Line data Source code
1 : /* Copyright (c) 2007-2008 CSIRO
2 : Copyright (c) 2007-2009 Xiph.Org Foundation
3 : Copyright (c) 2007-2009 Timothy B. Terriberry
4 : Written by Timothy B. Terriberry and Jean-Marc Valin */
5 : /*
6 : Redistribution and use in source and binary forms, with or without
7 : modification, are permitted provided that the following conditions
8 : are met:
9 :
10 : - Redistributions of source code must retain the above copyright
11 : notice, this list of conditions and the following disclaimer.
12 :
13 : - Redistributions in binary form must reproduce the above copyright
14 : notice, this list of conditions and the following disclaimer in the
15 : documentation and/or other materials provided with the distribution.
16 :
17 : THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18 : ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19 : LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
20 : A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
21 : OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
22 : EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23 : PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
24 : PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
25 : LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
26 : NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
27 : SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 : */
29 :
30 : #ifdef HAVE_CONFIG_H
31 : #include "config.h"
32 : #endif
33 :
34 : #include "os_support.h"
35 : #include "cwrs.h"
36 : #include "mathops.h"
37 : #include "arch.h"
38 :
39 : #ifdef CUSTOM_MODES
40 :
41 : /*Guaranteed to return a conservatively large estimate of the binary logarithm
42 : with frac bits of fractional precision.
43 : Tested for all possible 32-bit inputs with frac=4, where the maximum
44 : overestimation is 0.06254243 bits.*/
45 : int log2_frac(opus_uint32 val, int frac)
46 : {
47 : int l;
48 : l=EC_ILOG(val);
49 : if(val&(val-1)){
50 : /*This is (val>>l-16), but guaranteed to round up, even if adding a bias
51 : before the shift would cause overflow (e.g., for 0xFFFFxxxx).
52 : Doesn't work for val=0, but that case fails the test above.*/
53 : if(l>16)val=((val-1)>>(l-16))+1;
54 : else val<<=16-l;
55 : l=(l-1)<<frac;
56 : /*Note that we always need one iteration, since the rounding up above means
57 : that we might need to adjust the integer part of the logarithm.*/
58 : do{
59 : int b;
60 : b=(int)(val>>16);
61 : l+=b<<frac;
62 : val=(val+b)>>b;
63 : val=(val*val+0x7FFF)>>15;
64 : }
65 : while(frac-->0);
66 : /*If val is not exactly 0x8000, then we have to round up the remainder.*/
67 : return l+(val>0x8000);
68 : }
69 : /*Exact powers of two require no rounding.*/
70 : else return (l-1)<<frac;
71 : }
72 : #endif
73 :
74 : /*Although derived separately, the pulse vector coding scheme is equivalent to
75 : a Pyramid Vector Quantizer \cite{Fis86}.
76 : Some additional notes about an early version appear at
77 : https://people.xiph.org/~tterribe/notes/cwrs.html, but the codebook ordering
78 : and the definitions of some terms have evolved since that was written.
79 :
80 : The conversion from a pulse vector to an integer index (encoding) and back
81 : (decoding) is governed by two related functions, V(N,K) and U(N,K).
82 :
83 : V(N,K) = the number of combinations, with replacement, of N items, taken K
84 : at a time, when a sign bit is added to each item taken at least once (i.e.,
85 : the number of N-dimensional unit pulse vectors with K pulses).
86 : One way to compute this is via
87 : V(N,K) = K>0 ? sum(k=1...K,2**k*choose(N,k)*choose(K-1,k-1)) : 1,
88 : where choose() is the binomial function.
89 : A table of values for N<10 and K<10 looks like:
90 : V[10][10] = {
91 : {1, 0, 0, 0, 0, 0, 0, 0, 0, 0},
92 : {1, 2, 2, 2, 2, 2, 2, 2, 2, 2},
93 : {1, 4, 8, 12, 16, 20, 24, 28, 32, 36},
94 : {1, 6, 18, 38, 66, 102, 146, 198, 258, 326},
95 : {1, 8, 32, 88, 192, 360, 608, 952, 1408, 1992},
96 : {1, 10, 50, 170, 450, 1002, 1970, 3530, 5890, 9290},
97 : {1, 12, 72, 292, 912, 2364, 5336, 10836, 20256, 35436},
98 : {1, 14, 98, 462, 1666, 4942, 12642, 28814, 59906, 115598},
99 : {1, 16, 128, 688, 2816, 9424, 27008, 68464, 157184, 332688},
100 : {1, 18, 162, 978, 4482, 16722, 53154, 148626, 374274, 864146}
101 : };
102 :
103 : U(N,K) = the number of such combinations wherein N-1 objects are taken at
104 : most K-1 at a time.
