LCOV - code coverage report
Current view: top level - media/libjpeg - jmemmgr.c (source / functions) Hit Total Coverage
Test: output.info Lines: 0 394 0.0 %
Date: 2017-07-14 16:53:18 Functions: 0 16 0.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*
       2             :  * jmemmgr.c
       3             :  *
       4             :  * This file was part of the Independent JPEG Group's software:
       5             :  * Copyright (C) 1991-1997, Thomas G. Lane.
       6             :  * libjpeg-turbo Modifications:
       7             :  * Copyright (C) 2016, D. R. Commander.
       8             :  * For conditions of distribution and use, see the accompanying README.ijg
       9             :  * file.
      10             :  *
      11             :  * This file contains the JPEG system-independent memory management
      12             :  * routines.  This code is usable across a wide variety of machines; most
      13             :  * of the system dependencies have been isolated in a separate file.
      14             :  * The major functions provided here are:
      15             :  *   * pool-based allocation and freeing of memory;
      16             :  *   * policy decisions about how to divide available memory among the
      17             :  *     virtual arrays;
      18             :  *   * control logic for swapping virtual arrays between main memory and
      19             :  *     backing storage.
      20             :  * The separate system-dependent file provides the actual backing-storage
      21             :  * access code, and it contains the policy decision about how much total
      22             :  * main memory to use.
      23             :  * This file is system-dependent in the sense that some of its functions
      24             :  * are unnecessary in some systems.  For example, if there is enough virtual
      25             :  * memory so that backing storage will never be used, much of the virtual
      26             :  * array control logic could be removed.  (Of course, if you have that much
      27             :  * memory then you shouldn't care about a little bit of unused code...)
      28             :  */
      29             : 
      30             : #define JPEG_INTERNALS
      31             : #define AM_MEMORY_MANAGER       /* we define jvirt_Xarray_control structs */
      32             : #include "jinclude.h"
      33             : #include "jpeglib.h"
      34             : #include "jmemsys.h"            /* import the system-dependent declarations */
      35             : #include <stdint.h>
      36             : #include <limits.h>             /* some NDKs define SIZE_MAX in limits.h */
      37             : 
      38             : #ifndef NO_GETENV
      39             : #ifndef HAVE_STDLIB_H           /* <stdlib.h> should declare getenv() */
      40             : extern char *getenv (const char *name);
      41             : #endif
      42             : #endif
      43             : 
      44             : 
      45             : LOCAL(size_t)
      46           0 : round_up_pow2 (size_t a, size_t b)
      47             : /* a rounded up to the next multiple of b, i.e. ceil(a/b)*b */
      48             : /* Assumes a >= 0, b > 0, and b is a power of 2 */
      49             : {
      50           0 :   return ((a + b - 1) & (~(b - 1)));
      51             : }
      52             : 
      53             : 
      54             : /*
      55             :  * Some important notes:
      56             :  *   The allocation routines provided here must never return NULL.
      57             :  *   They should exit to error_exit if unsuccessful.
      58             :  *
      59             :  *   It's not a good idea to try to merge the sarray and barray routines,
      60             :  *   even though they are textually almost the same, because samples are
      61             :  *   usually stored as bytes while coefficients are shorts or ints.  Thus,
      62             :  *   in machines where byte pointers have a different representation from
      63             :  *   word pointers, the resulting machine code could not be the same.
      64             :  */
      65             : 
      66             : 
      67             : /*
      68             :  * Many machines require storage alignment: longs must start on 4-byte
      69             :  * boundaries, doubles on 8-byte boundaries, etc.  On such machines, malloc()
      70             :  * always returns pointers that are multiples of the worst-case alignment
      71             :  * requirement, and we had better do so too.
      72             :  * There isn't any really portable way to determine the worst-case alignment
      73             :  * requirement.  This module assumes that the alignment requirement is
      74             :  * multiples of ALIGN_SIZE.
      75             :  * By default, we define ALIGN_SIZE as sizeof(double).  This is necessary on
      76             :  * some workstations (where doubles really do need 8-byte alignment) and will
      77             :  * work fine on nearly everything.  If your machine has lesser alignment needs,
      78             :  * you can save a few bytes by making ALIGN_SIZE smaller.
      79             :  * The only place I know of where this will NOT work is certain Macintosh
      80             :  * 680x0 compilers that define double as a 10-byte IEEE extended float.
      81             :  * Doing 10-byte alignment is counterproductive because longwords won't be
      82             :  * aligned well.  Put "#define ALIGN_SIZE 4" in jconfig.h if you have
      83             :  * such a compiler.
      84             :  */
      85             : 
      86             : #ifndef ALIGN_SIZE              /* so can override from jconfig.h */
      87             : #ifndef WITH_SIMD
      88             : #define ALIGN_SIZE  sizeof(double)
      89             : #else
      90             : #define ALIGN_SIZE  16 /* Most SIMD implementations require this */
      91             : #endif
      92             : #endif
      93             : 
      94             : /*
      95             :  * We allocate objects from "pools", where each pool is gotten with a single
      96             :  * request to jpeg_get_small() or jpeg_get_large().  There is no per-object
      97             :  * overhead within a pool, except for alignment padding.  Each pool has a
      98             :  * header with a link to the next pool of the same class.
      99             :  * Small and large pool headers are identical.
     100             :  */
     101             : 
     102             : typedef struct small_pool_struct *small_pool_ptr;
     103             : 
     104             : typedef struct small_pool_struct {
     105             :   small_pool_ptr next;  /* next in list of pools */
     106             :   size_t bytes_used;            /* how many bytes already used within pool */
     107             :   size_t bytes_left;            /* bytes still available in this pool */
     108             : } small_pool_hdr;
     109             : 
     110             : typedef struct large_pool_struct *large_pool_ptr;
     111             : 
     112             : typedef struct large_pool_struct {
     113             :   large_pool_ptr next;  /* next in list of pools */
     114             :   size_t bytes_used;            /* how many bytes already used within pool */
     115             :   size_t bytes_left;            /* bytes still available in this pool */
     116             : } large_pool_hdr;
     117             : 
     118             : /*
     119             :  * Here is the full definition of a memory manager object.
     120             :  */
     121             : 
     122             : typedef struct {
     123             :   struct jpeg_memory_mgr pub;   /* public fields */
     124             : 
     125             :   /* Each pool identifier (lifetime class) names a linked list of pools. */
     126             :   small_pool_ptr small_list[JPOOL_NUMPOOLS];
     127             :   large_pool_ptr large_list[JPOOL_NUMPOOLS];
     128             : 
     129             :   /* Since we only have one lifetime class of virtual arrays, only one
     130             :    * linked list is necessary (for each datatype).  Note that the virtual
     131             :    * array control blocks being linked together are actually stored somewhere
     132             :    * in the small-pool list.
     133             :    */
     134             :   jvirt_sarray_ptr virt_sarray_list;
     135             :   jvirt_barray_ptr virt_barray_list;
     136             : 
     137             :   /* This counts total space obtained from jpeg_get_small/large */
     138             :   size_t total_space_allocated;
     139             : 
     140             :   /* alloc_sarray and alloc_barray set this value for use by virtual
     141             :    * array routines.
