LCOV - code coverage report
Current view: top level - media/libjpeg - jquant1.c (source / functions) Hit Total Coverage
Test: output.info Lines: 0 284 0.0 %
Date: 2017-07-14 16:53:18 Functions: 0 17 0.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*
       2             :  * jquant1.c
       3             :  *
       4             :  * This file was part of the Independent JPEG Group's software:
       5             :  * Copyright (C) 1991-1996, Thomas G. Lane.
       6             :  * libjpeg-turbo Modifications:
       7             :  * Copyright (C) 2009, 2015, D. R. Commander.
       8             :  * For conditions of distribution and use, see the accompanying README.ijg
       9             :  * file.
      10             :  *
      11             :  * This file contains 1-pass color quantization (color mapping) routines.
      12             :  * These routines provide mapping to a fixed color map using equally spaced
      13             :  * color values.  Optional Floyd-Steinberg or ordered dithering is available.
      14             :  */
      15             : 
      16             : #define JPEG_INTERNALS
      17             : #include "jinclude.h"
      18             : #include "jpeglib.h"
      19             : 
      20             : #ifdef QUANT_1PASS_SUPPORTED
      21             : 
      22             : 
      23             : /*
      24             :  * The main purpose of 1-pass quantization is to provide a fast, if not very
      25             :  * high quality, colormapped output capability.  A 2-pass quantizer usually
      26             :  * gives better visual quality; however, for quantized grayscale output this
      27             :  * quantizer is perfectly adequate.  Dithering is highly recommended with this
      28             :  * quantizer, though you can turn it off if you really want to.
      29             :  *
      30             :  * In 1-pass quantization the colormap must be chosen in advance of seeing the
      31             :  * image.  We use a map consisting of all combinations of Ncolors[i] color
      32             :  * values for the i'th component.  The Ncolors[] values are chosen so that
      33             :  * their product, the total number of colors, is no more than that requested.
      34             :  * (In most cases, the product will be somewhat less.)
      35             :  *
      36             :  * Since the colormap is orthogonal, the representative value for each color
      37             :  * component can be determined without considering the other components;
      38             :  * then these indexes can be combined into a colormap index by a standard
      39             :  * N-dimensional-array-subscript calculation.  Most of the arithmetic involved
      40             :  * can be precalculated and stored in the lookup table colorindex[].
      41             :  * colorindex[i][j] maps pixel value j in component i to the nearest
      42             :  * representative value (grid plane) for that component; this index is
      43             :  * multiplied by the array stride for component i, so that the
      44             :  * index of the colormap entry closest to a given pixel value is just
      45             :  *    sum( colorindex[component-number][pixel-component-value] )
      46             :  * Aside from being fast, this scheme allows for variable spacing between
      47             :  * representative values with no additional lookup cost.
      48             :  *
      49             :  * If gamma correction has been applied in color conversion, it might be wise
      50             :  * to adjust the color grid spacing so that the representative colors are
      51             :  * equidistant in linear space.  At this writing, gamma correction is not
      52             :  * implemented by jdcolor, so nothing is done here.
      53             :  */
      54             : 
      55             : 
      56             : /* Declarations for ordered dithering.
      57             :  *
      58             :  * We use a standard 16x16 ordered dither array.  The basic concept of ordered
      59             :  * dithering is described in many references, for instance Dale Schumacher's
      60             :  * chapter II.2 of Graphics Gems II (James Arvo, ed. Academic Press, 1991).
      61             :  * In place of Schumacher's comparisons against a "threshold" value, we add a
      62             :  * "dither" value to the input pixel and then round the result to the nearest
      63             :  * output value.  The dither value is equivalent to (0.5 - threshold) times
      64             :  * the distance between output values.  For ordered dithering, we assume that
      65             :  * the output colors are equally spaced; if not, results will probably be
      66             :  * worse, since the dither may be too much or too little at a given point.
      67             :  *
      68             :  * The normal calculation would be to form pixel value + dither, range-limit
      69             :  * this to 0..MAXJSAMPLE, and then index into the colorindex table as usual.
      70             :  * We can skip the separate range-limiting step by extending the colorindex
      71             :  * table in both directions.
      72             :  */
      73             : 
      74             : #define ODITHER_SIZE  16        /* dimension of dither matrix */
      75             : /* NB: if ODITHER_SIZE is not a power of 2, ODITHER_MASK uses will break */
      76             : #define ODITHER_CELLS (ODITHER_SIZE*ODITHER_SIZE)       /* # cells in matrix */
      77             : #define ODITHER_MASK  (ODITHER_SIZE-1) /* mask for wrapping around counters */
      78             : 
      79             : typedef int ODITHER_MATRIX[ODITHER_SIZE][ODITHER_SIZE];
      80             : typedef int (*ODITHER_MATRIX_PTR)[ODITHER_SIZE];
      81             : 
      82             : static const UINT8 base_dither_matrix[ODITHER_SIZE][ODITHER_SIZE] = {
      83             :   /* Bayer's order-4 dither array.  Generated by the code given in
      84             :    * Stephen Hawley's article "Ordered Dithering" in Graphics Gems I.
      85             :    * The values in this array must range from 0 to ODITHER_CELLS-1.