105 : This is given by
106 : U(N,K) = sum(k=0...K-1,V(N-1,k))
107 : = K>0 ? (V(N-1,K-1) + V(N,K-1))/2 : 0.
108 : The latter expression also makes clear that U(N,K) is half the number of such
109 : combinations wherein the first object is taken at least once.
110 : Although it may not be clear from either of these definitions, U(N,K) is the
111 : natural function to work with when enumerating the pulse vector codebooks,
112 : not V(N,K).
113 : U(N,K) is not well-defined for N=0, but with the extension
114 : U(0,K) = K>0 ? 0 : 1,
115 : the function becomes symmetric: U(N,K) = U(K,N), with a similar table:
116 : U[10][10] = {
117 : {1, 0, 0, 0, 0, 0, 0, 0, 0, 0},
118 : {0, 1, 1, 1, 1, 1, 1, 1, 1, 1},
119 : {0, 1, 3, 5, 7, 9, 11, 13, 15, 17},
120 : {0, 1, 5, 13, 25, 41, 61, 85, 113, 145},
121 : {0, 1, 7, 25, 63, 129, 231, 377, 575, 833},
122 : {0, 1, 9, 41, 129, 321, 681, 1289, 2241, 3649},
123 : {0, 1, 11, 61, 231, 681, 1683, 3653, 7183, 13073},
124 : {0, 1, 13, 85, 377, 1289, 3653, 8989, 19825, 40081},
125 : {0, 1, 15, 113, 575, 2241, 7183, 19825, 48639, 108545},
126 : {0, 1, 17, 145, 833, 3649, 13073, 40081, 108545, 265729}
127 : };
128 :
129 : With this extension, V(N,K) may be written in terms of U(N,K):
130 : V(N,K) = U(N,K) + U(N,K+1)
131 : for all N>=0, K>=0.
132 : Thus U(N,K+1) represents the number of combinations where the first element
133 : is positive or zero, and U(N,K) represents the number of combinations where
134 : it is negative.
135 : With a large enough table of U(N,K) values, we could write O(N) encoding
136 : and O(min(N*log(K),N+K)) decoding routines, but such a table would be
137 : prohibitively large for small embedded devices (K may be as large as 32767
138 : for small N, and N may be as large as 200).
139 :
140 : Both functions obey the same recurrence relation:
141 : V(N,K) = V(N-1,K) + V(N,K-1) + V(N-1,K-1),
142 : U(N,K) = U(N-1,K) + U(N,K-1) + U(N-1,K-1),
143 : for all N>0, K>0, with different initial conditions at N=0 or K=0.
144 : This allows us to construct a row of one of the tables above given the
145 : previous row or the next row.
146 : Thus we can derive O(NK) encoding and decoding routines with O(K) memory
147 : using only addition and subtraction.
148 :
149 : When encoding, we build up from the U(2,K) row and work our way forwards.
150 : When decoding, we need to start at the U(N,K) row and work our way backwards,
151 : which requires a means of computing U(N,K).
152 : U(N,K) may be computed from two previous values with the same N:
153 : U(N,K) = ((2*N-1)*U(N,K-1) - U(N,K-2))/(K-1) + U(N,K-2)
154 : for all N>1, and since U(N,K) is symmetric, a similar relation holds for two
155 : previous values with the same K:
156 : U(N,K>1) = ((2*K-1)*U(N-1,K) - U(N-2,K))/(N-1) + U(N-2,K)
157 : for all K>1.
158 : This allows us to construct an arbitrary row of the U(N,K) table by starting
159 : with the first two values, which are constants.
160 : This saves roughly 2/3 the work in our O(NK) decoding routine, but costs O(K)
161 : multiplications.
