faster when reduced to code.
      25             :  *
      26             :  * This implementation is based on Arai, Agui, and Nakajima's algorithm for
      27             :  * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in
      28             :  * Japanese, but the algorithm is described in the Pennebaker & Mitchell
      29             :  * JPEG textbook (see REFERENCES section in file README.ijg).  The following
      30             :  * code is based directly on figure 4-8 in P&M.
      31             :  * While an 8-point DCT cannot be done in less than 11 multiplies, it is
      32             :  * possible to arrange the computation so that many of the multiplies are
      33             :  * simple scalings of the final outputs.  These multiplies can then be
      34             :  * folded into the multiplications or divisions by the JPEG quantization
      35             :  * table entries.  The AA&N method leaves only 5 multiplies and 29 adds
      36             :  * to be done in the DCT itself.
      37             :  * The primary disadvantage of this method is that with a fixed-point
      38             :  * implementation, accuracy is lost due to imprecise representation of the
      39             :  * scaled quantization values.  However, that problem does not arise if
      40             :  * we use floating point arithmetic.
      41             :  */
      42             : 
      43             : #define JPEG_INTERNALS
      44             : #include "jinclude.h"
      45             : #include "jpeglib.h"
      46             : #include "jdct.h"               /* Private declarations for DCT subsystem */
      47             : 
      48             : #ifdef DCT_FLOAT_SUPPORTED
      49             : 
      50             : 
      51             : /*
      52             :  * This module is specialized to the case DCTSIZE = 8.
      53             :  */
      54             : 
      55             : #if DCTSIZE != 8
      56             :   Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
      57             : #endif
      58             : 
      59             : 
      60             : /* Dequantize a coefficient by multiplying it by the multiplier-table
      61             :  * entry; produce a float result.
      62             :  */
      63             : 
      64             : #define DEQUANTIZE(coef,quantval)  (((FAST_FLOAT) (coef)) * (quantval))
      65             : 
      66             : 
      67             : /*
      68             :  * Perform dequantization and inverse DCT on one block of coefficients.
      69             :  */
      70             : 
      71             : GLOBAL(void)
      72           0 : jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info *compptr,
      73             :                  JCOEFPTR coef_block,
      74             :                  JSAMPARRAY output_buf, JDIMENSION output_col)
      75             : {
      76             :   FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
      77             :   FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
      78             :   FAST_FLOAT z5, z10, z11, z12, z13;
      79             :   JCOEFPTR inptr;
      80             :   FLOAT_MULT_TYPE *quantptr;
      81             :   FAST_FLOAT *wsptr;
      82             :   JSAMPROW outptr;
      83           0 :   JSAMPLE *range_limit = cinfo->sample_range_limit;
      84             :   int ctr;
      85             :   FAST_FLOAT workspace[DCTSIZE2]; /* buffers data between passes */
      86             :   #define _0_125 ((FLOAT_MULT_TYPE)0.125)
      87             : 
      88             :   /* Pass 1: process columns from input, store into work array. */
      89             : 
      90           0 :   inptr = coef_block;
      91           0 :   quantptr = (FLOAT_MULT_TYPE *) compptr->dct_table;
      92           0 :   wsptr = workspace;
      93           0 :   for (ctr = DCTSIZE; ctr > 0; ctr--) {
      94             :     /* Due to quantization, we will usually find that many of the input
      95             :      * coefficients are zero, especially the AC terms.  We can exploit this
      96             :      * by short-circuiting the IDCT calculation for any column in which all
      97             :      * the AC terms are zero.  In that case each output is equal to the
      98             :      * DC coefficient (with scale factor as needed).
      99             :      * With typical images and quantization tables, half or more of the
     100             :      * column DCT calculations can be simplified this way.