      86             :    */
      87             :   {   0,192, 48,240, 12,204, 60,252,  3,195, 51,243, 15,207, 63,255 },
      88             :   { 128, 64,176,112,140, 76,188,124,131, 67,179,115,143, 79,191,127 },
      89             :   {  32,224, 16,208, 44,236, 28,220, 35,227, 19,211, 47,239, 31,223 },
      90             :   { 160, 96,144, 80,172,108,156, 92,163, 99,147, 83,175,111,159, 95 },
      91             :   {   8,200, 56,248,  4,196, 52,244, 11,203, 59,251,  7,199, 55,247 },
      92             :   { 136, 72,184,120,132, 68,180,116,139, 75,187,123,135, 71,183,119 },
      93             :   {  40,232, 24,216, 36,228, 20,212, 43,235, 27,219, 39,231, 23,215 },
      94             :   { 168,104,152, 88,164,100,148, 84,171,107,155, 91,167,103,151, 87 },
      95             :   {   2,194, 50,242, 14,206, 62,254,  1,193, 49,241, 13,205, 61,253 },
      96             :   { 130, 66,178,114,142, 78,190,126,129, 65,177,113,141, 77,189,125 },
      97             :   {  34,226, 18,210, 46,238, 30,222, 33,225, 17,209, 45,237, 29,221 },
      98             :   { 162, 98,146, 82,174,110,158, 94,161, 97,145, 81,173,109,157, 93 },
      99             :   {  10,202, 58,250,  6,198, 54,246,  9,201, 57,249,  5,197, 53,245 },
     100             :   { 138, 74,186,122,134, 70,182,118,137, 73,185,121,133, 69,181,117 },
     101             :   {  42,234, 26,218, 38,230, 22,214, 41,233, 25,217, 37,229, 21,213 },
     102             :   { 170,106,154, 90,166,102,150, 86,169,105,153, 89,165,101,149, 85 }
     103             : };
     104             : 
     105             : 
     106             : /* Declarations for Floyd-Steinberg dithering.
     107             :  *
     108             :  * Errors are accumulated into the array fserrors[], at a resolution of
     109             :  * 1/16th of a pixel count.  The error at a given pixel is propagated
     110             :  * to its not-yet-processed neighbors using the standard F-S fractions,
     111             :  *              ...     (here)  7/16
     112             :  *              3/16    5/16    1/16
     113             :  * We work left-to-right on even rows, right-to-left on odd rows.
     114             :  *
     115             :  * We can get away with a single array (holding one row's worth of errors)
     116             :  * by using it to store the current row's errors at pixel columns not yet
     117             :  * processed, but the next row's errors at columns already processed.  We
     118             :  * need only a few extra variables to hold the errors immediately around the
     119             :  * current column.  (If we are lucky, those variables are in registers, but
     120             :  * even if not, they're probably cheaper to access than array elements are.)
     121             :  *
     122             :  * The fserrors[] array is indexed [component#][position].
     123             :  * We provide (#columns + 2) entries per component; the extra entry at each
     124             :  * end saves us from special-casing the first and last pixels.
     125             :  */
     126             : 
     127             : #if BITS_IN_JSAMPLE == 8
     128             : typedef INT16 FSERROR;          /* 16 bits should be enough */
     129             : typedef int LOCFSERROR;         /* use 'int' for calculation temps */
     130             : #else
     131             : typedef JLONG FSERROR;          /* may need more than 16 bits */
     132             : typedef JLONG LOCFSERROR;       /* be sure calculation temps are big enough */
     133             : #endif
     134             : 
     135             : typedef FSERROR *FSERRPTR;  /* pointer to error array */
     136             : 
     137             : 
     138             : /* Private subobject */
     139             : 
     140             : #define MAX_Q_COMPS 4           /* max components I can handle */
     141             : 
     142             : typedef struct {
     143             :   struct jpeg_color_quantizer pub; /* public fields */
     144             : 
     145             :   /* Initially allocated colormap is saved here */
     146             :   JSAMPARRAY sv_colormap;       /* The color map as a 2-D pixel array */
     147             :   int sv_actual;                /* number of entries in use */
     148             : 
     149             :   JSAMPARRAY colorindex;        /* Precomputed mapping for speed */
     150             :   /* colorindex[i][j] = index of color closest to pixel value j in component i,
     151             :    * premultiplied as described above.  Since colormap indexes must fit into
     152             :    * JSAMPLEs, the entries of this array will too.
     153             :    */
     154             :   boolean is_padded;            /* is the colorindex padded for odither? */
     155             : 
     156             :   int Ncolors[MAX_Q_COMPS];     /* # of values alloced to each component */
     157             : 
     158             :   /* Variables for ordered dithering */
     159             :   int row_index;                /* cur row's vertical index in dither matrix */
     160             :   ODITHER_MATRIX_PTR odither[MAX_Q_COMPS]; /* one dither array per component */
     161             : 
     162             :   /* Variables for Floyd-Steinberg dithering */
     163             :   FSERRPTR fserrors[MAX_Q_COMPS]; /* accumulated errors */
     164             :   boolean on_odd_row;           /* flag to remember which row we are on */
     165             : } my_cquantizer;
     166             : 
     167             : typedef my_cquantizer *my_cquantize_ptr;
     168             : 
     169             : 
     170             : /*
     171             :  * Policy-making subroutines for create_colormap and create_colorindex.
     172             :  * These routines determine the colormap to be used.  The rest of the module
     173             :  * only assumes that the colormap is orthogonal.
     174             :  *
     175             :  *  * select_ncolors decides how to divvy up the available colors
     176             :  *    among the components.
     177             :  *  * output_value defines the set of representative values for a component.
     178             :  *  * largest_input_value defines the mapping from input values to
     179             :  *    representative values for a component.
