LCOV - code coverage report
Current view: top level - media/libjpeg - jquant2.c (source / functions) Hit Total Coverage
Test: output.info Lines: 0 469 0.0 %
Date: 2017-07-14 16:53:18 Functions: 0 18 0.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*
       2             :  * jquant2.c
       3             :  *
       4             :  * This file was part of the Independent JPEG Group's software:
       5             :  * Copyright (C) 1991-1996, Thomas G. Lane.
       6             :  * libjpeg-turbo Modifications:
       7             :  * Copyright (C) 2009, 2014-2015, D. R. Commander.
       8             :  * For conditions of distribution and use, see the accompanying README.ijg
       9             :  * file.
      10             :  *
      11             :  * This file contains 2-pass color quantization (color mapping) routines.
      12             :  * These routines provide selection of a custom color map for an image,
      13             :  * followed by mapping of the image to that color map, with optional
      14             :  * Floyd-Steinberg dithering.
      15             :  * It is also possible to use just the second pass to map to an arbitrary
      16             :  * externally-given color map.
      17             :  *
      18             :  * Note: ordered dithering is not supported, since there isn't any fast
      19             :  * way to compute intercolor distances; it's unclear that ordered dither's
      20             :  * fundamental assumptions even hold with an irregularly spaced color map.
      21             :  */
      22             : 
      23             : #define JPEG_INTERNALS
      24             : #include "jinclude.h"
      25             : #include "jpeglib.h"
      26             : 
      27             : #ifdef QUANT_2PASS_SUPPORTED
      28             : 
      29             : 
      30             : /*
      31             :  * This module implements the well-known Heckbert paradigm for color
      32             :  * quantization.  Most of the ideas used here can be traced back to
      33             :  * Heckbert's seminal paper
      34             :  *   Heckbert, Paul.  "Color Image Quantization for Frame Buffer Display",
      35             :  *   Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304.
      36             :  *
      37             :  * In the first pass over the image, we accumulate a histogram showing the
      38             :  * usage count of each possible color.  To keep the histogram to a reasonable
      39             :  * size, we reduce the precision of the input; typical practice is to retain
      40             :  * 5 or 6 bits per color, so that 8 or 4 different input values are counted
      41             :  * in the same histogram cell.
      42             :  *
      43             :  * Next, the color-selection step begins with a box representing the whole
      44             :  * color space, and repeatedly splits the "largest" remaining box until we
      45             :  * have as many boxes as desired colors.  Then the mean color in each
      46             :  * remaining box becomes one of the possible output colors.
      47             :  *
      48             :  * The second pass over the image maps each input pixel to the closest output
      49             :  * color (optionally after applying a Floyd-Steinberg dithering correction).
      50             :  * This mapping is logically trivial, but making it go fast enough requires
      51             :  * considerable care.
      52             :  *
      53             :  * Heckbert-style quantizers vary a good deal in their policies for choosing
      54             :  * the "largest" box and deciding where to cut it.  The particular policies
      55             :  * used here have proved out well in experimental comparisons, but better ones
      56             :  * may yet be found.
      57             :  *
      58             :  * In earlier versions of the IJG code, this module quantized in YCbCr color
      59             :  * space, processing the raw upsampled data without a color conversion step.
      60             :  * This allowed the color conversion math to be done only once per colormap
      61             :  * entry, not once per pixel.  However, that optimization precluded other
      62             :  * useful optimizations (such as merging color conversion with upsampling)
      63             :  * and it also interfered with desired capabilities such as quantizing to an
      64             :  * externally-supplied colormap.  We have therefore abandoned that approach.
      65             :  * The present code works in the post-conversion color space, typically RGB.
      66             :  *
      67             :  * To improve the visual quality of the results, we actually work in scaled
      68             :  * RGB space, giving G distances more weight than R, and R in turn more than
      69             :  * B.  To do everything in integer math, we must use integer scale factors.
      70             :  * The 2/3/1 scale factors used here correspond loosely to the relative
      71             :  * weights of the colors in the NTSC grayscale equation.
      72             :  * If you want to use this code to quantize a non-RGB color space, you'll
      73             :  * probably need to change these scale factors.
      74             :  */
      75             : 
      76             : #define R_SCALE 2               /* scale R distances by this much */
      77             : #define G_SCALE 3               /* scale G distances by this much */
      78             : #define B_SCALE 1               /* and B by this much */
      79             : 
      80             : static const int c_scales[3]={R_SCALE, G_SCALE, B_SCALE};
      81             : #define C0_SCALE c_scales[rgb_red[cinfo->out_color_space]]
      82             : #define C1_SCALE c_scales[rgb_green[cinfo->out_color_space]]
      83             : #define C2_SCALE c_scales[rgb_blue[cinfo->out_color_space]]
      84             : 
      85             : /*
      86             :  * First we have the histogram data structure and routines for creating it.
      87             :  *
      88             :  * The number of bits of precision can be adjusted by changing these symbols.
      89             :  * We recommend keeping 6 bits for G and 5 each for R and B.
      90             :  * If you have plenty of memory and cycles, 6 bits all around gives marginally
      91             :  * better results; if you are short of memory, 5 bits all around will save
      92             :  * some space but degrade the results.
      93             :  * To maintain a fully accurate histogram, we'd need to allocate a "long"
      94             :  * (preferably unsigned long) for each cell.  In practice this is overkill;
      95             :  * we can get by with 16 bits per cell.  Few of the cell counts will overflow,
      96             :  * and clamping those that do overflow to the maximum value will give close-
      97             :  * enough results.  This reduces the recommended histogram size from 256Kb
      98             :  * to 128Kb, which is a useful savings on PC-class machines.
      99             :  * (In the second pass the histogram space is re-used for pixel mapping data;
     100             :  * in that capacity, each cell must be able to store zero to the number of
     101             :  * desired colors.  16 bits/cell is plenty for that too.)
     102             :  * Since the JPEG code is intended to run in small memory model on 80x86
     103             :  * machines, we can't just allocate the histogram in one chunk.  Instead
     104             :  * of a true 3-D array, we use a row of pointers to 2-D arrays.  Each
     105             :  * pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and
     106             :  * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries.
     107             :  */
     108             : 
     109             : #define MAXNUMCOLORS  (MAXJSAMPLE+1) /* maximum size of colormap */
     110             : 
     111             : /* These will do the right thing for either R,G,B or B,G,R color order,
     112             :  * but you may not like the results for other color orders.
     113             :  */
     114             : #define HIST_C0_BITS  5         /* bits of precision in R/B histogram */
     115             : #define HIST_C1_BITS  6         /* bits of precision in G histogram */
     116             : #define HIST_C2_BITS  5         /* bits of precision in B/R histogram */
     117             : 
     118             : /* Number of elements along histogram axes. */
     119             : #define HIST_C0_ELEMS  (1<<HIST_C0_BITS)
     120             : #define HIST_C1_ELEMS  (1<<HIST_C1_BITS)
     121             : #define HIST_C2_ELEMS  (1<<HIST_C2_BITS)
     122             : 
     123             : /* These are the amounts to shift an input value to get a histogram index. */
     124             : #define C0_SHIFT  (BITS_IN_JSAMPLE-HIST_C0_BITS)
     125             : #define C1_SHIFT  (BITS_IN_JSAMPLE-HIST_C1_BITS)
     126             : #define C2_SHIFT  (BITS_IN_JSAMPLE-HIST_C2_BITS)
     127             : 
     128             : 
     129             : typedef UINT16 histcell;        /* histogram cell; prefer an unsigned type */
     130             : 
     131             : typedef histcell *histptr; /* for pointers to histogram cells */
     132             : 
     133             : typedef histcell hist1d[HIST_C2_ELEMS]; /* typedefs for the array */
     134             : typedef hist1d *hist2d;         /* type for the 2nd-level pointers */
     135             : typedef hist2d *hist3d;         /* type for top-level pointer */
     136             : 
     137             : 
     138             : /* Declarations for Floyd-Steinberg dithering.
     139             :  *
     140             :  * Errors are accumulated into the array fserrors[], at a resolution of
     141             :  * 1/16th of a pixel count.  The error at a given pixel is propagated
     142             :  * to its not-yet-processed neighbors using the standard F-S fractions,
     143             :  *              ...     (here)  7/16
     144             :  *              3/16    5/16    1/16
     145             :  * We work left-to-right on even rows, right-to-left on odd rows.