     142             :    */
     143             :   JDIMENSION last_rowsperchunk; /* from most recent alloc_sarray/barray */
     144             : } my_memory_mgr;
     145             : 
     146             : typedef my_memory_mgr *my_mem_ptr;
     147             : 
     148             : 
     149             : /*
     150             :  * The control blocks for virtual arrays.
     151             :  * Note that these blocks are allocated in the "small" pool area.
     152             :  * System-dependent info for the associated backing store (if any) is hidden
     153             :  * inside the backing_store_info struct.
     154             :  */
     155             : 
     156             : struct jvirt_sarray_control {
     157             :   JSAMPARRAY mem_buffer;        /* => the in-memory buffer */
     158             :   JDIMENSION rows_in_array;     /* total virtual array height */
     159             :   JDIMENSION samplesperrow;     /* width of array (and of memory buffer) */
     160             :   JDIMENSION maxaccess;         /* max rows accessed by access_virt_sarray */
     161             :   JDIMENSION rows_in_mem;       /* height of memory buffer */
     162             :   JDIMENSION rowsperchunk;      /* allocation chunk size in mem_buffer */
     163             :   JDIMENSION cur_start_row;     /* first logical row # in the buffer */
     164             :   JDIMENSION first_undef_row;   /* row # of first uninitialized row */
     165             :   boolean pre_zero;             /* pre-zero mode requested? */
     166             :   boolean dirty;                /* do current buffer contents need written? */
     167             :   boolean b_s_open;             /* is backing-store data valid? */
     168             :   jvirt_sarray_ptr next;        /* link to next virtual sarray control block */
     169             :   backing_store_info b_s_info;  /* System-dependent control info */
     170             : };
     171             : 
     172             : struct jvirt_barray_control {
     173             :   JBLOCKARRAY mem_buffer;       /* => the in-memory buffer */
     174             :   JDIMENSION rows_in_array;     /* total virtual array height */
     175             :   JDIMENSION blocksperrow;      /* width of array (and of memory buffer) */
     176             :   JDIMENSION maxaccess;         /* max rows accessed by access_virt_barray */
     177             :   JDIMENSION rows_in_mem;       /* height of memory buffer */
     178             :   JDIMENSION rowsperchunk;      /* allocation chunk size in mem_buffer */
     179             :   JDIMENSION cur_start_row;     /* first logical row # in the buffer */
     180             :   JDIMENSION first_undef_row;   /* row # of first uninitialized row */
     181             :   boolean pre_zero;             /* pre-zero mode requested? */
     182             :   boolean dirty;                /* do current buffer contents need written? */
     183             :   boolean b_s_open;             /* is backing-store data valid? */
     184             :   jvirt_barray_ptr next;        /* link to next virtual barray control block */
     185             :   backing_store_info b_s_info;  /* System-dependent control info */
     186             : };
     187             : 
     188             : 
     189             : #ifdef MEM_STATS                /* optional extra stuff for statistics */
     190             : 
     191             : LOCAL(void)
     192             : print_mem_stats (j_common_ptr cinfo, int pool_id)
     193             : {
     194             :   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
     195             :   small_pool_ptr shdr_ptr;
     196             :   large_pool_ptr lhdr_ptr;
     197             : 
     198             :   /* Since this is only a debugging stub, we can cheat a little by using
     199             :    * fprintf directly rather than going through the trace message code.
     200             :    * This is helpful because message parm array can't handle longs.
     201             :    */
     202             :   fprintf(stderr, "Freeing pool %d, total space = %ld\n",
     203             :           pool_id, mem->total_space_allocated);
     204             : 
     205             :   for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL;
     206             :        lhdr_ptr = lhdr_ptr->next) {
     207             :     fprintf(stderr, "  Large chunk used %ld\n",
     208             :             (long) lhdr_ptr->bytes_used);
     209             :   }
     210             : 
     211             :   for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL;
     212             :        shdr_ptr = shdr_ptr->next) {
     213             :     fprintf(stderr, "  Small chunk used %ld free %ld\n",
     214             :             (long) shdr_ptr->bytes_used,
     215             :             (long) shdr_ptr->bytes_left);
     216             :   }
     217             : }
     218             : 
     219             : #endif /* MEM_STATS */
     220             : 
     221             : 
     222             : LOCAL(void)
     223           0 : out_of_memory (j_common_ptr cinfo, int which)
     224             : /* Report an out-of-memory error and stop execution */
     225             : /* If we compiled MEM_STATS support, report alloc requests before dying */
     226             : {
     227             : #ifdef MEM_STATS
     228             :   cinfo->err->trace_level = 2;  /* force self_destruct to report stats */
     229             : #endif
     230           0 :   ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which);
     231           0 : }
     232             : 
     233             : 
     234             : /*
     235             :  * Allocation of "small" objects.
     236             :  *
     237             :  * For these, we use pooled storage.  When a new pool must be created,
     238             :  * we try to get enough space for the current request plus a "slop" factor,
     239             :  * where the slop will be the amount of leftover space in the new pool.
     240             :  * The speed vs. space tradeoff is largely determined by the slop values.
     241             :  * A different slop value is provided for each pool class (lifetime),
     242             :  * and we also distinguish the first pool of a class from later ones.
     243             :  * NOTE: the values given work fairly well on both 16- and 32-bit-int
     244             :  * machines, but may be too small if longs are 64 bits or more.
     245             :  *
     246             :  * Since we do not know what alignment malloc() gives us, we have to
     247             :  * allocate ALIGN_SIZE-1 extra space per pool to have room for alignment
     248             :  * adjustment.
     249             :  */
     250             : 
     251             : static const size_t first_pool_slop[JPOOL_NUMPOOLS] =
     252             : {
     253             :         1600,                   /* first PERMANENT pool */
     254             :         16000                   /* first IMAGE pool */
     255             : };
     256             : 
     257             : static const size_t extra_pool_slop[JPOOL_NUMPOOLS] =
     258             : {
     259             :         0,                      /* additional PERMANENT pools */
     260             :         5000                    /* additional IMAGE pools */
     261             : };
     262             : 
     263             : #define MIN_SLOP  50            /* greater than 0 to avoid futile looping */
     264             : 
     265             : 
     266             : METHODDEF(void *)
     267           0 : alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
     268             : /* Allocate a "small" object */
     269             : {
     270           0 :   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
     271             :   small_pool_ptr hdr_ptr, prev_hdr_ptr;
     272             :   char *data_ptr;
     273             :   size_t min_request, slop;
     274             : 
     275             :   /*
     276             :    * Round up the requested size to a multiple of ALIGN_SIZE in order
     277             :    * to assure alignment for the next object allocated in the same pool
     278             :    * and so that algorithms can straddle outside the proper area up
     279             :    * to the next alignment.