162 : Similar relations can be derived for V(N,K), but are not used here.
163 :
164 : For N>0 and K>0, U(N,K) and V(N,K) take on the form of an (N-1)-degree
165 : polynomial for fixed N.
166 : The first few are
167 : U(1,K) = 1,
168 : U(2,K) = 2*K-1,
169 : U(3,K) = (2*K-2)*K+1,
170 : U(4,K) = (((4*K-6)*K+8)*K-3)/3,
171 : U(5,K) = ((((2*K-4)*K+10)*K-8)*K+3)/3,
172 : and
173 : V(1,K) = 2,
174 : V(2,K) = 4*K,
175 : V(3,K) = 4*K*K+2,
176 : V(4,K) = 8*(K*K+2)*K/3,
177 : V(5,K) = ((4*K*K+20)*K*K+6)/3,
178 : for all K>0.
179 : This allows us to derive O(N) encoding and O(N*log(K)) decoding routines for
180 : small N (and indeed decoding is also O(N) for N<3).
181 :
182 : @ARTICLE{Fis86,
183 : author="Thomas R. Fischer",
184 : title="A Pyramid Vector Quantizer",
185 : journal="IEEE Transactions on Information Theory",
186 : volume="IT-32",
187 : number=4,
188 : pages="568--583",
189 : month=Jul,
190 : year=1986
191 : }*/
192 :
193 : #if !defined(SMALL_FOOTPRINT)
194 :
195 : /*U(N,K) = U(K,N) := N>0?K>0?U(N-1,K)+U(N,K-1)+U(N-1,K-1):0:K>0?1:0*/
196 : # define CELT_PVQ_U(_n,_k) (CELT_PVQ_U_ROW[IMIN(_n,_k)][IMAX(_n,_k)])
197 : /*V(N,K) := U(N,K)+U(N,K+1) = the number of PVQ codewords for a band of size N
198 : with K pulses allocated to it.*/
199 : # define CELT_PVQ_V(_n,_k) (CELT_PVQ_U(_n,_k)+CELT_PVQ_U(_n,(_k)+1))
200 :
201 : /*For each V(N,K) supported, we will access element U(min(N,K+1),max(N,K+1)).
202 : Thus, the number of entries in row I is the larger of the maximum number of
203 : pulses we will ever allocate for a given N=I (K=128, or however many fit in
204 : 32 bits, whichever is smaller), plus one, and the maximum N for which
205 : K=I-1 pulses fit in 32 bits.
206 : The largest band size in an Opus Custom mode is 208.
207 : Otherwise, we can limit things to the set of N which can be achieved by
208 : splitting a band from a standard Opus mode: 176, 144, 96, 88, 72, 64, 48,
209 : 44, 36, 32, 24, 22, 18, 16, 8, 4, 2).*/
210 : #if defined(CUSTOM_MODES)
211 : static const opus_uint32 CELT_PVQ_U_DATA[1488]={
212 : #else
213 : static const opus_uint32 CELT_PVQ_U_DATA[1272]={
214 : #endif
215 : /*N=0, K=0...176:*/
216 : 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
217 : 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
218 : 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
219 : 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
220 : 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
221 : 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
222 : 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
223 : #if defined(CUSTOM_MODES)
224 : /*...208:*/
225 : 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
226 : 0, 0, 0, 0, 0, 0,
227 : #endif
228 : /*N=1, K=1...176:*/
229 : 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
230 : 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
231 : 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
232 : 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
233 : 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
234 : 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
235 : 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
236 : #if defined(CUSTOM_MODES)
237 : /*...208:*/
238 : 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