     146             :  *
     147             :  * We can get away with a single array (holding one row's worth of errors)
     148             :  * by using it to store the current row's errors at pixel columns not yet
     149             :  * processed, but the next row's errors at columns already processed.  We
     150             :  * need only a few extra variables to hold the errors immediately around the
     151             :  * current column.  (If we are lucky, those variables are in registers, but
     152             :  * even if not, they're probably cheaper to access than array elements are.)
     153             :  *
     154             :  * The fserrors[] array has (#columns + 2) entries; the extra entry at
     155             :  * each end saves us from special-casing the first and last pixels.
     156             :  * Each entry is three values long, one value for each color component.
     157             :  */
     158             : 
     159             : #if BITS_IN_JSAMPLE == 8
     160             : typedef INT16 FSERROR;          /* 16 bits should be enough */
     161             : typedef int LOCFSERROR;         /* use 'int' for calculation temps */
     162             : #else
     163             : typedef JLONG FSERROR;          /* may need more than 16 bits */
     164             : typedef JLONG LOCFSERROR;       /* be sure calculation temps are big enough */
     165             : #endif
     166             : 
     167             : typedef FSERROR *FSERRPTR;      /* pointer to error array */
     168             : 
     169             : 
     170             : /* Private subobject */
     171             : 
     172             : typedef struct {
     173             :   struct jpeg_color_quantizer pub; /* public fields */
     174             : 
     175             :   /* Space for the eventually created colormap is stashed here */
     176             :   JSAMPARRAY sv_colormap;       /* colormap allocated at init time */
     177             :   int desired;                  /* desired # of colors = size of colormap */
     178             : 
     179             :   /* Variables for accumulating image statistics */
     180             :   hist3d histogram;             /* pointer to the histogram */
     181             : 
     182             :   boolean needs_zeroed;         /* TRUE if next pass must zero histogram */
     183             : 
     184             :   /* Variables for Floyd-Steinberg dithering */
     185             :   FSERRPTR fserrors;            /* accumulated errors */
     186             :   boolean on_odd_row;           /* flag to remember which row we are on */
     187             :   int *error_limiter;           /* table for clamping the applied error */
     188             : } my_cquantizer;
     189             : 
     190             : typedef my_cquantizer *my_cquantize_ptr;
     191             : 
     192             : 
     193             : /*
     194             :  * Prescan some rows of pixels.
     195             :  * In this module the prescan simply updates the histogram, which has been
     196             :  * initialized to zeroes by start_pass.
     197             :  * An output_buf parameter is required by the method signature, but no data
     198             :  * is actually output (in fact the buffer controller is probably passing a
     199             :  * NULL pointer).
     200             :  */
     201             : 
     202             : METHODDEF(void)
     203           0 : prescan_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
     204             :                   JSAMPARRAY output_buf, int num_rows)
     205             : {
     206           0 :   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
     207             :   register JSAMPROW ptr;
     208             :   register histptr histp;
     209           0 :   register hist3d histogram = cquantize->histogram;
     210             :   int row;
     211             :   JDIMENSION col;
     212           0 :   JDIMENSION width = cinfo->output_width;
     213             : 
     214           0 :   for (row = 0; row < num_rows; row++) {
     215           0 :     ptr = input_buf[row];
     216           0 :     for (col = width; col > 0; col--) {
     217             :       /* get pixel value and index into the histogram */
     218           0 :       histp = & histogram[GETJSAMPLE(ptr[0]) >> C0_SHIFT]
     219           0 :                          [GETJSAMPLE(ptr[1]) >> C1_SHIFT]
     220           0 :                          [GETJSAMPLE(ptr[2]) >> C2_SHIFT];
     221             :       /* increment, check for overflow and undo increment if so. */
     222           0 :       if (++(*histp) <= 0)
     223           0 :         (*histp)--;
     224           0 :       ptr += 3;
     225             :     }
     226             :   }
     227           0 : }
     228             : 
     229             : 
     230             : /*
     231             :  * Next we have the really interesting routines: selection of a colormap
     232             :  * given the completed histogram.
     233             :  * These routines work with a list of "boxes", each representing a rectangular
     234             :  * subset of the input color space (to histogram precision).
     235             :  */
     236             : 
     237             : typedef struct {
     238             :   /* The bounds of the box (inclusive); expressed as histogram indexes */
     239             :   int c0min, c0max;
     240             :   int c1min, c1max;
     241             :   int c2min, c2max;
     242             :   /* The volume (actually 2-norm) of the box */
     243             :   JLONG volume;
     244             :   /* The number of nonzero histogram cells within this box */
     245             :   long colorcount;
     246             : } box;
     247             : 
     248             : typedef box *boxptr;
     249             : 
     250             : 
     251             : LOCAL(boxptr)
     252           0 : find_biggest_color_pop (boxptr boxlist, int numboxes)
     253             : /* Find the splittable box with the largest color population */
     254             : /* Returns NULL if no splittable boxes remain */
     255             : {
     256             :   register boxptr boxp;
     257             :   register int i;
     258           0 :   register long maxc = 0;
     259           0 :   boxptr which = NULL;
     260             : 
     261           0 :   for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
     262           0 :     if (boxp->colorcount > maxc && boxp->volume > 0) {
     263           0 :       which = boxp;
     264           0 :       maxc = boxp->colorcount;
     265             :     }
     266             :   }
     267           0 :   return which;
     268             : }
     269             : 
     270             : 
     271             : LOCAL(boxptr)
     272           0 : find_biggest_volume (boxptr boxlist, int numboxes)
     273             : /* Find the splittable box with the largest (scaled) volume */
     274             : /* Returns NULL if no splittable boxes remain */
     275             : {
     276             :   register boxptr boxp;
     277             :   register int i;
     278           0 :   register JLONG maxv = 0;
     279           0 :   boxptr which = NULL;
     280             : 
     281           0 :   for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
     282           0 :     if (boxp->volume > maxv) {
     283           0 :       which = boxp;
     284           0 :       maxv = boxp->volume;
     285             :     }
     286             :   }
     287           0 :   return which;
     288             : }
     289             : 
     290             : 
     291             : LOCAL(void)
     292           0 : update_box (j_decompress_ptr cinfo, boxptr boxp)
     293             : /* Shrink the min/max bounds of a box to enclose only nonzero elements, */
     294             : /* and recompute its volume and population */
     295             : {
     296           0 :   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
     297           0 :   hist3d histogram = cquantize->histogram;
     298             :   histptr histp;
     299             :   int c0,c1,c2;
     300             :   int c0min,c0max,c1min,c1max,c2min,c2max;
     301             :   JLONG dist0,dist1,dist2;
     302             :   long ccount;
     303             : 
     304           0 :   c0min = boxp->c0min;  c0max = boxp->c0max;
     305           0 :   c1min = boxp->c1min;  c1max = boxp->c1max;
     306           0 :   c2min = boxp->c2min;  c2max = boxp->c2max;
     307             : 
     308           0 :   if (c0max > c0min)
     309           0 :     for (c0 = c0min; c0 <= c0max; c0++)
     310           0 :       for (c1 = c1min; c1 <= c1max; c1++) {
     311           0 :         histp = & histogram[c0][c1][c2min];
     312           0 :         for (c2 = c2min; c2 <= c2max; c2++)
     313           0 :           if (*histp++ != 0) {
     314           0 :             boxp->c0min = c0min = c0;
     315           0 :             goto have_c0min;
     316             :           }
     317             :       }
     318             :  have_c0min:
     319           0 :   if (c0max > c0min)
     320           0 :     for (c0 = c0max; c0 >= c0min; c0--)
     321           0 :       for (c1 = c1min; c1 <= c1max; c1++) {
     322           0 :         histp = & histogram[c0][c1][c2min];
     323           0 :         for (c2 = c2min; c2 <= c2max; c2++)
     324           0 :           if (*histp++ != 0) {
     325           0 :             boxp->c0max = c0max = c0;
     326           0 :             goto have_c0max;
     327             :           }
     328             :       }
     329             :  have_c0max:
     330           0 :   if (c1max > c1min)
     331           0 :     for (c1 = c1min; c1 <= c1max; c1++)
     332           0 :       for (c0 = c0min; c0 <= c0max; c0++) {
     333           0 :         histp = & histogram[c0][c1][c2min];
     334           0 :         for (c2 = c2min; c2 <= c2max; c2++)
     335           0 :           if (*histp++ != 0) {
     336           0 :             boxp->c1min = c1min = c1;
     337           0 :             goto have_c1min;
     338             :           }
     339             :       }
     340             :  have_c1min:
     341           0 :   if (c1max > c1min)
     342           0 :     for (c1 = c1max; c1 >= c1min; c1--)
     343           0 :       for (c0 = c0min; c0 <= c0max; c0++) {
     344           0 :         histp = & histogram[c0][c1][c2min];
     345           0 :         for (c2 = c2min; c2 <= c2max; c2++)
     346           0 :           if (*histp++ != 0) {
     347           0 :             boxp->c1max = c1max = c1;
     348           0 :             goto have_c1max;
     349             :           }
     350             :       }
     351             :  have_c1max:
     352           0 :   if (c2max > c2min)
     353           0 :     for (c2 = c2min; c2 <= c2max; c2++)
     354           0 :       for (c0 = c0min; c0 <= c0max; c0++) {
     355           0 :         histp = & histogram[c0][c1min][c2];
     356           0 :         for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
     357           0 :           if (*histp != 0) {
     358           0 :             boxp->c2min = c2min = c2;
     359           0 :             goto have_c2min;
     360             :           }
     361             :       }
     362             :  have_c2min:
     363           0 :   if (c2max > c2min)
     364           0 :     for (c2 = c2max; c2 >= c2min; c2--)
     365           0 :       for (c0 = c0min; c0 <= c0max; c0++) {
     366           0 :         histp = & histogram[c0][c1min][c2];
     367           0 :         for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
     368           0 :           if (*histp != 0) {
     369           0 :             boxp->c2max = c2max = c2;
     370           0 :             goto have_c2max;
     371             :           }
     372             :       }
     373             :  have_c2max:
     374             : 
     375             :   /* Update box volume.