     280             :    */
     281           0 :   if (sizeofobject > MAX_ALLOC_CHUNK) {
     282             :     /* This prevents overflow/wrap-around in round_up_pow2() if sizeofobject
     283             :        is close to SIZE_MAX. */
     284           0 :     out_of_memory(cinfo, 7);
     285             :   }
     286           0 :   sizeofobject = round_up_pow2(sizeofobject, ALIGN_SIZE);
     287             : 
     288             :   /* Check for unsatisfiable request (do now to ensure no overflow below) */
     289           0 :   if ((sizeof(small_pool_hdr) + sizeofobject + ALIGN_SIZE - 1) >
     290             :       MAX_ALLOC_CHUNK)
     291           0 :     out_of_memory(cinfo, 1);    /* request exceeds malloc's ability */
     292             : 
     293             :   /* See if space is available in any existing pool */
     294           0 :   if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
     295           0 :     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
     296           0 :   prev_hdr_ptr = NULL;
     297           0 :   hdr_ptr = mem->small_list[pool_id];
     298           0 :   while (hdr_ptr != NULL) {
     299           0 :     if (hdr_ptr->bytes_left >= sizeofobject)
     300           0 :       break;                    /* found pool with enough space */
     301           0 :     prev_hdr_ptr = hdr_ptr;
     302           0 :     hdr_ptr = hdr_ptr->next;
     303             :   }
     304             : 
     305             :   /* Time to make a new pool? */
     306           0 :   if (hdr_ptr == NULL) {
     307             :     /* min_request is what we need now, slop is what will be leftover */
     308           0 :     min_request = sizeof(small_pool_hdr) + sizeofobject + ALIGN_SIZE - 1;
     309           0 :     if (prev_hdr_ptr == NULL)   /* first pool in class? */
     310           0 :       slop = first_pool_slop[pool_id];
     311             :     else
     312           0 :       slop = extra_pool_slop[pool_id];
     313             :     /* Don't ask for more than MAX_ALLOC_CHUNK */
     314           0 :     if (slop > (size_t) (MAX_ALLOC_CHUNK-min_request))
     315           0 :       slop = (size_t) (MAX_ALLOC_CHUNK-min_request);
     316             :     /* Try to get space, if fail reduce slop and try again */
     317             :     for (;;) {
     318           0 :       hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop);
     319           0 :       if (hdr_ptr != NULL)
     320           0 :         break;
     321           0 :       slop /= 2;
     322           0 :       if (slop < MIN_SLOP)      /* give up when it gets real small */
     323           0 :         out_of_memory(cinfo, 2); /* jpeg_get_small failed */
     324             :     }
     325           0 :     mem->total_space_allocated += min_request + slop;
     326             :     /* Success, initialize the new pool header and add to end of list */
     327           0 :     hdr_ptr->next = NULL;
     328           0 :     hdr_ptr->bytes_used = 0;
     329           0 :     hdr_ptr->bytes_left = sizeofobject + slop;
     330           0 :     if (prev_hdr_ptr == NULL)   /* first pool in class? */
     331           0 :       mem->small_list[pool_id] = hdr_ptr;
     332             :     else
     333           0 :       prev_hdr_ptr->next = hdr_ptr;
     334             :   }
     335             : 
     336             :   /* OK, allocate the object from the current pool */
     337           0 :   data_ptr = (char *) hdr_ptr; /* point to first data byte in pool... */
     338           0 :   data_ptr += sizeof(small_pool_hdr); /* ...by skipping the header... */
     339           0 :   if ((size_t)data_ptr % ALIGN_SIZE) /* ...and adjust for alignment */
     340           0 :     data_ptr += ALIGN_SIZE - (size_t)data_ptr % ALIGN_SIZE;
     341           0 :   data_ptr += hdr_ptr->bytes_used; /* point to place for object */
     342           0 :   hdr_ptr->bytes_used += sizeofobject;
     343           0 :   hdr_ptr->bytes_left -= sizeofobject;
     344             : 
     345           0 :   return (void *) data_ptr;
     346             : }
     347             : 
     348             : 
     349             : /*
     350             :  * Allocation of "large" objects.
     351             :  *
     352             :  * The external semantics of these are the same as "small" objects.  However,
     353             :  * the pool management heuristics are quite different.  We assume that each
     354             :  * request is large enough that it may as well be passed directly to
     355             :  * jpeg_get_large; the pool management just links everything together
     356             :  * so that we can free it all on demand.
     357             :  * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY
     358             :  * structures.  The routines that create these structures (see below)
     359             :  * deliberately bunch rows together to ensure a large request size.
     360             :  */
     361             : 
     362             : METHODDEF(void *)
     363           0 : alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
     364             : /* Allocate a "large" object */
     365             : {
     366           0 :   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
     367             :   large_pool_ptr hdr_ptr;
     368             :   char *data_ptr;
     369             : 
     370             :   /*
     371             :    * Round up the requested size to a multiple of ALIGN_SIZE so that
     372             :    * algorithms can straddle outside the proper area up to the next
     373             :    * alignment.
     374             :    */
     375           0 :   if (sizeofobject > MAX_ALLOC_CHUNK) {
     376             :     /* This prevents overflow/wrap-around in round_up_pow2() if sizeofobject
     377             :        is close to SIZE_MAX. */
     378           0 :     out_of_memory(cinfo, 8);
     379             :   }
     380           0 :   sizeofobject = round_up_pow2(sizeofobject, ALIGN_SIZE);
     381             : 
     382             :   /* Check for unsatisfiable request (do now to ensure no overflow below) */
     383           0 :   if ((sizeof(large_pool_hdr) + sizeofobject + ALIGN_SIZE - 1) >
     384             :       MAX_ALLOC_CHUNK)
     385           0 :     out_of_memory(cinfo, 3);    /* request exceeds malloc's ability */
     386             : 
     387             :   /* Always make a new pool */
     388           0 :   if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
     389           0 :     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
     390             : 
     391           0 :   hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject +
     392             :                                             sizeof(large_pool_hdr) +
     393             :                                             ALIGN_SIZE - 1);
     394           0 :   if (hdr_ptr == NULL)
     395           0 :     out_of_memory(cinfo, 4);    /* jpeg_get_large failed */
     396           0 :   mem->total_space_allocated += sizeofobject + sizeof(large_pool_hdr) +
     397             :                                 ALIGN_SIZE - 1;
     398             : 
     399             :   /* Success, initialize the new pool header and add to list */
     400           0 :   hdr_ptr->next = mem->large_list[pool_id];
     401             :   /* We maintain space counts in each pool header for statistical purposes,
     402             :    * even though they are not needed for allocation.
     403             :    */
     404           0 :   hdr_ptr->bytes_used = sizeofobject;
     405           0 :   hdr_ptr->bytes_left = 0;
     406           0 :   mem->large_list[pool_id] = hdr_ptr;
     407             : 
     408           0 :   data_ptr = (char *) hdr_ptr; /* point to first data byte in pool... */
     409           0 :   data_ptr += sizeof(small_pool_hdr); /* ...by skipping the header... */
     410           0 :   if ((size_t)data_ptr % ALIGN_SIZE) /* ...and adjust for alignment */
     411           0 :     data_ptr += ALIGN_SIZE - (size_t)data_ptr % ALIGN_SIZE;
     412             : 
     413           0 :   return (void *) data_ptr;
     414             : }
     415             : 
     416             : 
     417             : /*
     418             :  * Creation of 2-D sample arrays.
     419             :  *
     420             :  * To minimize allocation overhead and to allow I/O of large contiguous
     421             :  * blocks, we allocate the sample rows in groups of as many rows as possible
     422             :  * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request.
     423             :  * NB: the virtual array control routines, later in this file, know about
     424             :  * this chunking of rows.  The rowsperchunk value is left in the mem manager
     425             :  * object so that it can be saved away if this sarray is the workspace for
     426             :  * a virtual array.
