LCOV - code coverage report
Current view: top level - media/libjpeg - jidctred.c (source / functions) Hit Total Coverage
Test: output.info Lines: 0 134 0.0 %
Date: 2017-07-14 16:53:18 Functions: 0 3 0.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*
       2             :  * jidctred.c
       3             :  *
       4             :  * This file was part of the Independent JPEG Group's software.
       5             :  * Copyright (C) 1994-1998, Thomas G. Lane.
       6             :  * libjpeg-turbo Modifications:
       7             :  * Copyright (C) 2015, D. R. Commander.
       8             :  * For conditions of distribution and use, see the accompanying README.ijg
       9             :  * file.
      10             :  *
      11             :  * This file contains inverse-DCT routines that produce reduced-size output:
      12             :  * either 4x4, 2x2, or 1x1 pixels from an 8x8 DCT block.
      13             :  *
      14             :  * The implementation is based on the Loeffler, Ligtenberg and Moschytz (LL&M)
      15             :  * algorithm used in jidctint.c.  We simply replace each 8-to-8 1-D IDCT step
      16             :  * with an 8-to-4 step that produces the four averages of two adjacent outputs
      17             :  * (or an 8-to-2 step producing two averages of four outputs, for 2x2 output).
      18             :  * These steps were derived by computing the corresponding values at the end
      19             :  * of the normal LL&M code, then simplifying as much as possible.
      20             :  *
      21             :  * 1x1 is trivial: just take the DC coefficient divided by 8.
      22             :  *
      23             :  * See jidctint.c for additional comments.
      24             :  */
      25             : 
      26             : #define JPEG_INTERNALS
      27             : #include "jinclude.h"
      28             : #include "jpeglib.h"
      29             : #include "jdct.h"               /* Private declarations for DCT subsystem */
      30             : 
      31             : #ifdef IDCT_SCALING_SUPPORTED
      32             : 
      33             : 
      34             : /*
      35             :  * This module is specialized to the case DCTSIZE = 8.
      36             :  */
      37             : 
      38             : #if DCTSIZE != 8
      39             :   Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
      40             : #endif
      41             : 
      42             : 
      43             : /* Scaling is the same as in jidctint.c. */
      44             : 
      45             : #if BITS_IN_JSAMPLE == 8
      46             : #define CONST_BITS  13
      47             : #define PASS1_BITS  2
      48             : #else
      49             : #define CONST_BITS  13
      50             : #define PASS1_BITS  1           /* lose a little precision to avoid overflow */
      51             : #endif
      52             : 
      53             : /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
      54             :  * causing a lot of useless floating-point operations at run time.
      55             :  * To get around this we use the following pre-calculated constants.
      56             :  * If you change CONST_BITS you may want to add appropriate values.
      57             :  * (With a reasonable C compiler, you can just rely on the FIX() macro...)
      58             :  */
      59             : 
      60             : #if CONST_BITS == 13
      61             : #define FIX_0_211164243  ((JLONG)  1730)        /* FIX(0.211164243) */
      62             : #define FIX_0_509795579  ((JLONG)  4176)        /* FIX(0.509795579) */
      63             : #define FIX_0_601344887  ((JLONG)  4926)        /* FIX(0.601344887) */
      64             : #define FIX_0_720959822  ((JLONG)  5906)        /* FIX(0.720959822) */
      65             : #define FIX_0_765366865  ((JLONG)  6270)        /* FIX(0.765366865) */
      66             : #define FIX_0_850430095  ((JLONG)  6967)        /* FIX(0.850430095) */
      67             : #define FIX_0_899976223  ((JLONG)  7373)        /* FIX(0.899976223) */
      68             : #define FIX_1_061594337  ((JLONG)  8697)        /* FIX(1.061594337) */
      69             : #define FIX_1_272758580  ((JLONG)  10426)       /* FIX(1.272758580) */
      70             : #define FIX_1_451774981  ((JLONG)  11893)       /* FIX(1.451774981) */
      71             : #define FIX_1_847759065  ((JLONG)  15137)       /* FIX(1.847759065) */
      72             : #define FIX_2_172734803  ((JLONG)  17799)       /* FIX(2.172734803) */
      73             : #define FIX_2_562915447  ((JLONG)  20995)       /* FIX(2.562915447) */