     180             :  * Note that the latter two routines may impose different policies for
     181             :  * different components, though this is not currently done.
     182             :  */
     183             : 
     184             : 
     185             : LOCAL(int)
     186           0 : select_ncolors (j_decompress_ptr cinfo, int Ncolors[])
     187             : /* Determine allocation of desired colors to components, */
     188             : /* and fill in Ncolors[] array to indicate choice. */
     189             : /* Return value is total number of colors (product of Ncolors[] values). */
     190             : {
     191           0 :   int nc = cinfo->out_color_components; /* number of color components */
     192           0 :   int max_colors = cinfo->desired_number_of_colors;
     193             :   int total_colors, iroot, i, j;
     194             :   boolean changed;
     195             :   long temp;
     196           0 :   int RGB_order[3] = { RGB_GREEN, RGB_RED, RGB_BLUE };
     197           0 :   RGB_order[0] = rgb_green[cinfo->out_color_space];
     198           0 :   RGB_order[1] = rgb_red[cinfo->out_color_space];
     199           0 :   RGB_order[2] = rgb_blue[cinfo->out_color_space];
     200             : 
     201             :   /* We can allocate at least the nc'th root of max_colors per component. */
     202             :   /* Compute floor(nc'th root of max_colors). */
     203           0 :   iroot = 1;
     204             :   do {
     205           0 :     iroot++;
     206           0 :     temp = iroot;               /* set temp = iroot ** nc */
     207           0 :     for (i = 1; i < nc; i++)
     208           0 :       temp *= iroot;
     209           0 :   } while (temp <= (long) max_colors); /* repeat till iroot exceeds root */
     210           0 :   iroot--;                      /* now iroot = floor(root) */
     211             : 
     212             :   /* Must have at least 2 color values per component */
     213           0 :   if (iroot < 2)
     214           0 :     ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, (int) temp);
     215             : 
     216             :   /* Initialize to iroot color values for each component */
     217           0 :   total_colors = 1;
     218           0 :   for (i = 0; i < nc; i++) {
     219           0 :     Ncolors[i] = iroot;
     220           0 :     total_colors *= iroot;
     221             :   }
     222             :   /* We may be able to increment the count for one or more components without
     223             :    * exceeding max_colors, though we know not all can be incremented.
     224             :    * Sometimes, the first component can be incremented more than once!
     225             :    * (Example: for 16 colors, we start at 2*2*2, go to 3*2*2, then 4*2*2.)
     226             :    * In RGB colorspace, try to increment G first, then R, then B.
     227             :    */
     228             :   do {
     229           0 :     changed = FALSE;
     230           0 :     for (i = 0; i < nc; i++) {
     231           0 :       j = (cinfo->out_color_space == JCS_RGB ? RGB_order[i] : i);
     232             :       /* calculate new total_colors if Ncolors[j] is incremented */
     233           0 :       temp = total_colors / Ncolors[j];
     234           0 :       temp *= Ncolors[j]+1;     /* done in long arith to avoid oflo */
     235           0 :       if (temp > (long) max_colors)
     236           0 :         break;                  /* won't fit, done with this pass */
     237           0 :       Ncolors[j]++;             /* OK, apply the increment */
     238           0 :       total_colors = (int) temp;
     239           0 :       changed = TRUE;
     240             :     }
     241           0 :   } while (changed);
     242             : 
     243           0 :   return total_colors;
     244             : }
     245             : 
     246             : 
     247             : LOCAL(int)
     248           0 : output_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
     249             : /* Return j'th output value, where j will range from 0 to maxj */
     250             : /* The output values must fall in 0..MAXJSAMPLE in increasing order */
     251             : {
     252             :   /* We always provide values 0 and MAXJSAMPLE for each component;
     253             :    * any additional values are equally spaced between these limits.
     254             :    * (Forcing the upper and lower values to the limits ensures that
     255             :    * dithering can't produce a color outside the selected gamut.)
     256             :    */
     257           0 :   return (int) (((JLONG) j * MAXJSAMPLE + maxj/2) / maxj);
     258             : }
     259             : 
     260             : 
     261             : LOCAL(int)
     262           0 : largest_input_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
     263             : /* Return largest input value that should map to j'th output value */
     264             : /* Must have largest(j=0) >= 0, and largest(j=maxj) >= MAXJSAMPLE */
     265             : {
     266             :   /* Breakpoints are halfway between values returned by output_value */
     267           0 :   return (int) (((JLONG) (2*j + 1) * MAXJSAMPLE + maxj) / (2*maxj));
     268             : }
     269             : 
     270             : 
     271             : /*
     272             :  * Create the colormap.