     427             :  *
     428             :  * Since we are often upsampling with a factor 2, we align the size (not
     429             :  * the start) to 2 * ALIGN_SIZE so that the upsampling routines don't have
     430             :  * to be as careful about size.
     431             :  */
     432             : 
     433             : METHODDEF(JSAMPARRAY)
     434           0 : alloc_sarray (j_common_ptr cinfo, int pool_id,
     435             :               JDIMENSION samplesperrow, JDIMENSION numrows)
     436             : /* Allocate a 2-D sample array */
     437             : {
     438           0 :   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
     439             :   JSAMPARRAY result;
     440             :   JSAMPROW workspace;
     441             :   JDIMENSION rowsperchunk, currow, i;
     442             :   long ltemp;
     443             : 
     444             :   /* Make sure each row is properly aligned */
     445             :   if ((ALIGN_SIZE % sizeof(JSAMPLE)) != 0)
     446             :     out_of_memory(cinfo, 5);    /* safety check */
     447             : 
     448           0 :   if (samplesperrow > MAX_ALLOC_CHUNK) {
     449             :     /* This prevents overflow/wrap-around in round_up_pow2() if sizeofobject
     450             :        is close to SIZE_MAX. */
     451           0 :     out_of_memory(cinfo, 9);
     452             :   }
     453           0 :   samplesperrow = (JDIMENSION)round_up_pow2(samplesperrow, (2 * ALIGN_SIZE) /
     454             :                                                            sizeof(JSAMPLE));
     455             : 
     456             :   /* Calculate max # of rows allowed in one allocation chunk */
     457           0 :   ltemp = (MAX_ALLOC_CHUNK-sizeof(large_pool_hdr)) /
     458           0 :           ((long) samplesperrow * sizeof(JSAMPLE));
     459           0 :   if (ltemp <= 0)
     460           0 :     ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
     461           0 :   if (ltemp < (long) numrows)
     462           0 :     rowsperchunk = (JDIMENSION) ltemp;
     463             :   else
     464           0 :     rowsperchunk = numrows;
     465           0 :   mem->last_rowsperchunk = rowsperchunk;
     466             : 
     467             :   /* Get space for row pointers (small object) */
     468           0 :   result = (JSAMPARRAY) alloc_small(cinfo, pool_id,
     469             :                                     (size_t) (numrows * sizeof(JSAMPROW)));
     470             : 
     471             :   /* Get the rows themselves (large objects) */
     472           0 :   currow = 0;
     473           0 :   while (currow < numrows) {
     474           0 :     rowsperchunk = MIN(rowsperchunk, numrows - currow);
     475           0 :     workspace = (JSAMPROW) alloc_large(cinfo, pool_id,
     476           0 :         (size_t) ((size_t) rowsperchunk * (size_t) samplesperrow
     477             :                   * sizeof(JSAMPLE)));
     478           0 :     for (i = rowsperchunk; i > 0; i--) {
     479           0 :       result[currow++] = workspace;
     480           0 :       workspace += samplesperrow;
     481             :     }
     482             :   }
     483             : 
     484           0 :   return result;
     485             : }
     486             : 
     487             : 
     488             : /*
     489             :  * Creation of 2-D coefficient-block arrays.
     490             :  * This is essentially the same as the code for sample arrays, above.
     491             :  */
     492             : 
     493             : METHODDEF(JBLOCKARRAY)
     494           0 : alloc_barray (j_common_ptr cinfo, int pool_id,
     495             :               JDIMENSION blocksperrow, JDIMENSION numrows)
     496             : /* Allocate a 2-D coefficient-block array */
     497             : {
     498           0 :   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
     499             :   JBLOCKARRAY result;
     500             :   JBLOCKROW workspace;
     501             :   JDIMENSION rowsperchunk, currow, i;
     502             :   long ltemp;
     503             : 
     504             :   /* Make sure each row is properly aligned */
     505             :   if ((sizeof(JBLOCK) % ALIGN_SIZE) != 0)
     506             :     out_of_memory(cinfo, 6);    /* safety check */
     507             : 
     508             :   /* Calculate max # of rows allowed in one allocation chunk */
     509           0 :   ltemp = (MAX_ALLOC_CHUNK-sizeof(large_pool_hdr)) /
     510           0 :           ((long) blocksperrow * sizeof(JBLOCK));
     511           0 :   if (ltemp <= 0)
     512           0 :     ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
     513           0 :   if (ltemp < (long) numrows)
     514           0 :     rowsperchunk = (JDIMENSION) ltemp;
     515             :   else
     516           0 :     rowsperchunk = numrows;
     517           0 :   mem->last_rowsperchunk = rowsperchunk;
     518             : 
     519             :   /* Get space for row pointers (small object) */
     520           0 :   result = (JBLOCKARRAY) alloc_small(cinfo, pool_id,
     521             :                                      (size_t) (numrows * sizeof(JBLOCKROW)));
     522             : 
     523             :   /* Get the rows themselves (large objects) */
     524           0 :   currow = 0;
     525           0 :   while (currow < numrows) {
     526           0 :     rowsperchunk = MIN(rowsperchunk, numrows - currow);
     527           0 :     workspace = (JBLOCKROW) alloc_large(cinfo, pool_id,
     528           0 :         (size_t) ((size_t) rowsperchunk * (size_t) blocksperrow
     529             :                   * sizeof(JBLOCK)));
     530           0 :     for (i = rowsperchunk; i > 0; i--) {
     531           0 :       result[currow++] = workspace;
     532           0 :       workspace += blocksperrow;
     533             :     }
     534             :   }
     535             : 
     536           0 :   return result;
     537             : }
     538             : 
     539             : 
     540             : /*
     541             :  * About virtual array management:
     542             :  *
     543             :  * The above "normal" array routines are only used to allocate strip buffers
     544             :  * (as wide as the image, but just a few rows high).  Full-image-sized buffers
     545             :  * are handled as "virtual" arrays.  The array is still accessed a strip at a
     546             :  * time, but the memory manager must save the whole array for repeated
     547             :  * accesses.  The intended implementation is that there is a strip buffer in
     548             :  * memory (as high as is possible given the desired memory limit), plus a
     549             :  * backing file that holds the rest of the array.
     550             :  *
     551             :  * The request_virt_array routines are told the total size of the image and
     552             :  * the maximum number of rows that will be accessed at once.  The in-memory
     553             :  * buffer must be at least as large as the maxaccess value.
     554             :  *
     555             :  * The request routines create control blocks but not the in-memory buffers.
     556             :  * That is postponed until realize_virt_arrays is called.  At that time the
     557             :  * total amount of space needed is known (approximately, anyway), so free
     558             :  * memory can be divided up fairly.
     559             :  *
     560             :  * The access_virt_array routines are responsible for making a specific strip
     561             :  * area accessible (after reading or writing the backing file, if necessary).
     562             :  * Note that the access routines are told whether the caller intends to modify
     563             :  * the accessed strip; during a read-only pass this saves having to rewrite
     564             :  * data to disk.  The access routines are also responsible for pre-zeroing
     565             :  * any newly accessed rows, if pre-zeroing was requested.