239 : 1, 1, 1, 1, 1, 1,
240 : #endif
241 : /*N=2, K=2...176:*/
242 : 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41,
243 : 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79,
244 : 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113,
245 : 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143,
246 : 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 167, 169, 171, 173,
247 : 175, 177, 179, 181, 183, 185, 187, 189, 191, 193, 195, 197, 199, 201, 203,
248 : 205, 207, 209, 211, 213, 215, 217, 219, 221, 223, 225, 227, 229, 231, 233,
249 : 235, 237, 239, 241, 243, 245, 247, 249, 251, 253, 255, 257, 259, 261, 263,
250 : 265, 267, 269, 271, 273, 275, 277, 279, 281, 283, 285, 287, 289, 291, 293,
251 : 295, 297, 299, 301, 303, 305, 307, 309, 311, 313, 315, 317, 319, 321, 323,
252 : 325, 327, 329, 331, 333, 335, 337, 339, 341, 343, 345, 347, 349, 351,
253 : #if defined(CUSTOM_MODES)
254 : /*...208:*/
255 : 353, 355, 357, 359, 361, 363, 365, 367, 369, 371, 373, 375, 377, 379, 381,
256 : 383, 385, 387, 389, 391, 393, 395, 397, 399, 401, 403, 405, 407, 409, 411,
257 : 413, 415,
258 : #endif
259 : /*N=3, K=3...176:*/
260 : 13, 25, 41, 61, 85, 113, 145, 181, 221, 265, 313, 365, 421, 481, 545, 613,
261 : 685, 761, 841, 925, 1013, 1105, 1201, 1301, 1405, 1513, 1625, 1741, 1861,
262 : 1985, 2113, 2245, 2381, 2521, 2665, 2813, 2965, 3121, 3281, 3445, 3613, 3785,
263 : 3961, 4141, 4325, 4513, 4705, 4901, 5101, 5305, 5513, 5725, 5941, 6161, 6385,
264 : 6613, 6845, 7081, 7321, 7565, 7813, 8065, 8321, 8581, 8845, 9113, 9385, 9661,
265 : 9941, 10225, 10513, 10805, 11101, 11401, 11705, 12013, 12325, 12641, 12961,
266 : 13285, 13613, 13945, 14281, 14621, 14965, 15313, 15665, 16021, 16381, 16745,
267 : 17113, 17485, 17861, 18241, 18625, 19013, 19405, 19801, 20201, 20605, 21013,
268 : 21425, 21841, 22261, 22685, 23113, 23545, 23981, 24421, 24865, 25313, 25765,
269 : 26221, 26681, 27145, 27613, 28085, 28561, 29041, 29525, 30013, 30505, 31001,
270 : 31501, 32005, 32513, 33025, 33541, 34061, 34585, 35113, 35645, 36181, 36721,
271 : 37265, 37813, 38365, 38921, 39481, 40045, 40613, 41185, 41761, 42341, 42925,
272 : 43513, 44105, 44701, 45301, 45905, 46513, 47125, 47741, 48361, 48985, 49613,
273 : 50245, 50881, 51521, 52165, 52813, 53465, 54121, 54781, 55445, 56113, 56785,
274 : 57461, 58141, 58825, 59513, 60205, 60901, 61601,
275 : #if defined(CUSTOM_MODES)
276 : /*...208:*/
277 : 62305, 63013, 63725, 64441, 65161, 65885, 66613, 67345, 68081, 68821, 69565,
278 : 70313, 71065, 71821, 72581, 73345, 74113, 74885, 75661, 76441, 77225, 78013,
279 : 78805, 79601, 80401, 81205, 82013, 82825, 83641, 84461, 85285, 86113,
280 : #endif
281 : /*N=4, K=4...176:*/
282 : 63, 129, 231, 377, 575, 833, 1159, 1561, 2047, 2625, 3303, 4089, 4991, 6017,
283 : 7175, 8473, 9919, 11521, 13287, 15225, 17343, 19649, 22151, 24857, 27775,
284 : 30913, 34279, 37881, 41727, 45825, 50183, 54809, 59711, 64897, 70375, 76153,
285 : 82239, 88641, 95367, 102425, 109823, 117569, 125671, 134137, 142975, 152193,
286 : 161799, 171801, 182207, 193025, 204263, 215929, 228031, 240577, 253575,
287 : 267033, 280959, 295361, 310247, 325625, 341503, 357889, 374791, 392217,
288 : 410175, 428673, 447719, 467321, 487487, 508225, 529543, 551449, 573951,