     273             :  */
     274             : 
     275             : LOCAL(void)
     276           0 : create_colormap (j_decompress_ptr cinfo)
     277             : {
     278           0 :   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
     279             :   JSAMPARRAY colormap;          /* Created colormap */
     280             :   int total_colors;             /* Number of distinct output colors */
     281             :   int i,j,k, nci, blksize, blkdist, ptr, val;
     282             : 
     283             :   /* Select number of colors for each component */
     284           0 :   total_colors = select_ncolors(cinfo, cquantize->Ncolors);
     285             : 
     286             :   /* Report selected color counts */
     287           0 :   if (cinfo->out_color_components == 3)
     288           0 :     TRACEMS4(cinfo, 1, JTRC_QUANT_3_NCOLORS,
     289             :              total_colors, cquantize->Ncolors[0],
     290             :              cquantize->Ncolors[1], cquantize->Ncolors[2]);
     291             :   else
     292           0 :     TRACEMS1(cinfo, 1, JTRC_QUANT_NCOLORS, total_colors);
     293             : 
     294             :   /* Allocate and fill in the colormap. */
     295             :   /* The colors are ordered in the map in standard row-major order, */
     296             :   /* i.e. rightmost (highest-indexed) color changes most rapidly. */
     297             : 
     298           0 :   colormap = (*cinfo->mem->alloc_sarray)
     299             :     ((j_common_ptr) cinfo, JPOOL_IMAGE,
     300           0 :      (JDIMENSION) total_colors, (JDIMENSION) cinfo->out_color_components);
     301             : 
     302             :   /* blksize is number of adjacent repeated entries for a component */
     303             :   /* blkdist is distance between groups of identical entries for a component */
     304           0 :   blkdist = total_colors;
     305             : 
     306           0 :   for (i = 0; i < cinfo->out_color_components; i++) {
     307             :     /* fill in colormap entries for i'th color component */
     308           0 :     nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
     309           0 :     blksize = blkdist / nci;
     310           0 :     for (j = 0; j < nci; j++) {
     311             :       /* Compute j'th output value (out of nci) for component */
     312           0 :       val = output_value(cinfo, i, j, nci-1);
     313             :       /* Fill in all colormap entries that have this value of this component */
     314           0 :       for (ptr = j * blksize; ptr < total_colors; ptr += blkdist) {
     315             :         /* fill in blksize entries beginning at ptr */
     316           0 :         for (k = 0; k < blksize; k++)
     317           0 :           colormap[i][ptr+k] = (JSAMPLE) val;
     318             :       }
     319             :     }
     320           0 :     blkdist = blksize;          /* blksize of this color is blkdist of next */
     321             :   }
     322             : 
     323             :   /* Save the colormap in private storage,
     324             :    * where it will survive color quantization mode changes.
     325             :    */
     326           0 :   cquantize->sv_colormap = colormap;
     327           0 :   cquantize->sv_actual = total_colors;
     328           0 : }
     329             : 
     330             : 
     331             : /*
     332             :  * Create the color index table.
     333             :  */
     334             : 
     335             : LOCAL(void)
     336           0 : create_colorindex (j_decompress_ptr cinfo)
     337             : {
     338           0 :   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
     339             :   JSAMPROW indexptr;
     340             :   int i,j,k, nci, blksize, val, pad;
     341             : 
     342             :   /* For ordered dither, we pad the color index tables by MAXJSAMPLE in
     343             :    * each direction (input index values can be -MAXJSAMPLE .. 2*MAXJSAMPLE).
     344             :    * This is not necessary in the other dithering modes.  However, we
     345             :    * flag whether it was done in case user changes dithering mode.
     346             :    */
     347           0 :   if (cinfo->dither_mode == JDITHER_ORDERED) {
     348           0 :     pad = MAXJSAMPLE*2;
     349           0 :     cquantize->is_padded = TRUE;
     350             :   } else {
     351           0 :     pad = 0;
     352           0 :     cquantize->is_padded = FALSE;
     353             :   }
     354             : 
     355           0 :   cquantize->colorindex = (*cinfo->mem->alloc_sarray)
     356             :     ((j_common_ptr) cinfo, JPOOL_IMAGE,
     357           0 :      (JDIMENSION) (MAXJSAMPLE+1 + pad),
     358           0 :      (JDIMENSION) cinfo->out_color_components);
     359             : 
     360             :   /* blksize is number of adjacent repeated entries for a component */
     361           0 :   blksize = cquantize->sv_actual;
     362             : 
     363           0 :   for (i = 0; i < cinfo->out_color_components; i++) {
     364             :     /* fill in colorindex entries for i'th color component */
     365           0 :     nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
     366           0 :     blksize = blksize / nci;
     367             : 
     368             :     /* adjust colorindex pointers to provide padding at negative indexes. */
     369           0 :     if (pad)
     370           0 :       cquantize->colorindex[i] += MAXJSAMPLE;
     371             : 
     372             :     /* in loop, val = index of current output value, */
     373             :     /* and k = largest j that maps to current val */
     374           0 :     indexptr = cquantize->colorindex[i];
     375           0 :     val = 0;
     376           0 :     k = largest_input_value(cinfo, i, 0, nci-1);
     377           0 :     for (j = 0; j <= MAXJSAMPLE; j++) {
     378           0 :       while (j > k)             /* advance val if past boundary */
     379           0 :         k = largest_input_value(cinfo, i, ++val, nci-1);
     380             :       /* premultiply so that no multiplication needed in main processing */
     381           0 :       indexptr[j] = (JSAMPLE) (val * blksize);
     382             :     }
     383             :     /* Pad at both ends if necessary */
     384           0 :     if (pad)
     385           0 :       for (j = 1; j <= MAXJSAMPLE; j++) {
     386           0 :         indexptr[-j] = indexptr[0];
     387           0 :         indexptr[MAXJSAMPLE+j] = indexptr[MAXJSAMPLE];
     388             :       }
     389             :   }
     390           0 : }
     391             : 
     392             : 
     393             : /*
     394             :  * Create an ordered-dither array for a component having ncolors
     395             :  * distinct output values.
     396             :  */
     397             : 
     398             : LOCAL(ODITHER_MATRIX_PTR)
     399           0 : make_odither_array (j_decompress_ptr cinfo, int ncolors)
     400             : {
     401             :   ODITHER_MATRIX_PTR odither;
     402             :   int j,k;
     403             :   JLONG num,den;
     404             : 
     405           0 :   odither = (ODITHER_MATRIX_PTR)
     406           0 :     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
     407             :                                 sizeof(ODITHER_MATRIX));
     408             :   /* The inter-value distance for this color is MAXJSAMPLE/(ncolors-1).