     376             :    * We use 2-norm rather than real volume here; this biases the method
     377             :    * against making long narrow boxes, and it has the side benefit that
     378             :    * a box is splittable iff norm > 0.
     379             :    * Since the differences are expressed in histogram-cell units,
     380             :    * we have to shift back to JSAMPLE units to get consistent distances;
     381             :    * after which, we scale according to the selected distance scale factors.
     382             :    */
     383           0 :   dist0 = ((c0max - c0min) << C0_SHIFT) * C0_SCALE;
     384           0 :   dist1 = ((c1max - c1min) << C1_SHIFT) * C1_SCALE;
     385           0 :   dist2 = ((c2max - c2min) << C2_SHIFT) * C2_SCALE;
     386           0 :   boxp->volume = dist0*dist0 + dist1*dist1 + dist2*dist2;
     387             : 
     388             :   /* Now scan remaining volume of box and compute population */
     389           0 :   ccount = 0;
     390           0 :   for (c0 = c0min; c0 <= c0max; c0++)
     391           0 :     for (c1 = c1min; c1 <= c1max; c1++) {
     392           0 :       histp = & histogram[c0][c1][c2min];
     393           0 :       for (c2 = c2min; c2 <= c2max; c2++, histp++)
     394           0 :         if (*histp != 0) {
     395           0 :           ccount++;
     396             :         }
     397             :     }
     398           0 :   boxp->colorcount = ccount;
     399           0 : }
     400             : 
     401             : 
     402             : LOCAL(int)
     403           0 : median_cut (j_decompress_ptr cinfo, boxptr boxlist, int numboxes,
     404             :             int desired_colors)
     405             : /* Repeatedly select and split the largest box until we have enough boxes */
     406             : {
     407             :   int n,lb;
     408             :   int c0,c1,c2,cmax;
     409             :   register boxptr b1,b2;
     410             : 
     411           0 :   while (numboxes < desired_colors) {
     412             :     /* Select box to split.
     413             :      * Current algorithm: by population for first half, then by volume.
     414             :      */
     415           0 :     if (numboxes*2 <= desired_colors) {
     416           0 :       b1 = find_biggest_color_pop(boxlist, numboxes);
     417             :     } else {
     418           0 :       b1 = find_biggest_volume(boxlist, numboxes);
     419             :     }
     420           0 :     if (b1 == NULL)             /* no splittable boxes left! */
     421           0 :       break;
     422           0 :     b2 = &boxlist[numboxes];    /* where new box will go */
     423             :     /* Copy the color bounds to the new box. */
     424           0 :     b2->c0max = b1->c0max; b2->c1max = b1->c1max; b2->c2max = b1->c2max;
     425           0 :     b2->c0min = b1->c0min; b2->c1min = b1->c1min; b2->c2min = b1->c2min;
     426             :     /* Choose which axis to split the box on.
     427             :      * Current algorithm: longest scaled axis.
     428             :      * See notes in update_box about scaling distances.
     429             :      */
     430           0 :     c0 = ((b1->c0max - b1->c0min) << C0_SHIFT) * C0_SCALE;
     431           0 :     c1 = ((b1->c1max - b1->c1min) << C1_SHIFT) * C1_SCALE;
     432           0 :     c2 = ((b1->c2max - b1->c2min) << C2_SHIFT) * C2_SCALE;
     433             :     /* We want to break any ties in favor of green, then red, blue last.
     434             :      * This code does the right thing for R,G,B or B,G,R color orders only.
     435             :      */
     436           0 :     if (rgb_red[cinfo->out_color_space] == 0) {
     437           0 :       cmax = c1; n = 1;
     438           0 :       if (c0 > cmax) { cmax = c0; n = 0; }
     439           0 :       if (c2 > cmax) { n = 2; }
     440             :     }
     441             :     else {
     442           0 :       cmax = c1; n = 1;
     443           0 :       if (c2 > cmax) { cmax = c2; n = 2; }
     444           0 :       if (c0 > cmax) { n = 0; }
     445             :     }
     446             :     /* Choose split point along selected axis, and update box bounds.
     447             :      * Current algorithm: split at halfway point.
     448             :      * (Since the box has been shrunk to minimum volume,
     449             :      * any split will produce two nonempty subboxes.)
     450             :      * Note that lb value is max for lower box, so must be < old max.
     451             :      */
     452           0 :     switch (n) {
     453             :     case 0:
     454           0 :       lb = (b1->c0max + b1->c0min) / 2;
     455           0 :       b1->c0max = lb;
     456           0 :       b2->c0min = lb+1;
     457           0 :       break;
     458             :     case 1:
     459           0 :       lb = (b1->c1max + b1->c1min) / 2;
     460           0 :       b1->c1max = lb;
     461           0 :       b2->c1min = lb+1;
     462           0 :       break;
     463             :     case 2:
     464           0 :       lb = (b1->c2max + b1->c2min) / 2;
     465           0 :       b1->c2max = lb;
     466           0 :       b2->c2min = lb+1;
     467           0 :       break;
     468             :     }
     469             :     /* Update stats for boxes */
     470           0 :     update_box(cinfo, b1);
     471           0 :     update_box(cinfo, b2);
     472           0 :     numboxes++;
     473             :   }
     474           0 :   return numboxes;
     475             : }
     476             : 
     477             : 
     478             : LOCAL(void)
     479           0 : compute_color (j_decompress_ptr cinfo, boxptr boxp, int icolor)
     480             : /* Compute representative color for a box, put it in colormap[icolor] */
     481             : {
     482             :   /* Current algorithm: mean weighted by pixels (not colors) */
     483             :   /* Note it is important to get the rounding correct! */
     484           0 :   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
     485           0 :   hist3d histogram = cquantize->histogram;
     486             :   histptr histp;
     487             :   int c0,c1,c2;
     488             :   int c0min,c0max,c1min,c1max,c2min,c2max;
     489             :   long count;
     490           0 :   long total = 0;
     491           0 :   long c0total = 0;
     492           0 :   long c1total = 0;
     493           0 :   long c2total = 0;
     494             : 
     495           0 :   c0min = boxp->c0min;  c0max = boxp->c0max;
     496           0 :   c1min = boxp->c1min;  c1max = boxp->c1max;
     497           0 :   c2min = boxp->c2min;  c2max = boxp->c2max;
     498             : 
     499           0 :   for (c0 = c0min; c0 <= c0max; c0++)
     500           0 :     for (c1 = c1min; c1 <= c1max; c1++) {
     501           0 :       histp = & histogram[c0][c1][c2min];
     502           0 :       for (c2 = c2min; c2 <= c2max; c2++) {
     503           0 :         if ((count = *histp++) != 0) {
     504           0 :           total += count;
     505           0 :           c0total += ((c0 << C0_SHIFT) + ((1<<C0_SHIFT)>>1)) * count;
     506           0 :           c1total += ((c1 << C1_SHIFT) + ((1<<C1_SHIFT)>>1)) * count;
     507           0 :           c2total += ((c2 << C2_SHIFT) + ((1<<C2_SHIFT)>>1)) * count;
     508             :         }
     509             :       }
     510             :     }
     511             : 
     512           0 :   cinfo->colormap[0][icolor] = (JSAMPLE) ((c0total + (total>>1)) / total);
     513           0 :   cinfo->colormap[1][icolor] = (JSAMPLE) ((c1total + (total>>1)) / total);
     514           0 :   cinfo->colormap[2][icolor] = (JSAMPLE) ((c2total + (total>>1)) / total);
     515           0 : }
     516             : 
     517             : 
     518             : LOCAL(void)
     519           0 : select_colors (j_decompress_ptr cinfo, int desired_colors)
     520             : /* Master routine for color selection */
     521             : {
     522             :   boxptr boxlist;
     523             :   int numboxes;
     524             :   int i;
     525             : 
     526             :   /* Allocate workspace for box list */
     527           0 :   boxlist = (boxptr) (*cinfo->mem->alloc_small)
     528             :     ((j_common_ptr) cinfo, JPOOL_IMAGE, desired_colors * sizeof(box));
     529             :   /* Initialize one box containing whole space */
     530           0 :   numboxes = 1;
     531           0 :   boxlist[0].c0min = 0;
     532           0 :   boxlist[0].c0max = MAXJSAMPLE >> C0_SHIFT;
     533           0 :   boxlist[0].c1min = 0;
     534           0 :   boxlist[0].c1max = MAXJSAMPLE >> C1_SHIFT;
     535           0 :   boxlist[0].c2min = 0;
     536           0 :   boxlist[0].c2max = MAXJSAMPLE >> C2_SHIFT;
     537             :   /* Shrink it to actually-used volume and set its statistics */
     538           0 :   update_box(cinfo, & boxlist[0]);
     539             :   /* Perform median-cut to produce final box list */
     540           0 :   numboxes = median_cut(cinfo, boxlist, numboxes, desired_colors);
     541             :   /* Compute the representative color for each box, fill colormap */
     542           0 :   for (i = 0; i < numboxes; i++)
     543           0 :     compute_color(cinfo, & boxlist[i], i);
     544           0 :   cinfo->actual_number_of_colors = numboxes;
     545           0 :   TRACEMS1(cinfo, 1, JTRC_QUANT_SELECTED, numboxes);
     546           0 : }
     547             : 
     548             : 
     549             : /*
     550             :  * These routines are concerned with the time-critical task of mapping input
     551             :  * colors to the nearest color in the selected colormap.