     101             :      */
     102             : 
     103           0 :     if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
     104           0 :         inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
     105           0 :         inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
     106           0 :         inptr[DCTSIZE*7] == 0) {
     107             :       /* AC terms all zero */
     108           0 :       FAST_FLOAT dcval = DEQUANTIZE(inptr[DCTSIZE*0],
     109             :                                     quantptr[DCTSIZE*0] * _0_125);
     110             : 
     111           0 :       wsptr[DCTSIZE*0] = dcval;
     112           0 :       wsptr[DCTSIZE*1] = dcval;
     113           0 :       wsptr[DCTSIZE*2] = dcval;
     114           0 :       wsptr[DCTSIZE*3] = dcval;
     115           0 :       wsptr[DCTSIZE*4] = dcval;
     116           0 :       wsptr[DCTSIZE*5] = dcval;
     117           0 :       wsptr[DCTSIZE*6] = dcval;
     118           0 :       wsptr[DCTSIZE*7] = dcval;
     119             : 
     120           0 :       inptr++;                  /* advance pointers to next column */
     121           0 :       quantptr++;
     122           0 :       wsptr++;
     123           0 :       continue;
     124             :     }
     125             : 
     126             :     /* Even part */
     127             : 
     128           0 :     tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0] * _0_125);
     129           0 :     tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2] * _0_125);
     130           0 :     tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4] * _0_125);
     131           0 :     tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6] * _0_125);
     132             : 
     133           0 :     tmp10 = tmp0 + tmp2;        /* phase 3 */
     134           0 :     tmp11 = tmp0 - tmp2;
     135             : 
     136           0 :     tmp13 = tmp1 + tmp3;        /* phases 5-3 */
     137           0 :     tmp12 = (tmp1 - tmp3) * ((FAST_FLOAT) 1.414213562) - tmp13; /* 2*c4 */
     138             : 
     139           0 :     tmp0 = tmp10 + tmp13;       /* phase 2 */
     140           0 :     tmp3 = tmp10 - tmp13;
     141           0 :     tmp1 = tmp11 + tmp12;
     142           0 :     tmp2 = tmp11 - tmp12;
     143             : 
     144             :     /* Odd part */
     145             : 
     146           0 :     tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1] * _0_125);
     147           0 :     tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3] * _0_125);
     148           0 :     tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5] * _0_125);
     149           0 :     tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7] * _0_125);
     150             : 
     151           0 :     z13 = tmp6 + tmp5;          /* phase 6 */
     152           0 :     z10 = tmp6 - tmp5;
     153           0 :     z11 = tmp4 + tmp7;
     154           0 :     z12 = tmp4 - tmp7;
     155             : 
     156           0 :     tmp7 = z11 + z13;           /* phase 5 */
     157           0 :     tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); /* 2*c4 */
     158             : 
     159           0 :     z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
     160           0 :     tmp10 = z5 - z12 * ((FAST_FLOAT) 1.082392200); /* 2*(c2-c6) */
     161           0 :     tmp12 = z5 - z10 * ((FAST_FLOAT) 2.613125930); /* 2*(c2+c6) */
     162             : 
     163           0 :     tmp6 = tmp12 - tmp7;        /* phase 2 */
     164           0 :     tmp5 = tmp11 - tmp6;
     165           0 :     tmp4 = tmp10 - tmp5;
     166             : 
     167           0 :     wsptr[DCTSIZE*0] = tmp0 + tmp7;
     168           0 :     wsptr[DCTSIZE*7] = tmp0 - tmp7;
     169           0 :     wsptr[DCTSIZE*1] = tmp1 + tmp6;
     170           0 :     wsptr[DCTSIZE*6] = tmp1 - tmp6;
     171           0 :     wsptr[DCTSIZE*2] = tmp2 + tmp5;
     172           0 :     wsptr[DCTSIZE*5] = tmp2 - tmp5;
     173           0 :     wsptr[DCTSIZE*3] = tmp3 + tmp4;
     174           0 :     wsptr[DCTSIZE*4] = tmp3 - tmp4;
     175             : 
     176           0 :     inptr++;                    /* advance pointers to next column */
     177           0 :     quantptr++;
     178           0 :     wsptr++;
     179             :   }
     180             : 
     181             :   /* Pass 2: process rows from work array, store into output array. */
     182             : 
     183           0 :   wsptr = workspace;
     184           0 :   for (ctr = 0; ctr < DCTSIZE; ctr++) {
     185           0 :     outptr = output_buf[ctr] + output_col;
     186             :     /* Rows of zeroes can be exploited in the same way as we did with columns.