     409             :    * Hence the dither value for the matrix cell with fill order f
     410             :    * (f=0..N-1) should be (N-1-2*f)/(2*N) * MAXJSAMPLE/(ncolors-1).
     411             :    * On 16-bit-int machine, be careful to avoid overflow.
     412             :    */
     413           0 :   den = 2 * ODITHER_CELLS * ((JLONG) (ncolors - 1));
     414           0 :   for (j = 0; j < ODITHER_SIZE; j++) {
     415           0 :     for (k = 0; k < ODITHER_SIZE; k++) {
     416           0 :       num = ((JLONG) (ODITHER_CELLS-1 - 2*((int)base_dither_matrix[j][k])))
     417           0 :             * MAXJSAMPLE;
     418             :       /* Ensure round towards zero despite C's lack of consistency
     419             :        * about rounding negative values in integer division...
     420             :        */
     421           0 :       odither[j][k] = (int) (num<0 ? -((-num)/den) : num/den);
     422             :     }
     423             :   }
     424           0 :   return odither;
     425             : }
     426             : 
     427             : 
     428             : /*
     429             :  * Create the ordered-dither tables.
     430             :  * Components having the same number of representative colors may
     431             :  * share a dither table.
     432             :  */
     433             : 
     434             : LOCAL(void)
     435           0 : create_odither_tables (j_decompress_ptr cinfo)
     436             : {
     437           0 :   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
     438             :   ODITHER_MATRIX_PTR odither;
     439             :   int i, j, nci;
     440             : 
     441           0 :   for (i = 0; i < cinfo->out_color_components; i++) {
     442           0 :     nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
     443           0 :     odither = NULL;             /* search for matching prior component */
     444           0 :     for (j = 0; j < i; j++) {
     445           0 :       if (nci == cquantize->Ncolors[j]) {
     446           0 :         odither = cquantize->odither[j];
     447           0 :         break;
     448             :       }
     449             :     }
     450           0 :     if (odither == NULL)        /* need a new table? */
     451           0 :       odither = make_odither_array(cinfo, nci);
     452           0 :     cquantize->odither[i] = odither;
     453             :   }
     454           0 : }
     455             : 
     456             : 
     457             : /*
     458             :  * Map some rows of pixels to the output colormapped representation.
     459             :  */
     460             : 
     461             : METHODDEF(void)
     462           0 : color_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
     463             :                 JSAMPARRAY output_buf, int num_rows)
     464             : /* General case, no dithering */
     465             : {
     466           0 :   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
     467           0 :   JSAMPARRAY colorindex = cquantize->colorindex;
     468             :   register int pixcode, ci;
     469             :   register JSAMPROW ptrin, ptrout;
     470             :   int row;
     471             :   JDIMENSION col;
     472           0 :   JDIMENSION width = cinfo->output_width;
     473           0 :   register int nc = cinfo->out_color_components;
     474             : 
     475           0 :   for (row = 0; row < num_rows; row++) {
     476           0 :     ptrin = input_buf[row];
     477           0 :     ptrout = output_buf[row];
     478           0 :     for (col = width; col > 0; col--) {
     479           0 :       pixcode = 0;
     480           0 :       for (ci = 0; ci < nc; ci++) {
     481           0 :         pixcode += GETJSAMPLE(colorindex[ci][GETJSAMPLE(*ptrin++)]);
     482             :       }
     483           0 :       *ptrout++ = (JSAMPLE) pixcode;
     484             :     }
     485             :   }
     486           0 : }
     487             : 
     488             : 
     489             : METHODDEF(void)
     490           0 : color_quantize3 (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
     491             :                  JSAMPARRAY output_buf, int num_rows)
     492             : /* Fast path for out_color_components==3, no dithering */
     493             : {
     494           0 :   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
     495             :   register int pixcode;
     496             :   register JSAMPROW ptrin, ptrout;
     497           0 :   JSAMPROW colorindex0 = cquantize->colorindex[0];
     498           0 :   JSAMPROW colorindex1 = cquantize->colorindex[1];
     499           0 :   JSAMPROW colorindex2 = cquantize->colorindex[2];
     500             :   int row;
     501             :   JDIMENSION col;
     502           0 :   JDIMENSION width = cinfo->output_width;
     503             : 
     504           0 :   for (row = 0; row < num_rows; row++) {
     505           0 :     ptrin = input_buf[row];
     506           0 :     ptrout = output_buf[row];
     507           0 :     for (col = width; col > 0; col--) {
     508           0 :       pixcode  = GETJSAMPLE(colorindex0[GETJSAMPLE(*ptrin++)]);
     509           0 :       pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*ptrin++)]);
     510           0 :       pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*ptrin++)]);
     511           0 :       *ptrout++ = (JSAMPLE) pixcode;
     512             :     }
     513             :   }
     514           0 : }
     515             : 
     516             : 
     517             : METHODDEF(void)
     518           0 : quantize_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
     519             :                      JSAMPARRAY output_buf, int num_rows)
     520             : /* General case, with ordered dithering */
     521             : {
     522           0 :   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
     523             :   register JSAMPROW input_ptr;
     524             :   register JSAMPROW output_ptr;
     525             :   JSAMPROW colorindex_ci;
     526             :   int *dither;                  /* points to active row of dither matrix */
     527             :   int row_index, col_index;     /* current indexes into dither matrix */
     528           0 :   int nc = cinfo->out_color_components;
     529             :   int ci;
     530             :   int row;
     531             :   JDIMENSION col;
     532           0 :   JDIMENSION width = cinfo->output_width;
     533             : 
     534           0 :   for (row = 0; row < num_rows; row++) {
     535             :     /* Initialize output values to 0 so can process components separately */
     536           0 :     jzero_far((void *) output_buf[row], (size_t) (width * sizeof(JSAMPLE)));
     537           0 :     row_index = cquantize->row_index;
     538           0 :     for (ci = 0; ci < nc; ci++) {
     539           0 :       input_ptr = input_buf[row] + ci;
     540           0 :       output_ptr = output_buf[row];
     541           0 :       colorindex_ci = cquantize->colorindex[ci];
     542           0 :       dither = cquantize->odither[ci][row_index];
     543           0 :       col_index = 0;
     544             : 
     545           0 :       for (col = width; col > 0; col--) {
     546             :         /* Form pixel value + dither, range-limit to 0..MAXJSAMPLE,
     547             :          * select output value, accumulate into output code for this pixel.