     566             :  *
     567             :  * In current usage, the access requests are usually for nonoverlapping
     568             :  * strips; that is, successive access start_row numbers differ by exactly
     569             :  * num_rows = maxaccess.  This means we can get good performance with simple
     570             :  * buffer dump/reload logic, by making the in-memory buffer be a multiple
     571             :  * of the access height; then there will never be accesses across bufferload
     572             :  * boundaries.  The code will still work with overlapping access requests,
     573             :  * but it doesn't handle bufferload overlaps very efficiently.
     574             :  */
     575             : 
     576             : 
     577             : METHODDEF(jvirt_sarray_ptr)
     578           0 : request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
     579             :                      JDIMENSION samplesperrow, JDIMENSION numrows,
     580             :                      JDIMENSION maxaccess)
     581             : /* Request a virtual 2-D sample array */
     582             : {
     583           0 :   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
     584             :   jvirt_sarray_ptr result;
     585             : 
     586             :   /* Only IMAGE-lifetime virtual arrays are currently supported */
     587           0 :   if (pool_id != JPOOL_IMAGE)
     588           0 :     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
     589             : 
     590             :   /* get control block */
     591           0 :   result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id,
     592             :                                           sizeof(struct jvirt_sarray_control));
     593             : 
     594           0 :   result->mem_buffer = NULL;    /* marks array not yet realized */
     595           0 :   result->rows_in_array = numrows;
     596           0 :   result->samplesperrow = samplesperrow;
     597           0 :   result->maxaccess = maxaccess;
     598           0 :   result->pre_zero = pre_zero;
     599           0 :   result->b_s_open = FALSE;     /* no associated backing-store object */
     600           0 :   result->next = mem->virt_sarray_list; /* add to list of virtual arrays */
     601           0 :   mem->virt_sarray_list = result;
     602             : 
     603           0 :   return result;
     604             : }
     605             : 
     606             : 
     607             : METHODDEF(jvirt_barray_ptr)
     608           0 : request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
     609             :                      JDIMENSION blocksperrow, JDIMENSION numrows,
     610             :                      JDIMENSION maxaccess)
     611             : /* Request a virtual 2-D coefficient-block array */
     612             : {
     613           0 :   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
     614             :   jvirt_barray_ptr result;
     615             : 
     616             :   /* Only IMAGE-lifetime virtual arrays are currently supported */
     617           0 :   if (pool_id != JPOOL_IMAGE)
     618           0 :     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
     619             : 
     620             :   /* get control block */
     621           0 :   result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id,
     622             :                                           sizeof(struct jvirt_barray_control));
     623             : 
     624           0 :   result->mem_buffer = NULL;    /* marks array not yet realized */
     625           0 :   result->rows_in_array = numrows;
     626           0 :   result->blocksperrow = blocksperrow;
     627           0 :   result->maxaccess = maxaccess;
     628           0 :   result->pre_zero = pre_zero;
     629           0 :   result->b_s_open = FALSE;     /* no associated backing-store object */
     630           0 :   result->next = mem->virt_barray_list; /* add to list of virtual arrays */
     631           0 :   mem->virt_barray_list = result;
     632             : 
     633           0 :   return result;
     634             : }
     635             : 
     636             : 
     637             : METHODDEF(void)
     638           0 : realize_virt_arrays (j_common_ptr cinfo)
     639             : /* Allocate the in-memory buffers for any unrealized virtual arrays */
     640             : {
     641           0 :   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
     642             :   size_t space_per_minheight, maximum_space, avail_mem;
     643             :   size_t minheights, max_minheights;
     644             :   jvirt_sarray_ptr sptr;
     645             :   jvirt_barray_ptr bptr;
     646             : 
     647             :   /* Compute the minimum space needed (maxaccess rows in each buffer)
     648             :    * and the maximum space needed (full image height in each buffer).
     649             :    * These may be of use to the system-dependent jpeg_mem_available routine.
     650             :    */
     651           0 :   space_per_minheight = 0;
     652           0 :   maximum_space = 0;
     653           0 :   for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
     654           0 :     if (sptr->mem_buffer == NULL) { /* if not realized yet */
     655           0 :       size_t new_space = (long) sptr->rows_in_array *
     656           0 :                          (long) sptr->samplesperrow * sizeof(JSAMPLE);
     657             : 
     658           0 :       space_per_minheight += (long) sptr->maxaccess *
     659           0 :                              (long) sptr->samplesperrow * sizeof(JSAMPLE);
     660           0 :       if (SIZE_MAX - maximum_space < new_space)
     661           0 :         out_of_memory(cinfo, 10);
     662           0 :       maximum_space += new_space;
     663             :     }
     664             :   }
     665           0 :   for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
     666           0 :     if (bptr->mem_buffer == NULL) { /* if not realized yet */
     667           0 :       size_t new_space = (long) bptr->rows_in_array *
     668           0 :                          (long) bptr->blocksperrow * sizeof(JBLOCK);
     669             : 
     670           0 :       space_per_minheight += (long) bptr->maxaccess *
     671           0 :                              (long) bptr->blocksperrow * sizeof(JBLOCK);
     672           0 :       if (SIZE_MAX - maximum_space < new_space)
     673           0 :         out_of_memory(cinfo, 11);
     674           0 :       maximum_space += new_space;
     675             :     }
     676             :   }
     677             : 
     678           0 :   if (space_per_minheight <= 0)
     679           0 :     return;                     /* no unrealized arrays, no work */
     680             : 
     681             :   /* Determine amount of memory to actually use; this is system-dependent. */
     682           0 :   avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space,
     683             :                                  mem->total_space_allocated);
     684             : 
     685             :   /* If the maximum space needed is available, make all the buffers full
     686             :    * height; otherwise parcel it out with the same number of minheights
     687             :    * in each buffer.
     688             :    */
     689           0 :   if (avail_mem >= maximum_space)
     690           0 :     max_minheights = 1000000000L;
     691             :   else {
     692           0 :     max_minheights = avail_mem / space_per_minheight;
     693             :     /* If there doesn't seem to be enough space, try to get the minimum
     694             :      * anyway.  This allows a "stub" implementation of jpeg_mem_available().