     552             :  *
     553             :  * We re-use the histogram space as an "inverse color map", essentially a
     554             :  * cache for the results of nearest-color searches.  All colors within a
     555             :  * histogram cell will be mapped to the same colormap entry, namely the one
     556             :  * closest to the cell's center.  This may not be quite the closest entry to
     557             :  * the actual input color, but it's almost as good.  A zero in the cache
     558             :  * indicates we haven't found the nearest color for that cell yet; the array
     559             :  * is cleared to zeroes before starting the mapping pass.  When we find the
     560             :  * nearest color for a cell, its colormap index plus one is recorded in the
     561             :  * cache for future use.  The pass2 scanning routines call fill_inverse_cmap
     562             :  * when they need to use an unfilled entry in the cache.
     563             :  *
     564             :  * Our method of efficiently finding nearest colors is based on the "locally
     565             :  * sorted search" idea described by Heckbert and on the incremental distance
     566             :  * calculation described by Spencer W. Thomas in chapter III.1 of Graphics
     567             :  * Gems II (James Arvo, ed.  Academic Press, 1991).  Thomas points out that
     568             :  * the distances from a given colormap entry to each cell of the histogram can
     569             :  * be computed quickly using an incremental method: the differences between
     570             :  * distances to adjacent cells themselves differ by a constant.  This allows a
     571             :  * fairly fast implementation of the "brute force" approach of computing the
     572             :  * distance from every colormap entry to every histogram cell.  Unfortunately,
     573             :  * it needs a work array to hold the best-distance-so-far for each histogram
     574             :  * cell (because the inner loop has to be over cells, not colormap entries).
     575             :  * The work array elements have to be JLONGs, so the work array would need
     576             :  * 256Kb at our recommended precision.  This is not feasible in DOS machines.
     577             :  *
     578             :  * To get around these problems, we apply Thomas' method to compute the
     579             :  * nearest colors for only the cells within a small subbox of the histogram.
     580             :  * The work array need be only as big as the subbox, so the memory usage
     581             :  * problem is solved.  Furthermore, we need not fill subboxes that are never
     582             :  * referenced in pass2; many images use only part of the color gamut, so a
     583             :  * fair amount of work is saved.  An additional advantage of this
     584             :  * approach is that we can apply Heckbert's locality criterion to quickly
     585             :  * eliminate colormap entries that are far away from the subbox; typically
     586             :  * three-fourths of the colormap entries are rejected by Heckbert's criterion,
     587             :  * and we need not compute their distances to individual cells in the subbox.
     588             :  * The speed of this approach is heavily influenced by the subbox size: too
     589             :  * small means too much overhead, too big loses because Heckbert's criterion
     590             :  * can't eliminate as many colormap entries.  Empirically the best subbox
     591             :  * size seems to be about 1/512th of the histogram (1/8th in each direction).
     592             :  *
     593             :  * Thomas' article also describes a refined method which is asymptotically
     594             :  * faster than the brute-force method, but it is also far more complex and
     595             :  * cannot efficiently be applied to small subboxes.  It is therefore not
     596             :  * useful for programs intended to be portable to DOS machines.  On machines
     597             :  * with plenty of memory, filling the whole histogram in one shot with Thomas'
     598             :  * refined method might be faster than the present code --- but then again,
     599             :  * it might not be any faster, and it's certainly more complicated.
     600             :  */
     601             : 
     602             : 
     603             : /* log2(histogram cells in update box) for each axis; this can be adjusted */
     604             : #define BOX_C0_LOG  (HIST_C0_BITS-3)
     605             : #define BOX_C1_LOG  (HIST_C1_BITS-3)
     606             : #define BOX_C2_LOG  (HIST_C2_BITS-3)
     607             : 
     608             : #define BOX_C0_ELEMS  (1<<BOX_C0_LOG) /* # of hist cells in update box */
     609             : #define BOX_C1_ELEMS  (1<<BOX_C1_LOG)
     610             : #define BOX_C2_ELEMS  (1<<BOX_C2_LOG)
     611             : 
     612             : #define BOX_C0_SHIFT  (C0_SHIFT + BOX_C0_LOG)
     613             : #define BOX_C1_SHIFT  (C1_SHIFT + BOX_C1_LOG)
     614             : #define BOX_C2_SHIFT  (C2_SHIFT + BOX_C2_LOG)
     615             : 
     616             : 
     617             : /*
     618             :  * The next three routines implement inverse colormap filling.  They could
     619             :  * all be folded into one big routine, but splitting them up this way saves
     620             :  * some stack space (the mindist[] and bestdist[] arrays need not coexist)
     621             :  * and may allow some compilers to produce better code by registerizing more
     622             :  * inner-loop variables.
     623             :  */
     624             : 
     625             : LOCAL(int)
     626           0 : find_nearby_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
     627             :                     JSAMPLE colorlist[])
     628             : /* Locate the colormap entries close enough to an update box to be candidates
     629             :  * for the nearest entry to some cell(s) in the update box.  The update box
     630             :  * is specified by the center coordinates of its first cell.  The number of
     631             :  * candidate colormap entries is returned, and their colormap indexes are
     632             :  * placed in colorlist[].
     633             :  * This routine uses Heckbert's "locally sorted search" criterion to select
     634             :  * the colors that need further consideration.
     635             :  */
     636             : {
     637           0 :   int numcolors = cinfo->actual_number_of_colors;
     638             :   int maxc0, maxc1, maxc2;
     639             :   int centerc0, centerc1, centerc2;
     640             :   int i, x, ncolors;
     641             :   JLONG minmaxdist, min_dist, max_dist, tdist;
     642             :   JLONG mindist[MAXNUMCOLORS];  /* min distance to colormap entry i */
     643             : 
     644             :   /* Compute true coordinates of update box's upper corner and center.
     645             :    * Actually we compute the coordinates of the center of the upper-corner
     646             :    * histogram cell, which are the upper bounds of the volume we care about.
     647             :    * Note that since ">>" rounds down, the "center" values may be closer to
     648             :    * min than to max; hence comparisons to them must be "<=", not "<".