     548             :          * Range-limiting need not be done explicitly, as we have extended
     549             :          * the colorindex table to produce the right answers for out-of-range
     550             :          * inputs.  The maximum dither is +- MAXJSAMPLE; this sets the
     551             :          * required amount of padding.
     552             :          */
     553           0 :         *output_ptr += colorindex_ci[GETJSAMPLE(*input_ptr)+dither[col_index]];
     554           0 :         input_ptr += nc;
     555           0 :         output_ptr++;
     556           0 :         col_index = (col_index + 1) & ODITHER_MASK;
     557             :       }
     558             :     }
     559             :     /* Advance row index for next row */
     560           0 :     row_index = (row_index + 1) & ODITHER_MASK;
     561           0 :     cquantize->row_index = row_index;
     562             :   }
     563           0 : }
     564             : 
     565             : 
     566             : METHODDEF(void)
     567           0 : quantize3_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
     568             :                       JSAMPARRAY output_buf, int num_rows)
     569             : /* Fast path for out_color_components==3, with ordered dithering */
     570             : {
     571           0 :   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
     572             :   register int pixcode;
     573             :   register JSAMPROW input_ptr;
     574             :   register JSAMPROW output_ptr;
     575           0 :   JSAMPROW colorindex0 = cquantize->colorindex[0];
     576           0 :   JSAMPROW colorindex1 = cquantize->colorindex[1];
     577           0 :   JSAMPROW colorindex2 = cquantize->colorindex[2];
     578             :   int *dither0;                 /* points to active row of dither matrix */
     579             :   int *dither1;
     580             :   int *dither2;
     581             :   int row_index, col_index;     /* current indexes into dither matrix */
     582             :   int row;
     583             :   JDIMENSION col;
     584           0 :   JDIMENSION width = cinfo->output_width;
     585             : 
     586           0 :   for (row = 0; row < num_rows; row++) {
     587           0 :     row_index = cquantize->row_index;
     588           0 :     input_ptr = input_buf[row];
     589           0 :     output_ptr = output_buf[row];
     590           0 :     dither0 = cquantize->odither[0][row_index];
     591           0 :     dither1 = cquantize->odither[1][row_index];
     592           0 :     dither2 = cquantize->odither[2][row_index];
     593           0 :     col_index = 0;
     594             : 
     595           0 :     for (col = width; col > 0; col--) {
     596           0 :       pixcode  = GETJSAMPLE(colorindex0[GETJSAMPLE(*input_ptr++) +
     597             :                                         dither0[col_index]]);
     598           0 :       pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*input_ptr++) +
     599             :                                         dither1[col_index]]);
     600           0 :       pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*input_ptr++) +
     601             :                                         dither2[col_index]]);
     602           0 :       *output_ptr++ = (JSAMPLE) pixcode;
     603           0 :       col_index = (col_index + 1) & ODITHER_MASK;
     604             :     }
     605           0 :     row_index = (row_index + 1) & ODITHER_MASK;
     606           0 :     cquantize->row_index = row_index;
     607             :   }
     608           0 : }
     609             : 
     610             : 
     611             : METHODDEF(void)
     612           0 : quantize_fs_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
     613             :                     JSAMPARRAY output_buf, int num_rows)
     614             : /* General case, with Floyd-Steinberg dithering */
     615             : {
     616           0 :   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
     617             :   register LOCFSERROR cur;      /* current error or pixel value */
     618             :   LOCFSERROR belowerr;          /* error for pixel below cur */
     619             :   LOCFSERROR bpreverr;          /* error for below/prev col */
     620             :   LOCFSERROR bnexterr;          /* error for below/next col */
     621             :   LOCFSERROR delta;
     622             :   register FSERRPTR errorptr;   /* => fserrors[] at column before current */
     623             :   register JSAMPROW input_ptr;
     624             :   register JSAMPROW output_ptr;
     625             :   JSAMPROW colorindex_ci;
     626             :   JSAMPROW colormap_ci;
     627             :   int pixcode;
     628           0 :   int nc = cinfo->out_color_components;
     629             :   int dir;                      /* 1 for left-to-right, -1 for right-to-left */
     630             :   int dirnc;                    /* dir * nc */
     631             :   int ci;
     632             :   int row;
     633             :   JDIMENSION col;
     634           0 :   JDIMENSION width = cinfo->output_width;
     635           0 :   JSAMPLE *range_limit = cinfo->sample_range_limit;
     636             :   SHIFT_TEMPS
     637             : 
     638           0 :   for (row = 0; row < num_rows; row++) {
     639             :     /* Initialize output values to 0 so can process components separately */
     640           0 :     jzero_far((void *) output_buf[row], (size_t) (width * sizeof(JSAMPLE)));
     641           0 :     for (ci = 0; ci < nc; ci++) {
     642           0 :       input_ptr = input_buf[row] + ci;
     643           0 :       output_ptr = output_buf[row];
     644           0 :       if (cquantize->on_odd_row) {
     645             :         /* work right to left in this row */