     695             :      */
     696           0 :     if (max_minheights <= 0)
     697           0 :       max_minheights = 1;
     698             :   }
     699             : 
     700             :   /* Allocate the in-memory buffers and initialize backing store as needed. */
     701             : 
     702           0 :   for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
     703           0 :     if (sptr->mem_buffer == NULL) { /* if not realized yet */
     704           0 :       minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L;
     705           0 :       if (minheights <= max_minheights) {
     706             :         /* This buffer fits in memory */
     707           0 :         sptr->rows_in_mem = sptr->rows_in_array;
     708             :       } else {
     709             :         /* It doesn't fit in memory, create backing store. */
     710           0 :         sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess);
     711           0 :         jpeg_open_backing_store(cinfo, & sptr->b_s_info,
     712           0 :                                 (long) sptr->rows_in_array *
     713           0 :                                 (long) sptr->samplesperrow *
     714             :                                 (long) sizeof(JSAMPLE));
     715           0 :         sptr->b_s_open = TRUE;
     716             :       }
     717           0 :       sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE,
     718             :                                       sptr->samplesperrow, sptr->rows_in_mem);
     719           0 :       sptr->rowsperchunk = mem->last_rowsperchunk;
     720           0 :       sptr->cur_start_row = 0;
     721           0 :       sptr->first_undef_row = 0;
     722           0 :       sptr->dirty = FALSE;
     723             :     }
     724             :   }
     725             : 
     726           0 :   for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
     727           0 :     if (bptr->mem_buffer == NULL) { /* if not realized yet */
     728           0 :       minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L;
     729           0 :       if (minheights <= max_minheights) {
     730             :         /* This buffer fits in memory */
     731           0 :         bptr->rows_in_mem = bptr->rows_in_array;
     732             :       } else {
     733             :         /* It doesn't fit in memory, create backing store. */
     734           0 :         bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess);
     735           0 :         jpeg_open_backing_store(cinfo, & bptr->b_s_info,
     736           0 :                                 (long) bptr->rows_in_array *
     737           0 :                                 (long) bptr->blocksperrow *
     738             :                                 (long) sizeof(JBLOCK));
     739           0 :         bptr->b_s_open = TRUE;
     740             :       }
     741           0 :       bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE,
     742             :                                       bptr->blocksperrow, bptr->rows_in_mem);
     743           0 :       bptr->rowsperchunk = mem->last_rowsperchunk;
     744           0 :       bptr->cur_start_row = 0;
     745           0 :       bptr->first_undef_row = 0;
     746           0 :       bptr->dirty = FALSE;
     747             :     }
     748             :   }
     749             : }
     750             : 
     751             : 
     752             : LOCAL(void)
     753           0 : do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing)
     754             : /* Do backing store read or write of a virtual sample array */
     755             : {
     756             :   long bytesperrow, file_offset, byte_count, rows, thisrow, i;
     757             : 
     758           0 :   bytesperrow = (long) ptr->samplesperrow * sizeof(JSAMPLE);
     759           0 :   file_offset = ptr->cur_start_row * bytesperrow;
     760             :   /* Loop to read or write each allocation chunk in mem_buffer */
     761           0 :   for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
     762             :     /* One chunk, but check for short chunk at end of buffer */
     763           0 :     rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
     764             :     /* Transfer no more than is currently defined */
     765           0 :     thisrow = (long) ptr->cur_start_row + i;
     766           0 :     rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
     767             :     /* Transfer no more than fits in file */
     768           0 :     rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
     769           0 :     if (rows <= 0)              /* this chunk might be past end of file! */
     770           0 :       break;
     771           0 :     byte_count = rows * bytesperrow;
     772           0 :     if (writing)
     773           0 :       (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
     774           0 :                                             (void *) ptr->mem_buffer[i],
     775             :                                             file_offset, byte_count);
     776             :     else
     777           0 :       (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
     778           0 :                                            (void *) ptr->mem_buffer[i],
     779             :                                            file_offset, byte_count);
     780           0 :     file_offset += byte_count;
     781             :   }
     782           0 : }
     783             : 
     784             : 
     785             : LOCAL(void)
     786           0 : do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing)
     787             : /* Do backing store read or write of a virtual coefficient-block array */
     788             : {
     789             :   long bytesperrow, file_offset, byte_count, rows, thisrow, i;
     790             : 
     791           0 :   bytesperrow = (long) ptr->blocksperrow * sizeof(JBLOCK);
     792           0 :   file_offset = ptr->cur_start_row * bytesperrow;
     793             :   /* Loop to read or write each allocation chunk in mem_buffer */
     794           0 :   for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
     795             :     /* One chunk, but check for short chunk at end of buffer */
     796           0 :     rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
     797             :     /* Transfer no more than is currently defined */
     798           0 :     thisrow = (long) ptr->cur_start_row + i;
     799           0 :     rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
     800             :     /* Transfer no more than fits in file */
     801           0 :     rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
     802           0 :     if (rows <= 0)              /* this chunk might be past end of file! */
     803           0 :       break;
     804           0 :     byte_count = rows * bytesperrow;
     805           0 :     if (writing)
     806           0 :       (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
     807           0 :                                             (void *) ptr->mem_buffer[i],
     808             :                                             file_offset, byte_count);
     809             :     else
     810           0 :       (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
     811           0 :                                            (void *) ptr->mem_buffer[i],
     812             :                                            file_offset, byte_count);
     813           0 :     file_offset += byte_count;
     814             :   }
     815           0 : }
     816             : 
     817             : 
     818             : METHODDEF(JSAMPARRAY)
     819           0 : access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr,
     820             :                     JDIMENSION start_row, JDIMENSION num_rows,
     821             :                     boolean writable)
     822             : /* Access the part of a virtual sample array starting at start_row */
     823             : /* and extending for num_rows rows.  writable is true if  */
     824             : /* caller intends to modify the accessed area. */
     825             : {
     826           0 :   JDIMENSION end_row = start_row + num_rows;
     827             :   JDIMENSION undef_row;
     828             : 
     829             :   /* debugging check */
     830           0 :   if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
     831           0 :       ptr->mem_buffer == NULL)
     832           0 :     ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
     833             : 
     834             :   /* Make the desired part of the virtual array accessible */
     835           0 :   if (start_row < ptr->cur_start_row ||
     836           0 :       end_row > ptr->cur_start_row+ptr->rows_in_mem) {
     837           0 :     if (! ptr->b_s_open)
     838           0 :       ERREXIT(cinfo, JERR_VIRTUAL_BUG);
     839             :     /* Flush old buffer contents if necessary */
     840           0 :     if (ptr->dirty) {
     841           0 :       do_sarray_io(cinfo, ptr, TRUE);
     842           0 :       ptr->dirty = FALSE;
     843             :     }
     844             :     /* Decide what part of virtual array to access.
     845             :      * Algorithm: if target address > current window, assume forward scan,
     846             :      * load starting at target address.  If target address < current window,
     847             :      * assume backward scan, load so that target area is top of window.
     848             :      * Note that when switching from forward write to forward read, will have
     849             :      * start_row = 0, so the limiting case applies and we load from 0 anyway.
     850             :      */
     851           0 :     if (start_row > ptr->cur_start_row) {
     852           0 :       ptr->cur_start_row = start_row;
     853             :     } else {
     854             :       /* use long arithmetic here to avoid overflow & unsigned problems */
     855             :       long ltemp;
     856             : 
     857           0 :       ltemp = (long) end_row - (long) ptr->rows_in_mem;
     858           0 :       if (ltemp < 0)
     859           0 :         ltemp = 0;              /* don't fall off front end of file */
     860           0 :       ptr->cur_start_row = (JDIMENSION) ltemp;
     861             :     }
     862             :     /* Read in the selected part of the array.
     863             :      * During the initial write pass, we will do no actual read
     864             :      * because the selected part is all undefined.
     865             :      */
     866           0 :     do_sarray_io(cinfo, ptr, FALSE);
     867             :   }
     868             :   /* Ensure the accessed part of the array is defined; prezero if needed.
     869             :    * To improve locality of access, we only prezero the part of the array
     870             :    * that the caller is about to access, not the entire in-memory array.