     649             :    */
     650           0 :   maxc0 = minc0 + ((1 << BOX_C0_SHIFT) - (1 << C0_SHIFT));
     651           0 :   centerc0 = (minc0 + maxc0) >> 1;
     652           0 :   maxc1 = minc1 + ((1 << BOX_C1_SHIFT) - (1 << C1_SHIFT));
     653           0 :   centerc1 = (minc1 + maxc1) >> 1;
     654           0 :   maxc2 = minc2 + ((1 << BOX_C2_SHIFT) - (1 << C2_SHIFT));
     655           0 :   centerc2 = (minc2 + maxc2) >> 1;
     656             : 
     657             :   /* For each color in colormap, find:
     658             :    *  1. its minimum squared-distance to any point in the update box
     659             :    *     (zero if color is within update box);
     660             :    *  2. its maximum squared-distance to any point in the update box.
     661             :    * Both of these can be found by considering only the corners of the box.
     662             :    * We save the minimum distance for each color in mindist[];
     663             :    * only the smallest maximum distance is of interest.
     664             :    */
     665           0 :   minmaxdist = 0x7FFFFFFFL;
     666             : 
     667           0 :   for (i = 0; i < numcolors; i++) {
     668             :     /* We compute the squared-c0-distance term, then add in the other two. */
     669           0 :     x = GETJSAMPLE(cinfo->colormap[0][i]);
     670           0 :     if (x < minc0) {
     671           0 :       tdist = (x - minc0) * C0_SCALE;
     672           0 :       min_dist = tdist*tdist;
     673           0 :       tdist = (x - maxc0) * C0_SCALE;
     674           0 :       max_dist = tdist*tdist;
     675           0 :     } else if (x > maxc0) {
     676           0 :       tdist = (x - maxc0) * C0_SCALE;
     677           0 :       min_dist = tdist*tdist;
     678           0 :       tdist = (x - minc0) * C0_SCALE;
     679           0 :       max_dist = tdist*tdist;
     680             :     } else {
     681             :       /* within cell range so no contribution to min_dist */
     682           0 :       min_dist = 0;
     683           0 :       if (x <= centerc0) {
     684           0 :         tdist = (x - maxc0) * C0_SCALE;
     685           0 :         max_dist = tdist*tdist;
     686             :       } else {
     687           0 :         tdist = (x - minc0) * C0_SCALE;
     688           0 :         max_dist = tdist*tdist;
     689             :       }
     690             :     }
     691             : 
     692           0 :     x = GETJSAMPLE(cinfo->colormap[1][i]);
     693           0 :     if (x < minc1) {
     694           0 :       tdist = (x - minc1) * C1_SCALE;
     695           0 :       min_dist += tdist*tdist;
     696           0 :       tdist = (x - maxc1) * C1_SCALE;
     697           0 :       max_dist += tdist*tdist;
     698           0 :     } else if (x > maxc1) {
     699           0 :       tdist = (x - maxc1) * C1_SCALE;
     700           0 :       min_dist += tdist*tdist;
     701           0 :       tdist = (x - minc1) * C1_SCALE;
     702           0 :       max_dist += tdist*tdist;
     703             :     } else {
     704             :       /* within cell range so no contribution to min_dist */
     705           0 :       if (x <= centerc1) {
     706           0 :         tdist = (x - maxc1) * C1_SCALE;
     707           0 :         max_dist += tdist*tdist;
     708             :       } else {
     709           0 :         tdist = (x - minc1) * C1_SCALE;
     710           0 :         max_dist += tdist*tdist;
     711             :       }
     712             :     }
     713             : 
     714           0 :     x = GETJSAMPLE(cinfo->colormap[2][i]);
     715           0 :     if (x < minc2) {
     716           0 :       tdist = (x - minc2) * C2_SCALE;
     717           0 :       min_dist += tdist*tdist;
     718           0 :       tdist = (x - maxc2) * C2_SCALE;
     719           0 :       max_dist += tdist*tdist;
     720           0 :     } else if (x > maxc2) {
     721           0 :       tdist = (x - maxc2) * C2_SCALE;
     722           0 :       min_dist += tdist*tdist;
     723           0 :       tdist = (x - minc2) * C2_SCALE;
     724           0 :       max_dist += tdist*tdist;
     725             :     } else {
     726             :       /* within cell range so no contribution to min_dist */
     727           0 :       if (x <= centerc2) {
     728           0 :         tdist = (x - maxc2) * C2_SCALE;
     729           0 :         max_dist += tdist*tdist;
     730             :       } else {
     731           0 :         tdist = (x - minc2) * C2_SCALE;
     732           0 :         max_dist += tdist*tdist;
     733             :       }
     734             :     }
     735             : 
     736           0 :     mindist[i] = min_dist;      /* save away the results */
     737           0 :     if (max_dist < minmaxdist)
     738           0 :       minmaxdist = max_dist;
     739             :   }
     740             : 
     741             :   /* Now we know that no cell in the update box is more than minmaxdist
     742             :    * away from some colormap entry.  Therefore, only colors that are
     743             :    * within minmaxdist of some part of the box need be considered.
     744             :    */
     745           0 :   ncolors = 0;
     746           0 :   for (i = 0; i < numcolors; i++) {
     747           0 :     if (mindist[i] <= minmaxdist)
     748           0 :       colorlist[ncolors++] = (JSAMPLE) i;
     749             :   }
     750           0 :   return ncolors;
     751             : }
     752             : 
     753             : 
     754             : LOCAL(void)
     755           0 : find_best_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
     756             :                   int numcolors, JSAMPLE colorlist[], JSAMPLE bestcolor[])
     757             : /* Find the closest colormap entry for each cell in the update box,
     758             :  * given the list of candidate colors prepared by find_nearby_colors.
     759             :  * Return the indexes of the closest entries in the bestcolor[] array.
     760             :  * This routine uses Thomas' incremental distance calculation method to
     761             :  * find the distance from a colormap entry to successive cells in the box.
     762             :  */
     763             : {
     764             :   int ic0, ic1, ic2;
     765             :   int i, icolor;
     766             :   register JLONG *bptr;         /* pointer into bestdist[] array */
     767             :   JSAMPLE *cptr;                /* pointer into bestcolor[] array */
     768             :   JLONG dist0, dist1;           /* initial distance values */
     769             :   register JLONG dist2;         /* current distance in inner loop */
     770             :   JLONG xx0, xx1;               /* distance increments */
     771             :   register JLONG xx2;
     772             :   JLONG inc0, inc1, inc2;       /* initial values for increments */
     773             :   /* This array holds the distance to the nearest-so-far color for each cell */
     774             :   JLONG bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
     775             : 
     776             :   /* Initialize best-distance for each cell of the update box */
     777           0 :   bptr = bestdist;
     778           0 :   for (i = BOX_C0_ELEMS*BOX_C1_ELEMS*BOX_C2_ELEMS-1; i >= 0; i--)
     779           0 :     *bptr++ = 0x7FFFFFFFL;
     780             : 
     781             :   /* For each color selected by find_nearby_colors,
     782             :    * compute its distance to the center of each cell in the box.
     783             :    * If that's less than best-so-far, update best distance and color number.