     646           0 :         input_ptr += (width-1) * nc; /* so point to rightmost pixel */
     647           0 :         output_ptr += width-1;
     648           0 :         dir = -1;
     649           0 :         dirnc = -nc;
     650           0 :         errorptr = cquantize->fserrors[ci] + (width+1); /* => entry after last column */
     651             :       } else {
     652             :         /* work left to right in this row */
     653           0 :         dir = 1;
     654           0 :         dirnc = nc;
     655           0 :         errorptr = cquantize->fserrors[ci]; /* => entry before first column */
     656             :       }
     657           0 :       colorindex_ci = cquantize->colorindex[ci];
     658           0 :       colormap_ci = cquantize->sv_colormap[ci];
     659             :       /* Preset error values: no error propagated to first pixel from left */
     660           0 :       cur = 0;
     661             :       /* and no error propagated to row below yet */
     662           0 :       belowerr = bpreverr = 0;
     663             : 
     664           0 :       for (col = width; col > 0; col--) {
     665             :         /* cur holds the error propagated from the previous pixel on the
     666             :          * current line.  Add the error propagated from the previous line
     667             :          * to form the complete error correction term for this pixel, and
     668             :          * round the error term (which is expressed * 16) to an integer.
     669             :          * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
     670             :          * for either sign of the error value.
     671             :          * Note: errorptr points to *previous* column's array entry.
     672             :          */
     673           0 :         cur = RIGHT_SHIFT(cur + errorptr[dir] + 8, 4);
     674             :         /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
     675             :          * The maximum error is +- MAXJSAMPLE; this sets the required size
     676             :          * of the range_limit array.
     677             :          */
     678           0 :         cur += GETJSAMPLE(*input_ptr);
     679           0 :         cur = GETJSAMPLE(range_limit[cur]);
     680             :         /* Select output value, accumulate into output code for this pixel */
     681           0 :         pixcode = GETJSAMPLE(colorindex_ci[cur]);
     682           0 :         *output_ptr += (JSAMPLE) pixcode;
     683             :         /* Compute actual representation error at this pixel */
     684             :         /* Note: we can do this even though we don't have the final */
     685             :         /* pixel code, because the colormap is orthogonal. */
     686           0 :         cur -= GETJSAMPLE(colormap_ci[pixcode]);
     687             :         /* Compute error fractions to be propagated to adjacent pixels.
     688             :          * Add these into the running sums, and simultaneously shift the
     689             :          * next-line error sums left by 1 column.
     690             :          */
     691           0 :         bnexterr = cur;
     692           0 :         delta = cur * 2;
     693           0 :         cur += delta;           /* form error * 3 */
     694           0 :         errorptr[0] = (FSERROR) (bpreverr + cur);
     695           0 :         cur += delta;           /* form error * 5 */
     696           0 :         bpreverr = belowerr + cur;
     697           0 :         belowerr = bnexterr;
     698           0 :         cur += delta;           /* form error * 7 */
     699             :         /* At this point cur contains the 7/16 error value to be propagated
     700             :          * to the next pixel on the current line, and all the errors for the
     701             :          * next line have been shifted over. We are therefore ready to move on.
     702             :          */
     703           0 :         input_ptr += dirnc;     /* advance input ptr to next column */
     704           0 :         output_ptr += dir;      /* advance output ptr to next column */
     705           0 :         errorptr += dir;        /* advance errorptr to current column */
     706             :       }
     707             :       /* Post-loop cleanup: we must unload the final error value into the
     708             :        * final fserrors[] entry.  Note we need not unload belowerr because
     709             :        * it is for the dummy column before or after the actual array.
     710             :        */
     711           0 :       errorptr[0] = (FSERROR) bpreverr; /* unload prev err into array */
     712             :     }
     713           0 :     cquantize->on_odd_row = (cquantize->on_odd_row ? FALSE : TRUE);
     714             :   }
     715           0 : }
     716             : 
     717             : 
     718             : /*
     719             :  * Allocate workspace for Floyd-Steinberg errors.
     720             :  */
     721             : 
     722             : LOCAL(void)
     723           0 : alloc_fs_workspace (j_decompress_ptr cinfo)
     724             : {
     725           0 :   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
     726             :   size_t arraysize;
     727             :   int i;
     728             : 
     729           0 :   arraysize = (size_t) ((cinfo->output_width + 2) * sizeof(FSERROR));
     730           0 :   for (i = 0; i < cinfo->out_color_components; i++) {
     731           0 :     cquantize->fserrors[i] = (FSERRPTR)
     732           0 :       (*cinfo->mem->alloc_large)((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
     733             :   }
     734           0 : }
     735             : 
     736             : 
     737             : /*
     738             :  * Initialize for one-pass color quantization.