      74             : #define FIX_3_624509785  ((JLONG)  29692)       /* FIX(3.624509785) */
      75             : #else
      76             : #define FIX_0_211164243  FIX(0.211164243)
      77             : #define FIX_0_509795579  FIX(0.509795579)
      78             : #define FIX_0_601344887  FIX(0.601344887)
      79             : #define FIX_0_720959822  FIX(0.720959822)
      80             : #define FIX_0_765366865  FIX(0.765366865)
      81             : #define FIX_0_850430095  FIX(0.850430095)
      82             : #define FIX_0_899976223  FIX(0.899976223)
      83             : #define FIX_1_061594337  FIX(1.061594337)
      84             : #define FIX_1_272758580  FIX(1.272758580)
      85             : #define FIX_1_451774981  FIX(1.451774981)
      86             : #define FIX_1_847759065  FIX(1.847759065)
      87             : #define FIX_2_172734803  FIX(2.172734803)
      88             : #define FIX_2_562915447  FIX(2.562915447)
      89             : #define FIX_3_624509785  FIX(3.624509785)
      90             : #endif
      91             : 
      92             : 
      93             : /* Multiply a JLONG variable by a JLONG constant to yield a JLONG result.
      94             :  * For 8-bit samples with the recommended scaling, all the variable
      95             :  * and constant values involved are no more than 16 bits wide, so a
      96             :  * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
      97             :  * For 12-bit samples, a full 32-bit multiplication will be needed.
      98             :  */
      99             : 
     100             : #if BITS_IN_JSAMPLE == 8
     101             : #define MULTIPLY(var,const)  MULTIPLY16C16(var,const)
     102             : #else
     103             : #define MULTIPLY(var,const)  ((var) * (const))
     104             : #endif
     105             : 
     106             : 
     107             : /* Dequantize a coefficient by multiplying it by the multiplier-table
     108             :  * entry; produce an int result.  In this module, both inputs and result
     109             :  * are 16 bits or less, so either int or short multiply will work.
     110             :  */
     111             : 
     112             : #define DEQUANTIZE(coef,quantval)  (((ISLOW_MULT_TYPE) (coef)) * (quantval))
     113             : 
     114             : 
     115             : /*
     116             :  * Perform dequantization and inverse DCT on one block of coefficients,
     117             :  * producing a reduced-size 4x4 output block.
     118             :  */
     119             : 
     120             : GLOBAL(void)
     121           0 : jpeg_idct_4x4 (j_decompress_ptr cinfo, jpeg_component_info *compptr,
     122             :                JCOEFPTR coef_block,
     123             :                JSAMPARRAY output_buf, JDIMENSION output_col)
     124             : {
     125             :   JLONG tmp0, tmp2, tmp10, tmp12;
     126             :   JLONG z1, z2, z3, z4;
     127             :   JCOEFPTR inptr;
     128             :   ISLOW_MULT_TYPE *quantptr;
     129             :   int *wsptr;
     130             :   JSAMPROW outptr;
     131           0 :   JSAMPLE *range_limit = IDCT_range_limit(cinfo);
     132             :   int ctr;
     133             :   int workspace[DCTSIZE*4];     /* buffers data between passes */
     134             :   SHIFT_TEMPS
     135             : 
     136             :   /* Pass 1: process columns from input, store into work array. */
     137             : 
     138           0 :   inptr = coef_block;
     139           0 :   quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
     140           0 :   wsptr = workspace;
     141           0 :   for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) {
     142             :     /* Don't bother to process column 4, because second pass won't use it */
     143           0 :     if (ctr == DCTSIZE-4)
     144           0 :       continue;
     145           0 :     if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
     146           0 :         inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*5] == 0 &&
     147           0 :         inptr[DCTSIZE*6] == 0 && inptr[DCTSIZE*7] == 0) {
     148             :       /* AC terms all zero; we need not examine term 4 for 4x4 output */
     149           0 :       int dcval = LEFT_SHIFT(DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]),
     150             :                              PASS1_BITS);
     151             : 
     152           0 :       wsptr[DCTSIZE*0] = dcval;
     153           0 :       wsptr[DCTSIZE*1] = dcval;
     154           0 :       wsptr[DCTSIZE*2] = dcval;
     155           0 :       wsptr[DCTSIZE*3] = dcval;
     156             : 