     784             :    */
     785             : 
     786             :   /* Nominal steps between cell centers ("x" in Thomas article) */
     787             : #define STEP_C0  ((1 << C0_SHIFT) * C0_SCALE)
     788             : #define STEP_C1  ((1 << C1_SHIFT) * C1_SCALE)
     789             : #define STEP_C2  ((1 << C2_SHIFT) * C2_SCALE)
     790             : 
     791           0 :   for (i = 0; i < numcolors; i++) {
     792           0 :     icolor = GETJSAMPLE(colorlist[i]);
     793             :     /* Compute (square of) distance from minc0/c1/c2 to this color */
     794           0 :     inc0 = (minc0 - GETJSAMPLE(cinfo->colormap[0][icolor])) * C0_SCALE;
     795           0 :     dist0 = inc0*inc0;
     796           0 :     inc1 = (minc1 - GETJSAMPLE(cinfo->colormap[1][icolor])) * C1_SCALE;
     797           0 :     dist0 += inc1*inc1;
     798           0 :     inc2 = (minc2 - GETJSAMPLE(cinfo->colormap[2][icolor])) * C2_SCALE;
     799           0 :     dist0 += inc2*inc2;
     800             :     /* Form the initial difference increments */
     801           0 :     inc0 = inc0 * (2 * STEP_C0) + STEP_C0 * STEP_C0;
     802           0 :     inc1 = inc1 * (2 * STEP_C1) + STEP_C1 * STEP_C1;
     803           0 :     inc2 = inc2 * (2 * STEP_C2) + STEP_C2 * STEP_C2;
     804             :     /* Now loop over all cells in box, updating distance per Thomas method */
     805           0 :     bptr = bestdist;
     806           0 :     cptr = bestcolor;
     807           0 :     xx0 = inc0;
     808           0 :     for (ic0 = BOX_C0_ELEMS-1; ic0 >= 0; ic0--) {
     809           0 :       dist1 = dist0;
     810           0 :       xx1 = inc1;
     811           0 :       for (ic1 = BOX_C1_ELEMS-1; ic1 >= 0; ic1--) {
     812           0 :         dist2 = dist1;
     813           0 :         xx2 = inc2;
     814           0 :         for (ic2 = BOX_C2_ELEMS-1; ic2 >= 0; ic2--) {
     815           0 :           if (dist2 < *bptr) {
     816           0 :             *bptr = dist2;
     817           0 :             *cptr = (JSAMPLE) icolor;
     818             :           }
     819           0 :           dist2 += xx2;
     820           0 :           xx2 += 2 * STEP_C2 * STEP_C2;
     821           0 :           bptr++;
     822           0 :           cptr++;
     823             :         }
     824           0 :         dist1 += xx1;
     825           0 :         xx1 += 2 * STEP_C1 * STEP_C1;
     826             :       }
     827           0 :       dist0 += xx0;
     828           0 :       xx0 += 2 * STEP_C0 * STEP_C0;
     829             :     }
     830             :   }
     831           0 : }
     832             : 
     833             : 
     834             : LOCAL(void)
     835           0 : fill_inverse_cmap (j_decompress_ptr cinfo, int c0, int c1, int c2)
     836             : /* Fill the inverse-colormap entries in the update box that contains */
     837             : /* histogram cell c0/c1/c2.  (Only that one cell MUST be filled, but */
     838             : /* we can fill as many others as we wish.) */
     839             : {
     840           0 :   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
     841           0 :   hist3d histogram = cquantize->histogram;
     842             :   int minc0, minc1, minc2;      /* lower left corner of update box */
     843             :   int ic0, ic1, ic2;
     844             :   register JSAMPLE *cptr;       /* pointer into bestcolor[] array */
     845             :   register histptr cachep;      /* pointer into main cache array */
     846             :   /* This array lists the candidate colormap indexes. */
     847             :   JSAMPLE colorlist[MAXNUMCOLORS];
     848             :   int numcolors;                /* number of candidate colors */
     849             :   /* This array holds the actually closest colormap index for each cell. */
     850             :   JSAMPLE bestcolor[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
     851             : 
     852             :   /* Convert cell coordinates to update box ID */
     853           0 :   c0 >>= BOX_C0_LOG;
     854           0 :   c1 >>= BOX_C1_LOG;
     855           0 :   c2 >>= BOX_C2_LOG;
     856             : 
     857             :   /* Compute true coordinates of update box's origin corner.
     858             :    * Actually we compute the coordinates of the center of the corner
     859             :    * histogram cell, which are the lower bounds of the volume we care about.
     860             :    */
     861           0 :   minc0 = (c0 << BOX_C0_SHIFT) + ((1 << C0_SHIFT) >> 1);
     862           0 :   minc1 = (c1 << BOX_C1_SHIFT) + ((1 << C1_SHIFT) >> 1);
     863           0 :   minc2 = (c2 << BOX_C2_SHIFT) + ((1 << C2_SHIFT) >> 1);
     864             : 
     865             :   /* Determine which colormap entries are close enough to be candidates
     866             :    * for the nearest entry to some cell in the update box.
     867             :    */
     868           0 :   numcolors = find_nearby_colors(cinfo, minc0, minc1, minc2, colorlist);
     869             : 
     870             :   /* Determine the actually nearest colors. */
     871           0 :   find_best_colors(cinfo, minc0, minc1, minc2, numcolors, colorlist,
     872             :                    bestcolor);
     873             : 
     874             :   /* Save the best color numbers (plus 1) in the main cache array */
     875           0 :   c0 <<= BOX_C0_LOG;            /* convert ID back to base cell indexes */
     876           0 :   c1 <<= BOX_C1_LOG;
     877           0 :   c2 <<= BOX_C2_LOG;
     878           0 :   cptr = bestcolor;
     879           0 :   for (ic0 = 0; ic0 < BOX_C0_ELEMS; ic0++) {
     880           0 :     for (ic1 = 0; ic1 < BOX_C1_ELEMS; ic1++) {
     881           0 :       cachep = & histogram[c0+ic0][c1+ic1][c2];
     882           0 :       for (ic2 = 0; ic2 < BOX_C2_ELEMS; ic2++) {
     883           0 :         *cachep++ = (histcell) (GETJSAMPLE(*cptr++) + 1);
     884             :       }
     885             :     }
     886             :   }
     887           0 : }
     888             : 
     889             : 
     890             : /*
     891             :  * Map some rows of pixels to the output colormapped representation.
     892             :  */
     893             : 
     894             : METHODDEF(void)
     895           0 : pass2_no_dither (j_decompress_ptr cinfo,
     896             :                  JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
     897             : /* This version performs no dithering */
     898             : {
     899           0 :   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
     900           0 :   hist3d histogram = cquantize->histogram;
     901             :   register JSAMPROW inptr, outptr;
     902             :   register histptr cachep;
     903             :   register int c0, c1, c2;
     904             :   int row;
     905             :   JDIMENSION col;
     906           0 :   JDIMENSION width = cinfo->output_width;
     907             : 
     908           0 :   for (row = 0; row < num_rows; row++) {
     909           0 :     inptr = input_buf[row];
     910           0 :     outptr = output_buf[row];
     911           0 :     for (col = width; col > 0; col--) {
     912             :       /* get pixel value and index into the cache */
     913           0 :       c0 = GETJSAMPLE(*inptr++) >> C0_SHIFT;
     914           0 :       c1 = GETJSAMPLE(*inptr++) >> C1_SHIFT;
     915           0 :       c2 = GETJSAMPLE(*inptr++) >> C2_SHIFT;
     916           0 :       cachep = & histogram[c0][c1][c2];
     917             :       /* If we have not seen this color before, find nearest colormap entry */
     918             :       /* and update the cache */
     919           0 :       if (*cachep == 0)
     920           0 :         fill_inverse_cmap(cinfo, c0,c1,c2);
     921             :       /* Now emit the colormap index for this cell */
     922           0 :       *outptr++ = (JSAMPLE) (*cachep - 1);
     923             :     }
     924             :   }
     925           0 : }
     926             : 
     927             : 
     928             : METHODDEF(void)
     929           0 : pass2_fs_dither (j_decompress_ptr cinfo,
     930             :                  JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
     931             : /* This version performs Floyd-Steinberg dithering */
     932             : {
     933           0 :   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
     934           0 :   hist3d histogram = cquantize->histogram;
     935             :   register LOCFSERROR cur0, cur1, cur2; /* current error or pixel value */
     936             :   LOCFSERROR belowerr0, belowerr1, belowerr2; /* error for pixel below cur */
     937             :   LOCFSERROR bpreverr0, bpreverr1, bpreverr2; /* error for below/prev col */
     938             :   register FSERRPTR errorptr;   /* => fserrors[] at column before current */
     939             :   JSAMPROW inptr;               /* => current input pixel */
     940             :   JSAMPROW outptr;              /* => current output pixel */
     941             :   histptr cachep;
     942             :   int dir;                      /* +1 or -1 depending on direction */
     943             :   int dir3;                     /* 3*dir, for advancing inptr & errorptr */
     944             :   int row;
     945             :   JDIMENSION col;
     946           0 :   JDIMENSION width = cinfo->output_width;
     947           0 :   JSAMPLE *range_limit = cinfo->sample_range_limit;
     948           0 :   int *error_limit = cquantize->error_limiter;
     949           0 :   JSAMPROW colormap0 = cinfo->colormap[0];
     950           0 :   JSAMPROW colormap1 = cinfo->colormap[1];
     951           0 :   JSAMPROW colormap2 = cinfo->colormap[2];
     952             :   SHIFT_TEMPS
     953             : 
     954           0 :   for (row = 0; row < num_rows; row++) {
     955           0 :     inptr = input_buf[row];
     956           0 :     outptr = output_buf[row];
     957           0 :     if (cquantize->on_odd_row) {
     958             :       /* work right to left in this row */
     959           0 :       inptr += (width-1) * 3;   /* so point to rightmost pixel */
     960           0 :       outptr += width-1;
     961           0 :       dir = -1;
     962           0 :       dir3 = -3;
     963           0 :       errorptr = cquantize->fserrors + (width+1)*3; /* => entry after last column */
     964           0 :       cquantize->on_odd_row = FALSE; /* flip for next time */
     965             :     } else {
     966             :       /* work left to right in this row */
     967           0 :       dir = 1;
     968           0 :       dir3 = 3;
     969           0 :       errorptr = cquantize->fserrors; /* => entry before first real column */
     970           0 :       cquantize->on_odd_row = TRUE; /* flip for next time */
     971             :     }
     972             :     /* Preset error values: no error propagated to first pixel from left */
     973           0 :     cur0 = cur1 = cur2 = 0;
     974             :     /* and no error propagated to row below yet */
     975           0 :     belowerr0 = belowerr1 = belowerr2 = 0;
     976           0 :     bpreverr0 = bpreverr1 = bpreverr2 = 0;
     977             : 
     978           0 :     for (col = width; col > 0; col--) {
     979             :       /* curN holds the error propagated from the previous pixel on the
     980             :        * current line.  Add the error propagated from the previous line
     981             :        * to form the complete error correction term for this pixel, and
     982             :        * round the error term (which is expressed * 16) to an integer.