     187             :      * However, the column calculation has created many nonzero AC terms, so
     188             :      * the simplification applies less often (typically 5% to 10% of the time).
     189             :      * And testing floats for zero is relatively expensive, so we don't bother.
     190             :      */
     191             : 
     192             :     /* Even part */
     193             : 
     194             :     /* Apply signed->unsigned and prepare float->int conversion */
     195           0 :     z5 = wsptr[0] + ((FAST_FLOAT) CENTERJSAMPLE + (FAST_FLOAT) 0.5);
     196           0 :     tmp10 = z5 + wsptr[4];
     197           0 :     tmp11 = z5 - wsptr[4];
     198             : 
     199           0 :     tmp13 = wsptr[2] + wsptr[6];
     200           0 :     tmp12 = (wsptr[2] - wsptr[6]) * ((FAST_FLOAT) 1.414213562) - tmp13;
     201             : 
     202           0 :     tmp0 = tmp10 + tmp13;
     203           0 :     tmp3 = tmp10 - tmp13;
     204           0 :     tmp1 = tmp11 + tmp12;
     205           0 :     tmp2 = tmp11 - tmp12;
     206             : 
     207             :     /* Odd part */
     208             : 
     209           0 :     z13 = wsptr[5] + wsptr[3];
     210           0 :     z10 = wsptr[5] - wsptr[3];
     211           0 :     z11 = wsptr[1] + wsptr[7];
     212           0 :     z12 = wsptr[1] - wsptr[7];
     213             : 
     214           0 :     tmp7 = z11 + z13;
     215           0 :     tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562);
     216             : 
     217           0 :     z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
     218           0 :     tmp10 = z5 - z12 * ((FAST_FLOAT) 1.082392200); /* 2*(c2-c6) */
     219           0 :     tmp12 = z5 - z10 * ((FAST_FLOAT) 2.613125930); /* 2*(c2+c6) */
     220             : 
     221           0 :     tmp6 = tmp12 - tmp7;
     222           0 :     tmp5 = tmp11 - tmp6;
     223           0 :     tmp4 = tmp10 - tmp5;
     224             : 
     225             :     /* Final output stage: float->int conversion and range-limit */
     226             : 
     227           0 :     outptr[0] = range_limit[((int) (tmp0 + tmp7)) & RANGE_MASK];
     228           0 :     outptr[7] = range_limit[((int) (tmp0 - tmp7)) & RANGE_MASK];
     229           0 :     outptr[1] = range_limit[((int) (tmp1 + tmp6)) & RANGE_MASK];
     230           0 :     outptr[6] = range_limit[((int) (tmp1 - tmp6)) & RANGE_MASK];
     231           0 :     outptr[2] = range_limit[((int) (tmp2 + tmp5)) & RANGE_MASK];
     232           0 :     outptr[5] = range_limit[((int) (tmp2 - tmp5)) & RANGE_MASK];
     233           0 :     outptr[3] = range_limit[((int) (tmp3 + tmp4)) & RANGE_MASK];
     234           0 :     outptr[4] = range_limit[((int) (tmp3 - tmp4)) & RANGE_MASK];
     235             : 
     236           0 :     wsptr += DCTSIZE;           /* advance pointer to next row */
     237             :   }
     238           0 : }
     239             : 
     240             : #endif /* DCT_FLOAT_SUPPORTED */

Generated by: LCOV version 1.13