     157           0 :       continue;
     158             :     }
     159             : 
     160             :     /* Even part */
     161             : 
     162           0 :     tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
     163           0 :     tmp0 = LEFT_SHIFT(tmp0, CONST_BITS+1);
     164             : 
     165           0 :     z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
     166           0 :     z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
     167             : 
     168           0 :     tmp2 = MULTIPLY(z2, FIX_1_847759065) + MULTIPLY(z3, - FIX_0_765366865);
     169             : 
     170           0 :     tmp10 = tmp0 + tmp2;
     171           0 :     tmp12 = tmp0 - tmp2;
     172             : 
     173             :     /* Odd part */
     174             : 
     175           0 :     z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
     176           0 :     z2 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
     177           0 :     z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
     178           0 :     z4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
     179             : 
     180           0 :     tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */
     181           0 :          + MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */
     182           0 :          + MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */
     183           0 :          + MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */
     184             : 
     185           0 :     tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */
     186           0 :          + MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */
     187           0 :          + MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */
     188           0 :          + MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */
     189             : 
     190             :     /* Final output stage */
     191             : 
     192           0 :     wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp2, CONST_BITS-PASS1_BITS+1);
     193           0 :     wsptr[DCTSIZE*3] = (int) DESCALE(tmp10 - tmp2, CONST_BITS-PASS1_BITS+1);
     194           0 :     wsptr[DCTSIZE*1] = (int) DESCALE(tmp12 + tmp0, CONST_BITS-PASS1_BITS+1);
     195           0 :     wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 - tmp0, CONST_BITS-PASS1_BITS+1);
     196             :   }
     197             : 
     198             :   /* Pass 2: process 4 rows from work array, store into output array. */
     199             : 
     200           0 :   wsptr = workspace;
     201           0 :   for (ctr = 0; ctr < 4; ctr++) {
     202           0 :     outptr = output_buf[ctr] + output_col;
     203             :     /* It's not clear whether a zero row test is worthwhile here ... */
     204             : 
     205             : #ifndef NO_ZERO_ROW_TEST
     206           0 :     if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 &&
     207           0 :         wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
     208             :       /* AC terms all zero */
     209           0 :       JSAMPLE dcval = range_limit[(int) DESCALE((JLONG) wsptr[0], PASS1_BITS+3)
     210           0 :                                   & RANGE_MASK];
     211             : 
     212           0 :       outptr[0] = dcval;
     213           0 :       outptr[1] = dcval;
     214           0 :       outptr[2] = dcval;
     215           0 :       outptr[3] = dcval;
     216             : 
     217           0 :       wsptr += DCTSIZE;         /* advance pointer to next row */
     218           0 :       continue;
     219             :     }
     220             : #endif
     221             : 
     222             :     /* Even part */
     223             : 
     224           0 :     tmp0 = LEFT_SHIFT((JLONG) wsptr[0], CONST_BITS+1);
     225             : 
     226           0 :     tmp2 = MULTIPLY((JLONG) wsptr[2], FIX_1_847759065)
     227           0 :          + MULTIPLY((JLONG) wsptr[6], - FIX_0_765366865);
     228             : 
     229           0 :     tmp10 = tmp0 + tmp2;
     230           0 :     tmp12 = tmp0 - tmp2;
     231             : 
     232             :     /* Odd part */
     233             : 
     234           0 :     z1 = (JLONG) wsptr[7];
     235           0 :     z2 = (JLONG) wsptr[5];
     236           0 :     z3 = (JLONG) wsptr[3];
     237           0 :     z4 = (JLONG) wsptr[1];
     238             : 
     239           0 :     tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */
     240           0 :          + MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */
     241           0 :          + MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */
     242           0 :          + MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */
     243             : 
     244           0 :     tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */
     245           0 :          + MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */
     246           0 :          + MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */
     247           0 :          + MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */
     248             : 
     249             :     /* Final output stage */
     250             : 
     251           0 :     outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp2,
     252             :                                           CONST_BITS+PASS1_BITS+3+1)
     253           0 :                             & RANGE_MASK];
     254           0 :     outptr[3] = range_limit[(int) DESCALE(tmp10 - tmp2,
     255             :                                           CONST_BITS+PASS1_BITS+3+1)
     256           0 :                             & RANGE_MASK];
     257           0 :     outptr[1] = range_limit[(int) DESCALE(tmp12 + tmp0,
     258             :                                           CONST_BITS+PASS1_BITS+3+1)
     259           0 :                             & RANGE_MASK];
     260           0 :     outptr[2] = range_limit[(int) DESCALE(tmp12 - tmp0,
     261             :                                           CONST_BITS+PASS1_BITS+3+1)
     262           0 :                             & RANGE_MASK];
     263             : 
     264           0 :     wsptr += DCTSIZE;           /* advance pointer to next row */
     265             :   }
     266           0 : }
     267             : 
     268             : 
     269             : /*
     270             :  * Perform dequantization and inverse DCT on one block of coefficients,
     271             :  * producing a reduced-size 2x2 output block.
     272             :  */
     273             : 
     274             : GLOBAL(void)
     275           0 : jpeg_idct_2x2 (j_decompress_ptr cinfo, jpeg_component_info *compptr,
     276             :                JCOEFPTR coef_block,
     277             :                JSAMPARRAY output_buf, JDIMENSION output_col)
     278             : {
     279             :   JLONG tmp0, tmp10, z1;
     280             :   JCOEFPTR inptr;
     281             :   ISLOW_MULT_TYPE *quantptr;
     282             :   int *wsptr;
     283             :   JSAMPROW outptr;
     284           0 :   JSAMPLE *range_limit = IDCT_range_limit(cinfo);
     285             :   int ctr;
     286             :   int workspace[DCTSIZE*2];     /* buffers data between passes */
     287             :   SHIFT_TEMPS
     288             : 
     289             :   /* Pass 1: process columns from input, store into work array. */
     290             : 
     291           0 :   inptr = coef_block;
     292           0 :   quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
     293           0 :   wsptr = workspace;
     294           0 :   for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) {
     295             :     /* Don't bother to process columns 2,4,6 */
     296           0 :     if (ctr == DCTSIZE-2 || ctr == DCTSIZE-4 || ctr == DCTSIZE-6)
     297           0 :       continue;
     298           0 :     if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*3] == 0 &&
     299           0 :         inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*7] == 0) {
     300             :       /* AC terms all zero; we need not examine terms 2,4,6 for 2x2 output */
     301           0 :       int dcval = LEFT_SHIFT(DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]),
     302             :                              PASS1_BITS);
     303             : 
     304           0 :       wsptr[DCTSIZE*0] = dcval;
     305           0 :       wsptr[DCTSIZE*1] = dcval;
     306             : 
     307           0 :       continue;
     308             :     }
     309             : 
     310             :     /* Even part */
     311             : 
     312           0 :     z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
     313           0 :     tmp10 = LEFT_SHIFT(z1, CONST_BITS+2);
     314             : 
     315             :     /* Odd part */
     316             : 
     317           0 :     z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
     318           0 :     tmp0 = MULTIPLY(z1, - FIX_0_720959822); /* sqrt(2) * (c7-c5+c3-c1) */
     319           0 :     z1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
     320           0 :     tmp0 += MULTIPLY(z1, FIX_0_850430095); /* sqrt(2) * (-c1+c3+c5+c7) */