     871             :    */
     872           0 :   if (ptr->first_undef_row < end_row) {
     873           0 :     if (ptr->first_undef_row < start_row) {
     874           0 :       if (writable)             /* writer skipped over a section of array */
     875           0 :         ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
     876           0 :       undef_row = start_row;    /* but reader is allowed to read ahead */
     877             :     } else {
     878           0 :       undef_row = ptr->first_undef_row;
     879             :     }
     880           0 :     if (writable)
     881           0 :       ptr->first_undef_row = end_row;
     882           0 :     if (ptr->pre_zero) {
     883           0 :       size_t bytesperrow = (size_t) ptr->samplesperrow * sizeof(JSAMPLE);
     884           0 :       undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
     885           0 :       end_row -= ptr->cur_start_row;
     886           0 :       while (undef_row < end_row) {
     887           0 :         jzero_far((void *) ptr->mem_buffer[undef_row], bytesperrow);
     888           0 :         undef_row++;
     889             :       }
     890             :     } else {
     891           0 :       if (! writable)           /* reader looking at undefined data */
     892           0 :         ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
     893             :     }
     894             :   }
     895             :   /* Flag the buffer dirty if caller will write in it */
     896           0 :   if (writable)
     897           0 :     ptr->dirty = TRUE;
     898             :   /* Return address of proper part of the buffer */
     899           0 :   return ptr->mem_buffer + (start_row - ptr->cur_start_row);
     900             : }
     901             : 
     902             : 
     903             : METHODDEF(JBLOCKARRAY)
     904           0 : access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr,
     905             :                     JDIMENSION start_row, JDIMENSION num_rows,
     906             :                     boolean writable)
     907             : /* Access the part of a virtual block array starting at start_row */
     908             : /* and extending for num_rows rows.  writable is true if  */
     909             : /* caller intends to modify the accessed area. */
     910             : {
     911           0 :   JDIMENSION end_row = start_row + num_rows;
     912             :   JDIMENSION undef_row;
     913             : 
     914             :   /* debugging check */
     915           0 :   if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
     916           0 :       ptr->mem_buffer == NULL)
     917           0 :     ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
     918             : 
     919             :   /* Make the desired part of the virtual array accessible */
     920           0 :   if (start_row < ptr->cur_start_row ||
     921           0 :       end_row > ptr->cur_start_row+ptr->rows_in_mem) {
     922           0 :     if (! ptr->b_s_open)
     923           0 :       ERREXIT(cinfo, JERR_VIRTUAL_BUG);
     924             :     /* Flush old buffer contents if necessary */
     925           0 :     if (ptr->dirty) {
     926           0 :       do_barray_io(cinfo, ptr, TRUE);
     927           0 :       ptr->dirty = FALSE;
     928             :     }
     929             :     /* Decide what part of virtual array to access.
     930             :      * Algorithm: if target address > current window, assume forward scan,
     931             :      * load starting at target address.  If target address < current window,
     932             :      * assume backward scan, load so that target area is top of window.
     933             :      * Note that when switching from forward write to forward read, will have
     934             :      * start_row = 0, so the limiting case applies and we load from 0 anyway.
     935             :      */
     936           0 :     if (start_row > ptr->cur_start_row) {
     937           0 :       ptr->cur_start_row = start_row;
     938             :     } else {
     939             :       /* use long arithmetic here to avoid overflow & unsigned problems */
     940             :       long ltemp;
     941             : 
     942           0 :       ltemp = (long) end_row - (long) ptr->rows_in_mem;
     943           0 :       if (ltemp < 0)
     944           0 :         ltemp = 0;              /* don't fall off front end of file */
     945           0 :       ptr->cur_start_row = (JDIMENSION) ltemp;
     946             :     }
     947             :     /* Read in the selected part of the array.
     948             :      * During the initial write pass, we will do no actual read
     949             :      * because the selected part is all undefined.
     950             :      */
     951           0 :     do_barray_io(cinfo, ptr, FALSE);
     952             :   }
     953             :   /* Ensure the accessed part of the array is defined; prezero if needed.
     954             :    * To improve locality of access, we only prezero the part of the array
     955             :    * that the caller is about to access, not the entire in-memory array.
     956             :    */
     957           0 :   if (ptr->first_undef_row < end_row) {
     958           0 :     if (ptr->first_undef_row < start_row) {
     959           0 :       if (writable)             /* writer skipped over a section of array */
     960           0 :         ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
     961           0 :       undef_row = start_row;    /* but reader is allowed to read ahead */
     962             :     } else {
     963           0 :       undef_row = ptr->first_undef_row;
     964             :     }
     965           0 :     if (writable)
     966           0 :       ptr->first_undef_row = end_row;
     967           0 :     if (ptr->pre_zero) {
     968           0 :       size_t bytesperrow = (size_t) ptr->blocksperrow * sizeof(JBLOCK);
     969           0 :       undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
     970           0 :       end_row -= ptr->cur_start_row;
     971           0 :       while (undef_row < end_row) {
     972           0 :         jzero_far((void *) ptr->mem_buffer[undef_row], bytesperrow);
     973           0 :         undef_row++;
     974             :       }
     975             :     } else {
     976           0 :       if (! writable)           /* reader looking at undefined data */
     977           0 :         ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
     978             :     }
     979             :   }
     980             :   /* Flag the buffer dirty if caller will write in it */
     981           0 :   if (writable)
     982           0 :     ptr->dirty = TRUE;
     983             :   /* Return address of proper part of the buffer */
     984           0 :   return ptr->mem_buffer + (start_row - ptr->cur_start_row);
     985             : }
     986             : 
     987             : 
     988             : /*
     989             :  * Release all objects belonging to a specified pool.
     990             :  */
     991             : 
     992             : METHODDEF(void)
     993           0 : free_pool (j_common_ptr cinfo, int pool_id)
     994             : {
     995           0 :   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
     996             :   small_pool_ptr shdr_ptr;
     997             :   large_pool_ptr lhdr_ptr;
     998             :   size_t space_freed;
     999             : 
    1000           0 :   if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
    1001           0 :     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
    1002             : 
    1003             : #ifdef MEM_STATS
    1004             :   if (cinfo->err->trace_level > 1)
    1005             :     print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */
    1006             : #endif
    1007             : 
    1008             :   /* If freeing IMAGE pool, close any virtual arrays first */
    1009           0 :   if (pool_id == JPOOL_IMAGE) {
    1010             :     jvirt_sarray_ptr sptr;
    1011             :     jvirt_barray_ptr bptr;
    1012             : 
    1013           0 :     for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
    1014           0 :       if (sptr->b_s_open) {     /* there may be no backing store */
    1015           0 :         sptr->b_s_open = FALSE; /* prevent recursive close if error */
    1016           0 :         (*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info);
    1017             :       }
    1018             :     }
    1019           0 :     mem->virt_sarray_list = NULL;
    1020           0 :     for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
    1021           0 :       if (bptr->b_s_open) {     /* there may be no backing store */
    1022           0 :         bptr->b_s_open = FALSE; /* prevent recursive close if error */
    1023           0 :         (*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info);
    1024             :       }
    1025             :     }
    1026           0 :     mem->virt_barray_list = NULL;
    1027             :   }
    1028             : 
    1029             :   /* Release large objects */
    1030           0 :   lhdr_ptr = mem->large_list[pool_id];
    1031           0 :   mem->large_list[pool_id] = NULL;
    1032             : 
    1033           0 :   while (lhdr_ptr != NULL) {
    1034           0 :     large_pool_ptr next_lhdr_ptr = lhdr_ptr->next;
    1035           0 :     space_freed = lhdr_ptr->bytes_used +
    1036           0 :                   lhdr_ptr->bytes_left +
    1037             :                   sizeof(large_pool_hdr);
    1038           0 :     jpeg_free_large(cinfo, (void *) lhdr_ptr, space_freed);
    1039           0 :     mem->total_space_allocated -= space_freed;
    1040           0 :     lhdr_ptr = next_lhdr_ptr;
    1041             :   }
    1042             : 
    1043             :   /* Release small objects */
    1044           0 :   shdr_ptr = mem->small_list[pool_id];
    1045           0 :   mem->small_list[pool_id] = NULL;
    1046             : 
    1047           0 :   while (shdr_ptr != NULL) {
    1048           0 :     small_pool_ptr next_shdr_ptr = shdr_ptr->next;
    1049           0 :     space_freed = shdr_ptr->bytes_used +
    1050           0 :                   shdr_ptr->bytes_left +
    1051             :                   sizeof(small_pool_hdr);
    1052           0 :     jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed);
    1053           0 :     mem->total_space_allocated -= space_freed;
    1054           0 :     shdr_ptr = next_shdr_ptr;
    1055             :   }
    1056           0 : }
    1057             : 
    1058             : 
    1059             : /*
    1060             :  * Close up shop entirely.