289 : 597057, 620775, 645113, 670079, 695681, 721927, 748825, 776383, 804609,
290 : 833511, 863097, 893375, 924353, 956039, 988441, 1021567, 1055425, 1090023,
291 : 1125369, 1161471, 1198337, 1235975, 1274393, 1313599, 1353601, 1394407,
292 : 1436025, 1478463, 1521729, 1565831, 1610777, 1656575, 1703233, 1750759,
293 : 1799161, 1848447, 1898625, 1949703, 2001689, 2054591, 2108417, 2163175,
294 : 2218873, 2275519, 2333121, 2391687, 2451225, 2511743, 2573249, 2635751,
295 : 2699257, 2763775, 2829313, 2895879, 2963481, 3032127, 3101825, 3172583,
296 : 3244409, 3317311, 3391297, 3466375, 3542553, 3619839, 3698241, 3777767,
297 : 3858425, 3940223, 4023169, 4107271, 4192537, 4278975, 4366593, 4455399,
298 : 4545401, 4636607, 4729025, 4822663, 4917529, 5013631, 5110977, 5209575,
299 : 5309433, 5410559, 5512961, 5616647, 5721625, 5827903, 5935489, 6044391,
300 : 6154617, 6266175, 6379073, 6493319, 6608921, 6725887, 6844225, 6963943,
301 : 7085049, 7207551,
302 : #if defined(CUSTOM_MODES)
303 : /*...208:*/
304 : 7331457, 7456775, 7583513, 7711679, 7841281, 7972327, 8104825, 8238783,
305 : 8374209, 8511111, 8649497, 8789375, 8930753, 9073639, 9218041, 9363967,
306 : 9511425, 9660423, 9810969, 9963071, 10116737, 10271975, 10428793, 10587199,
307 : 10747201, 10908807, 11072025, 11236863, 11403329, 11571431, 11741177,
308 : 11912575,
309 : #endif
310 : /*N=5, K=5...176:*/
311 : 321, 681, 1289, 2241, 3649, 5641, 8361, 11969, 16641, 22569, 29961, 39041,
312 : 50049, 63241, 78889, 97281, 118721, 143529, 172041, 204609, 241601, 283401,
313 : 330409, 383041, 441729, 506921, 579081, 658689, 746241, 842249, 947241,
314 : 1061761, 1186369, 1321641, 1468169, 1626561, 1797441, 1981449, 2179241,
315 : 2391489, 2618881, 2862121, 3121929, 3399041, 3694209, 4008201, 4341801,
316 : 4695809, 5071041, 5468329, 5888521, 6332481, 6801089, 7295241, 7815849,
317 : 8363841, 8940161, 9545769, 10181641, 10848769, 11548161, 12280841, 13047849,
318 : 13850241, 14689089, 15565481, 16480521, 17435329, 18431041, 19468809,
319 : 20549801, 21675201, 22846209, 24064041, 25329929, 26645121, 28010881,
320 : 29428489, 30899241, 32424449, 34005441, 35643561, 37340169, 39096641,
321 : 40914369, 42794761, 44739241, 46749249, 48826241, 50971689, 53187081,
322 : 55473921, 57833729, 60268041, 62778409, 65366401, 68033601, 70781609,
323 : 73612041, 76526529, 79526721, 82614281, 85790889, 89058241, 92418049,
324 : 95872041, 99421961, 103069569, 106816641, 110664969, 114616361, 118672641,
325 : 122835649, 127107241, 131489289, 135983681, 140592321, 145317129, 150160041,
326 : 155123009, 160208001, 165417001, 170752009, 176215041, 181808129, 187533321,
327 : 193392681, 199388289, 205522241, 211796649, 218213641, 224775361, 231483969,
328 : 238341641, 245350569, 252512961, 259831041, 267307049, 274943241, 282741889,
329 : 290705281, 298835721, 307135529, 315607041, 324252609, 333074601, 342075401,
330 : 351257409, 360623041, 370174729, 379914921, 389846081, 399970689, 410291241,
331 : 420810249, 431530241, 442453761, 453583369, 464921641, 476471169, 488234561,
332 : 500214441, 512413449, 524834241, 537479489, 550351881, 563454121, 576788929,
333 : 590359041, 604167209, 618216201, 632508801,