     321           0 :     z1 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
     322           0 :     tmp0 += MULTIPLY(z1, - FIX_1_272758580); /* sqrt(2) * (-c1+c3-c5-c7) */
     323           0 :     z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
     324           0 :     tmp0 += MULTIPLY(z1, FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */
     325             : 
     326             :     /* Final output stage */
     327             : 
     328           0 :     wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp0, CONST_BITS-PASS1_BITS+2);
     329           0 :     wsptr[DCTSIZE*1] = (int) DESCALE(tmp10 - tmp0, CONST_BITS-PASS1_BITS+2);
     330             :   }
     331             : 
     332             :   /* Pass 2: process 2 rows from work array, store into output array. */
     333             : 
     334           0 :   wsptr = workspace;
     335           0 :   for (ctr = 0; ctr < 2; ctr++) {
     336           0 :     outptr = output_buf[ctr] + output_col;
     337             :     /* It's not clear whether a zero row test is worthwhile here ... */
     338             : 
     339             : #ifndef NO_ZERO_ROW_TEST
     340           0 :     if (wsptr[1] == 0 && wsptr[3] == 0 && wsptr[5] == 0 && wsptr[7] == 0) {
     341             :       /* AC terms all zero */
     342           0 :       JSAMPLE dcval = range_limit[(int) DESCALE((JLONG) wsptr[0], PASS1_BITS+3)
     343           0 :                                   & RANGE_MASK];
     344             : 
     345           0 :       outptr[0] = dcval;
     346           0 :       outptr[1] = dcval;
     347             : 
     348           0 :       wsptr += DCTSIZE;         /* advance pointer to next row */
     349           0 :       continue;
     350             :     }
     351             : #endif
     352             : 
     353             :     /* Even part */
     354             : 
     355           0 :     tmp10 = LEFT_SHIFT((JLONG) wsptr[0], CONST_BITS+2);
     356             : 
     357             :     /* Odd part */
     358             : 
     359           0 :     tmp0 = MULTIPLY((JLONG) wsptr[7], - FIX_0_720959822) /* sqrt(2) * (c7-c5+c3-c1) */
     360           0 :          + MULTIPLY((JLONG) wsptr[5], FIX_0_850430095) /* sqrt(2) * (-c1+c3+c5+c7) */
     361           0 :          + MULTIPLY((JLONG) wsptr[3], - FIX_1_272758580) /* sqrt(2) * (-c1+c3-c5-c7) */
     362           0 :          + MULTIPLY((JLONG) wsptr[1], FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */
     363             : 
     364             :     /* Final output stage */
     365             : 
     366           0 :     outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp0,
     367             :                                           CONST_BITS+PASS1_BITS+3+2)
     368           0 :                             & RANGE_MASK];
     369           0 :     outptr[1] = range_limit[(int) DESCALE(tmp10 - tmp0,
     370             :                                           CONST_BITS+PASS1_BITS+3+2)
     371           0 :                             & RANGE_MASK];
     372             : 
     373           0 :     wsptr += DCTSIZE;           /* advance pointer to next row */
     374             :   }
     375           0 : }
     376             : 
     377             : 
     378             : /*
     379             :  * Perform dequantization and inverse DCT on one block of coefficients,
     380             :  * producing a reduced-size 1x1 output block.
     381             :  */
     382             : 
     383             : GLOBAL(void)
     384           0 : jpeg_idct_1x1 (j_decompress_ptr cinfo, jpeg_component_info *compptr,
     385             :                JCOEFPTR coef_block,
     386             :                JSAMPARRAY output_buf, JDIMENSION output_col)
     387             : {
     388             :   int dcval;
     389             :   ISLOW_MULT_TYPE *quantptr;
     390           0 :   JSAMPLE *range_limit = IDCT_range_limit(cinfo);
     391             :   SHIFT_TEMPS
     392             : 
     393             :   /* We hardly need an inverse DCT routine for this: just take the
     394             :    * average pixel value, which is one-eighth of the DC coefficient.
     395             :    */
     396           0 :   quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
     397           0 :   dcval = DEQUANTIZE(coef_block[0], quantptr[0]);
     398           0 :   dcval = (int) DESCALE((JLONG) dcval, 3);
     399             : 
     400           0 :   output_buf[0][output_col] = range_limit[dcval & RANGE_MASK];
     401           0 : }
     402             : 
     403             : #endif /* IDCT_SCALING_SUPPORTED */

Generated by: LCOV version 1.13