     983             :        * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
     984             :        * for either sign of the error value.
     985             :        * Note: errorptr points to *previous* column's array entry.
     986             :        */
     987           0 :       cur0 = RIGHT_SHIFT(cur0 + errorptr[dir3+0] + 8, 4);
     988           0 :       cur1 = RIGHT_SHIFT(cur1 + errorptr[dir3+1] + 8, 4);
     989           0 :       cur2 = RIGHT_SHIFT(cur2 + errorptr[dir3+2] + 8, 4);
     990             :       /* Limit the error using transfer function set by init_error_limit.
     991             :        * See comments with init_error_limit for rationale.
     992             :        */
     993           0 :       cur0 = error_limit[cur0];
     994           0 :       cur1 = error_limit[cur1];
     995           0 :       cur2 = error_limit[cur2];
     996             :       /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
     997             :        * The maximum error is +- MAXJSAMPLE (or less with error limiting);
     998             :        * this sets the required size of the range_limit array.
     999             :        */
    1000           0 :       cur0 += GETJSAMPLE(inptr[0]);
    1001           0 :       cur1 += GETJSAMPLE(inptr[1]);
    1002           0 :       cur2 += GETJSAMPLE(inptr[2]);
    1003           0 :       cur0 = GETJSAMPLE(range_limit[cur0]);
    1004           0 :       cur1 = GETJSAMPLE(range_limit[cur1]);
    1005           0 :       cur2 = GETJSAMPLE(range_limit[cur2]);
    1006             :       /* Index into the cache with adjusted pixel value */
    1007           0 :       cachep = & histogram[cur0>>C0_SHIFT][cur1>>C1_SHIFT][cur2>>C2_SHIFT];
    1008             :       /* If we have not seen this color before, find nearest colormap */
    1009             :       /* entry and update the cache */
    1010           0 :       if (*cachep == 0)
    1011           0 :         fill_inverse_cmap(cinfo, cur0>>C0_SHIFT,cur1>>C1_SHIFT,cur2>>C2_SHIFT);
    1012             :       /* Now emit the colormap index for this cell */
    1013           0 :       { register int pixcode = *cachep - 1;
    1014           0 :         *outptr = (JSAMPLE) pixcode;
    1015             :         /* Compute representation error for this pixel */
    1016           0 :         cur0 -= GETJSAMPLE(colormap0[pixcode]);
    1017           0 :         cur1 -= GETJSAMPLE(colormap1[pixcode]);
    1018           0 :         cur2 -= GETJSAMPLE(colormap2[pixcode]);
    1019             :       }
    1020             :       /* Compute error fractions to be propagated to adjacent pixels.
    1021             :        * Add these into the running sums, and simultaneously shift the
    1022             :        * next-line error sums left by 1 column.
    1023             :        */
    1024             :       { register LOCFSERROR bnexterr;
    1025             : 
    1026           0 :         bnexterr = cur0;        /* Process component 0 */
    1027           0 :         errorptr[0] = (FSERROR) (bpreverr0 + cur0 * 3);
    1028           0 :         bpreverr0 = belowerr0 + cur0 * 5;
    1029           0 :         belowerr0 = bnexterr;
    1030           0 :         cur0 *= 7;
    1031           0 :         bnexterr = cur1;        /* Process component 1 */
    1032           0 :         errorptr[1] = (FSERROR) (bpreverr1 + cur1 * 3);
    1033           0 :         bpreverr1 = belowerr1 + cur1 * 5;
    1034           0 :         belowerr1 = bnexterr;
    1035           0 :         cur1 *= 7;
    1036           0 :         bnexterr = cur2;        /* Process component 2 */
    1037           0 :         errorptr[2] = (FSERROR) (bpreverr2 + cur2 * 3);
    1038           0 :         bpreverr2 = belowerr2 + cur2 * 5;
    1039           0 :         belowerr2 = bnexterr;
    1040           0 :         cur2 *= 7;
    1041             :       }
    1042             :       /* At this point curN contains the 7/16 error value to be propagated
    1043             :        * to the next pixel on the current line, and all the errors for the
    1044             :        * next line have been shifted over.  We are therefore ready to move on.
    1045             :        */
    1046           0 :       inptr += dir3;            /* Advance pixel pointers to next column */
    1047           0 :       outptr += dir;
    1048           0 :       errorptr += dir3;         /* advance errorptr to current column */
    1049             :     }
    1050             :     /* Post-loop cleanup: we must unload the final error values into the
    1051             :      * final fserrors[] entry.  Note we need not unload belowerrN because
    1052             :      * it is for the dummy column before or after the actual array.
    1053             :      */
    1054           0 :     errorptr[0] = (FSERROR) bpreverr0; /* unload prev errs into array */
    1055           0 :     errorptr[1] = (FSERROR) bpreverr1;
    1056           0 :     errorptr[2] = (FSERROR) bpreverr2;
    1057             :   }
    1058           0 : }
    1059             : 
    1060             : 
    1061             : /*
    1062             :  * Initialize the error-limiting transfer function (lookup table).
    1063             :  * The raw F-S error computation can potentially compute error values of up to
    1064             :  * +- MAXJSAMPLE.  But we want the maximum correction applied to a pixel to be
    1065             :  * much less, otherwise obviously wrong pixels will be created.  (Typical
    1066             :  * effects include weird fringes at color-area boundaries, isolated bright
    1067             :  * pixels in a dark area, etc.)  The standard advice for avoiding this problem
    1068             :  * is to ensure that the "corners" of the color cube are allocated as output
    1069             :  * colors; then repeated errors in the same direction cannot cause cascading
    1070             :  * error buildup.  However, that only prevents the error from getting
    1071             :  * completely out of hand; Aaron Giles reports that error limiting improves
    1072             :  * the results even with corner colors allocated.
    1073             :  * A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty
    1074             :  * well, but the smoother transfer function used below is even better.  Thanks
    1075             :  * to Aaron Giles for this idea.
    1076             :  */
    1077             : 
    1078             : LOCAL(void)
    1079           0 : init_error_limit (j_decompress_ptr cinfo)
    1080             : /* Allocate and fill in the error_limiter table */
    1081             : {
    1082           0 :   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
    1083             :   int *table;
    1084             :   int in, out;
    1085             : 
    1086           0 :   table = (int *) (*cinfo->mem->alloc_small)
    1087             :     ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE*2+1) * sizeof(int));
    1088           0 :   table += MAXJSAMPLE;          /* so can index -MAXJSAMPLE .. +MAXJSAMPLE */
    1089           0 :   cquantize->error_limiter = table;
    1090             : 
    1091             : #define STEPSIZE ((MAXJSAMPLE+1)/16)
    1092             :   /* Map errors 1:1 up to +- MAXJSAMPLE/16 */
    1093           0 :   out = 0;
    1094           0 :   for (in = 0; in < STEPSIZE; in++, out++) {
    1095           0 :     table[in] = out; table[-in] = -out;
    1096             :   }
    1097             :   /* Map errors 1:2 up to +- 3*MAXJSAMPLE/16 */
    1098           0 :   for (; in < STEPSIZE*3; in++, out += (in&1) ? 0 : 1) {
    1099           0 :     table[in] = out; table[-in] = -out;
    1100             :   }
    1101             :   /* Clamp the rest to final out value (which is (MAXJSAMPLE+1)/8) */
    1102           0 :   for (; in <= MAXJSAMPLE; in++) {
    1103           0 :     table[in] = out; table[-in] = -out;
    1104             :   }
    1105             : #undef STEPSIZE
    1106           0 : }
    1107             : 
    1108             : 
    1109             : /*
    1110             :  * Finish up at the end of each pass.