     739             :  */
     740             : 
     741             : METHODDEF(void)
     742           0 : start_pass_1_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
     743             : {
     744           0 :   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
     745             :   size_t arraysize;
     746             :   int i;
     747             : 
     748             :   /* Install my colormap. */
     749           0 :   cinfo->colormap = cquantize->sv_colormap;
     750           0 :   cinfo->actual_number_of_colors = cquantize->sv_actual;
     751             : 
     752             :   /* Initialize for desired dithering mode. */
     753           0 :   switch (cinfo->dither_mode) {
     754             :   case JDITHER_NONE:
     755           0 :     if (cinfo->out_color_components == 3)
     756           0 :       cquantize->pub.color_quantize = color_quantize3;
     757             :     else
     758           0 :       cquantize->pub.color_quantize = color_quantize;
     759           0 :     break;
     760             :   case JDITHER_ORDERED:
     761           0 :     if (cinfo->out_color_components == 3)
     762           0 :       cquantize->pub.color_quantize = quantize3_ord_dither;
     763             :     else
     764           0 :       cquantize->pub.color_quantize = quantize_ord_dither;
     765           0 :     cquantize->row_index = 0;   /* initialize state for ordered dither */
     766             :     /* If user changed to ordered dither from another mode,
     767             :      * we must recreate the color index table with padding.
     768             :      * This will cost extra space, but probably isn't very likely.
     769             :      */
     770           0 :     if (! cquantize->is_padded)
     771           0 :       create_colorindex(cinfo);
     772             :     /* Create ordered-dither tables if we didn't already. */
     773           0 :     if (cquantize->odither[0] == NULL)
     774           0 :       create_odither_tables(cinfo);
     775           0 :     break;
     776             :   case JDITHER_FS:
     777           0 :     cquantize->pub.color_quantize = quantize_fs_dither;
     778           0 :     cquantize->on_odd_row = FALSE; /* initialize state for F-S dither */
     779             :     /* Allocate Floyd-Steinberg workspace if didn't already. */
     780           0 :     if (cquantize->fserrors[0] == NULL)
     781           0 :       alloc_fs_workspace(cinfo);
     782             :     /* Initialize the propagated errors to zero. */
     783           0 :     arraysize = (size_t) ((cinfo->output_width + 2) * sizeof(FSERROR));
     784           0 :     for (i = 0; i < cinfo->out_color_components; i++)
     785           0 :       jzero_far((void *) cquantize->fserrors[i], arraysize);
     786           0 :     break;
     787             :   default:
     788           0 :     ERREXIT(cinfo, JERR_NOT_COMPILED);
     789           0 :     break;
     790             :   }
     791           0 : }
     792             : 
     793             : 
     794             : /*
     795             :  * Finish up at the end of the pass.
     796             :  */
     797             : 
     798             : METHODDEF(void)
     799           0 : finish_pass_1_quant (j_decompress_ptr cinfo)
     800             : {
     801             :   /* no work in 1-pass case */
     802           0 : }
     803             : 
     804             : 
     805             : /*
     806             :  * Switch to a new external colormap between output passes.
     807             :  * Shouldn't get to this module!
     808             :  */
     809             : 
     810             : METHODDEF(void)
     811           0 : new_color_map_1_quant (j_decompress_ptr cinfo)
     812             : {
     813           0 :   ERREXIT(cinfo, JERR_MODE_CHANGE);
     814           0 : }
     815             : 
     816             : 
     817             : /*
     818             :  * Module initialization routine for 1-pass color quantization.
     819             :  */
     820             : 
     821             : GLOBAL(void)
     822           0 : jinit_1pass_quantizer (j_decompress_ptr cinfo)
     823             : {
     824             :   my_cquantize_ptr cquantize;
     825             : 
     826           0 :   cquantize = (my_cquantize_ptr)
     827           0 :     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
     828             :                                 sizeof(my_cquantizer));
     829           0 :   cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
     830           0 :   cquantize->pub.start_pass = start_pass_1_quant;
     831           0 :   cquantize->pub.finish_pass = finish_pass_1_quant;
     832           0 :   cquantize->pub.new_color_map = new_color_map_1_quant;
     833           0 :   cquantize->fserrors[0] = NULL; /* Flag FS workspace not allocated */
     834           0 :   cquantize->odither[0] = NULL; /* Also flag odither arrays not allocated */
     835             : 
     836             :   /* Make sure my internal arrays won't overflow */
     837           0 :   if (cinfo->out_color_components > MAX_Q_COMPS)
     838           0 :     ERREXIT1(cinfo, JERR_QUANT_COMPONENTS, MAX_Q_COMPS);
     839             :   /* Make sure colormap indexes can be represented by JSAMPLEs */
     840           0 :   if (cinfo->desired_number_of_colors > (MAXJSAMPLE+1))
     841           0 :     ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXJSAMPLE+1);
     842             : 
     843             :   /* Create the colormap and color index table. */
     844           0 :   create_colormap(cinfo);
     845           0 :   create_colorindex(cinfo);
     846             : 
     847             :   /* Allocate Floyd-Steinberg workspace now if requested.
     848             :    * We do this now since it may affect the memory manager's space
     849             :    * calculations.  If the user changes to FS dither mode in a later pass, we
     850             :    * will allocate the space then, and will possibly overrun the
     851             :    * max_memory_to_use setting.
     852             :    */
     853           0 :   if (cinfo->dither_mode == JDITHER_FS)
     854           0 :     alloc_fs_workspace(cinfo);
     855           0 : }
     856             : 
     857             : #endif /* QUANT_1PASS_SUPPORTED */

Generated by: LCOV version 1.13