    1061             :  * Note that this cannot be called unless cinfo->mem is non-NULL.
    1062             :  */
    1063             : 
    1064             : METHODDEF(void)
    1065           0 : self_destruct (j_common_ptr cinfo)
    1066             : {
    1067             :   int pool;
    1068             : 
    1069             :   /* Close all backing store, release all memory.
    1070             :    * Releasing pools in reverse order might help avoid fragmentation
    1071             :    * with some (brain-damaged) malloc libraries.
    1072             :    */
    1073           0 :   for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
    1074           0 :     free_pool(cinfo, pool);
    1075             :   }
    1076             : 
    1077             :   /* Release the memory manager control block too. */
    1078           0 :   jpeg_free_small(cinfo, (void *) cinfo->mem, sizeof(my_memory_mgr));
    1079           0 :   cinfo->mem = NULL;            /* ensures I will be called only once */
    1080             : 
    1081           0 :   jpeg_mem_term(cinfo);         /* system-dependent cleanup */
    1082           0 : }
    1083             : 
    1084             : 
    1085             : /*
    1086             :  * Memory manager initialization.
    1087             :  * When this is called, only the error manager pointer is valid in cinfo!
    1088             :  */
    1089             : 
    1090             : GLOBAL(void)
    1091           0 : jinit_memory_mgr (j_common_ptr cinfo)
    1092             : {
    1093             :   my_mem_ptr mem;
    1094             :   long max_to_use;
    1095             :   int pool;
    1096             :   size_t test_mac;
    1097             : 
    1098           0 :   cinfo->mem = NULL;            /* for safety if init fails */
    1099             : 
    1100             :   /* Check for configuration errors.
    1101             :    * sizeof(ALIGN_TYPE) should be a power of 2; otherwise, it probably
    1102             :    * doesn't reflect any real hardware alignment requirement.
    1103             :    * The test is a little tricky: for X>0, X and X-1 have no one-bits
    1104             :    * in common if and only if X is a power of 2, ie has only one one-bit.
    1105             :    * Some compilers may give an "unreachable code" warning here; ignore it.
    1106             :    */
    1107             :   if ((ALIGN_SIZE & (ALIGN_SIZE-1)) != 0)
    1108             :     ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE);
    1109             :   /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be
    1110             :    * a multiple of ALIGN_SIZE.
    1111             :    * Again, an "unreachable code" warning may be ignored here.
    1112             :    * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK.
    1113             :    */
    1114           0 :   test_mac = (size_t) MAX_ALLOC_CHUNK;
    1115           0 :   if ((long) test_mac != MAX_ALLOC_CHUNK ||
    1116             :       (MAX_ALLOC_CHUNK % ALIGN_SIZE) != 0)
    1117           0 :     ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK);
    1118             : 
    1119           0 :   max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */
    1120             : 
    1121             :   /* Attempt to allocate memory manager's control block */
    1122           0 :   mem = (my_mem_ptr) jpeg_get_small(cinfo, sizeof(my_memory_mgr));
    1123             : 
    1124           0 :   if (mem == NULL) {
    1125           0 :     jpeg_mem_term(cinfo);       /* system-dependent cleanup */
    1126           0 :     ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0);
    1127             :   }
    1128             : 
    1129             :   /* OK, fill in the method pointers */
    1130           0 :   mem->pub.alloc_small = alloc_small;
    1131           0 :   mem->pub.alloc_large = alloc_large;
    1132           0 :   mem->pub.alloc_sarray = alloc_sarray;
    1133           0 :   mem->pub.alloc_barray = alloc_barray;
    1134           0 :   mem->pub.request_virt_sarray = request_virt_sarray;
    1135           0 :   mem->pub.request_virt_barray = request_virt_barray;
    1136           0 :   mem->pub.realize_virt_arrays = realize_virt_arrays;
    1137           0 :   mem->pub.access_virt_sarray = access_virt_sarray;
    1138           0 :   mem->pub.access_virt_barray = access_virt_barray;
    1139           0 :   mem->pub.free_pool = free_pool;
    1140           0 :   mem->pub.self_destruct = self_destruct;
    1141             : 
    1142             :   /* Make MAX_ALLOC_CHUNK accessible to other modules */
    1143           0 :   mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK;
    1144             : 
    1145             :   /* Initialize working state */
    1146           0 :   mem->pub.max_memory_to_use = max_to_use;
    1147             : 
    1148           0 :   for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
    1149           0 :     mem->small_list[pool] = NULL;
    1150           0 :     mem->large_list[pool] = NULL;
    1151             :   }
    1152           0 :   mem->virt_sarray_list = NULL;
    1153           0 :   mem->virt_barray_list = NULL;
    1154             : 
    1155           0 :   mem->total_space_allocated = sizeof(my_memory_mgr);
    1156             : 
    1157             :   /* Declare ourselves open for business */
    1158           0 :   cinfo->mem = & mem->pub;
    1159             : 
    1160             :   /* Check for an environment variable JPEGMEM; if found, override the
    1161             :    * default max_memory setting from jpeg_mem_init.  Note that the
    1162             :    * surrounding application may again override this value.
    1163             :    * If your system doesn't support getenv(), define NO_GETENV to disable
    1164             :    * this feature.
    1165             :    */
    1166             : #ifndef NO_GETENV
    1167             :   { char *memenv;
    1168             : 
    1169           0 :     if ((memenv = getenv("JPEGMEM")) != NULL) {
    1170           0 :       char ch = 'x';
    1171             : 
    1172           0 :       if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) {
    1173           0 :         if (ch == 'm' || ch == 'M')
    1174           0 :           max_to_use *= 1000L;
    1175           0 :         mem->pub.max_memory_to_use = max_to_use * 1000L;
    1176             :       }
    1177             :     }
    1178             :   }
    1179             : #endif
    1180             : 
    1181           0 : }

Generated by: LCOV version 1.13