    1111             :  */
    1112             : 
    1113             : METHODDEF(void)
    1114           0 : finish_pass1 (j_decompress_ptr cinfo)
    1115             : {
    1116           0 :   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
    1117             : 
    1118             :   /* Select the representative colors and fill in cinfo->colormap */
    1119           0 :   cinfo->colormap = cquantize->sv_colormap;
    1120           0 :   select_colors(cinfo, cquantize->desired);
    1121             :   /* Force next pass to zero the color index table */
    1122           0 :   cquantize->needs_zeroed = TRUE;
    1123           0 : }
    1124             : 
    1125             : 
    1126             : METHODDEF(void)
    1127           0 : finish_pass2 (j_decompress_ptr cinfo)
    1128             : {
    1129             :   /* no work */
    1130           0 : }
    1131             : 
    1132             : 
    1133             : /*
    1134             :  * Initialize for each processing pass.
    1135             :  */
    1136             : 
    1137             : METHODDEF(void)
    1138           0 : start_pass_2_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
    1139             : {
    1140           0 :   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
    1141           0 :   hist3d histogram = cquantize->histogram;
    1142             :   int i;
    1143             : 
    1144             :   /* Only F-S dithering or no dithering is supported. */
    1145             :   /* If user asks for ordered dither, give him F-S. */
    1146           0 :   if (cinfo->dither_mode != JDITHER_NONE)
    1147           0 :     cinfo->dither_mode = JDITHER_FS;
    1148             : 
    1149           0 :   if (is_pre_scan) {
    1150             :     /* Set up method pointers */
    1151           0 :     cquantize->pub.color_quantize = prescan_quantize;
    1152           0 :     cquantize->pub.finish_pass = finish_pass1;
    1153           0 :     cquantize->needs_zeroed = TRUE; /* Always zero histogram */
    1154             :   } else {
    1155             :     /* Set up method pointers */
    1156           0 :     if (cinfo->dither_mode == JDITHER_FS)
    1157           0 :       cquantize->pub.color_quantize = pass2_fs_dither;
    1158             :     else
    1159           0 :       cquantize->pub.color_quantize = pass2_no_dither;
    1160           0 :     cquantize->pub.finish_pass = finish_pass2;
    1161             : 
    1162             :     /* Make sure color count is acceptable */
    1163           0 :     i = cinfo->actual_number_of_colors;
    1164           0 :     if (i < 1)
    1165           0 :       ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 1);
    1166           0 :     if (i > MAXNUMCOLORS)
    1167           0 :       ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);
    1168             : 
    1169           0 :     if (cinfo->dither_mode == JDITHER_FS) {
    1170           0 :       size_t arraysize = (size_t) ((cinfo->output_width + 2) *
    1171             :                                    (3 * sizeof(FSERROR)));
    1172             :       /* Allocate Floyd-Steinberg workspace if we didn't already. */
    1173           0 :       if (cquantize->fserrors == NULL)
    1174           0 :         cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large)
    1175             :           ((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
    1176             :       /* Initialize the propagated errors to zero. */
    1177           0 :       jzero_far((void *) cquantize->fserrors, arraysize);
    1178             :       /* Make the error-limit table if we didn't already. */
    1179           0 :       if (cquantize->error_limiter == NULL)
    1180           0 :         init_error_limit(cinfo);
    1181           0 :       cquantize->on_odd_row = FALSE;
    1182             :     }
    1183             : 
    1184             :   }
    1185             :   /* Zero the histogram or inverse color map, if necessary */
    1186           0 :   if (cquantize->needs_zeroed) {
    1187           0 :     for (i = 0; i < HIST_C0_ELEMS; i++) {
    1188           0 :       jzero_far((void *) histogram[i],
    1189             :                 HIST_C1_ELEMS*HIST_C2_ELEMS * sizeof(histcell));
    1190             :     }
    1191           0 :     cquantize->needs_zeroed = FALSE;
    1192             :   }
    1193           0 : }
    1194             : 
    1195             : 
    1196             : /*
    1197             :  * Switch to a new external colormap between output passes.
    1198             :  */
    1199             : 
    1200             : METHODDEF(void)
    1201           0 : new_color_map_2_quant (j_decompress_ptr cinfo)
    1202             : {
    1203           0 :   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
    1204             : 
    1205             :   /* Reset the inverse color map */
    1206           0 :   cquantize->needs_zeroed = TRUE;
    1207           0 : }
    1208             : 
    1209             : 
    1210             : /*
    1211             :  * Module initialization routine for 2-pass color quantization.
    1212             :  */
    1213             : 
    1214             : GLOBAL(void)
    1215           0 : jinit_2pass_quantizer (j_decompress_ptr cinfo)
    1216             : {
    1217             :   my_cquantize_ptr cquantize;
    1218             :   int i;
    1219             : 
    1220           0 :   cquantize = (my_cquantize_ptr)
    1221           0 :     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    1222             :                                 sizeof(my_cquantizer));
    1223           0 :   cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
    1224           0 :   cquantize->pub.start_pass = start_pass_2_quant;
    1225           0 :   cquantize->pub.new_color_map = new_color_map_2_quant;
    1226           0 :   cquantize->fserrors = NULL;   /* flag optional arrays not allocated */
    1227           0 :   cquantize->error_limiter = NULL;
    1228             : 
    1229             :   /* Make sure jdmaster didn't give me a case I can't handle */
    1230           0 :   if (cinfo->out_color_components != 3)
    1231           0 :     ERREXIT(cinfo, JERR_NOTIMPL);
    1232             : 
    1233             :   /* Allocate the histogram/inverse colormap storage */
    1234           0 :   cquantize->histogram = (hist3d) (*cinfo->mem->alloc_small)
    1235             :     ((j_common_ptr) cinfo, JPOOL_IMAGE, HIST_C0_ELEMS * sizeof(hist2d));
    1236           0 :   for (i = 0; i < HIST_C0_ELEMS; i++) {
    1237           0 :     cquantize->histogram[i] = (hist2d) (*cinfo->mem->alloc_large)
    1238             :       ((j_common_ptr) cinfo, JPOOL_IMAGE,
    1239             :        HIST_C1_ELEMS*HIST_C2_ELEMS * sizeof(histcell));
    1240             :   }
    1241           0 :   cquantize->needs_zeroed = TRUE; /* histogram is garbage now */
    1242             : 
    1243             :   /* Allocate storage for the completed colormap, if required.
    1244             :    * We do this now since it may affect the memory manager's space
    1245             :    * calculations.
    1246             :    */
    1247           0 :   if (cinfo->enable_2pass_quant) {
    1248             :     /* Make sure color count is acceptable */
    1249           0 :     int desired = cinfo->desired_number_of_colors;
    1250             :     /* Lower bound on # of colors ... somewhat arbitrary as long as > 0 */
    1251           0 :     if (desired < 8)
    1252           0 :       ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 8);
    1253             :     /* Make sure colormap indexes can be represented by JSAMPLEs */
    1254           0 :     if (desired > MAXNUMCOLORS)
    1255           0 :       ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);
    1256           0 :     cquantize->sv_colormap = (*cinfo->mem->alloc_sarray)
    1257             :       ((j_common_ptr) cinfo,JPOOL_IMAGE, (JDIMENSION) desired, (JDIMENSION) 3);
    1258           0 :     cquantize->desired = desired;
    1259             :   } else
    1260           0 :     cquantize->sv_colormap = NULL;
    1261             : 
    1262             :   /* Only F-S dithering or no dithering is supported. */
    1263             :   /* If user asks for ordered dither, give him F-S. */
    1264           0 :   if (cinfo->dither_mode != JDITHER_NONE)
    1265           0 :     cinfo->dither_mode = JDITHER_FS;
    1266             : 
    1267             :   /* Allocate Floyd-Steinberg workspace if necessary.
    1268             :    * This isn't really needed until pass 2, but again it may affect the memory
    1269             :    * manager's space calculations.  Although we will cope with a later change
    1270             :    * in dither_mode, we do not promise to honor max_memory_to_use if
    1271             :    * dither_mode changes.
    1272             :    */
    1273           0 :   if (cinfo->dither_mode == JDITHER_FS) {
    1274           0 :     cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large)
    1275             :       ((j_common_ptr) cinfo, JPOOL_IMAGE,
    1276           0 :        (size_t) ((cinfo->output_width + 2) * (3 * sizeof(FSERROR))));
    1277             :     /* Might as well create the error-limiting table too. */
    1278           0 :     init_error_limit(cinfo);
    1279             :   }
    1280           0 : }
    1281             : 
    1282             : #endif /* QUANT_2PASS_SUPPORTED */

Generated by: LCOV version 1.13