334 : #if defined(CUSTOM_MODES)
335 : /*...208:*/
336 : 647047809, 661836041, 676876329, 692171521, 707724481, 723538089, 739615241,
337 : 755958849, 772571841, 789457161, 806617769, 824056641, 841776769, 859781161,
338 : 878072841, 896654849, 915530241, 934702089, 954173481, 973947521, 994027329,
339 : 1014416041, 1035116809, 1056132801, 1077467201, 1099123209, 1121104041,
340 : 1143412929, 1166053121, 1189027881, 1212340489, 1235994241,
341 : #endif
342 : /*N=6, K=6...96:*/
343 : 1683, 3653, 7183, 13073, 22363, 36365, 56695, 85305, 124515, 177045, 246047,
344 : 335137, 448427, 590557, 766727, 982729, 1244979, 1560549, 1937199, 2383409,
345 : 2908411, 3522221, 4235671, 5060441, 6009091, 7095093, 8332863, 9737793,
346 : 11326283, 13115773, 15124775, 17372905, 19880915, 22670725, 25765455,
347 : 29189457, 32968347, 37129037, 41699767, 46710137, 52191139, 58175189,
348 : 64696159, 71789409, 79491819, 87841821, 96879431, 106646281, 117185651,
349 : 128542501, 140763503, 153897073, 167993403, 183104493, 199284183, 216588185,
350 : 235074115, 254801525, 275831935, 298228865, 322057867, 347386557, 374284647,
351 : 402823977, 433078547, 465124549, 499040399, 534906769, 572806619, 612825229,
352 : 655050231, 699571641, 746481891, 795875861, 847850911, 902506913, 959946283,
353 : 1020274013, 1083597703, 1150027593, 1219676595, 1292660325, 1369097135,
354 : 1449108145, 1532817275, 1620351277, 1711839767, 1807415257, 1907213187,
355 : 2011371957, 2120032959,
356 : #if defined(CUSTOM_MODES)
357 : /*...109:*/
358 : 2233340609U, 2351442379U, 2474488829U, 2602633639U, 2736033641U, 2874848851U,
359 : 3019242501U, 3169381071U, 3325434321U, 3487575323U, 3655980493U, 3830829623U,
360 : 4012305913U,
361 : #endif
362 : /*N=7, K=7...54*/
363 : 8989, 19825, 40081, 75517, 134245, 227305, 369305, 579125, 880685, 1303777,
364 : 1884961, 2668525, 3707509, 5064793, 6814249, 9041957, 11847485, 15345233,
365 : 19665841, 24957661, 31388293, 39146185, 48442297, 59511829, 72616013,
366 : 88043969, 106114625, 127178701, 151620757, 179861305, 212358985, 249612805,
367 : 292164445, 340600625, 395555537, 457713341, 527810725, 606639529, 695049433,
368 : 793950709, 904317037, 1027188385, 1163673953, 1314955181, 1482288821,
369 : 1667010073, 1870535785, 2094367717,
370 : #if defined(CUSTOM_MODES)
371 : /*...60:*/
372 : 2340095869U, 2609401873U, 2904062449U, 3225952925U, 3577050821U, 3959439497U,
373 : #endif
374 : /*N=8, K=8...37*/
375 : 48639, 108545, 224143, 433905, 795455, 1392065, 2340495, 3800305, 5984767,
376 : 9173505, 13726991, 20103025, 28875327, 40754369, 56610575, 77500017,
377 : 104692735, 139703809, 184327311, 240673265, 311207743, 398796225, 506750351,
378 : 638878193, 799538175, 993696769, 1226990095, 1505789553, 1837271615,
379 : 2229491905U,
380 : #if defined(CUSTOM_MODES)
381 : /*...40:*/
382 : 2691463695U, 3233240945U, 3866006015U,
383 : #endif
384 : /*N=9, K=9...28:*/
385 : 265729, 598417, 1256465, 2485825, 4673345, 8405905, 14546705, 24331777,
386 : 39490049, 62390545, 96220561, 145198913, 214828609, 312193553, 446304145,
387 : 628496897, 872893441, 1196924561, 1621925137, 2173806145U,
388 : #if defined(CUSTOM_MODES)
389 : /*...29:*/
390 : 2883810113U,
391 : #endif
392 : /*N=10, K=10...24:*/
393 : 1462563, 3317445, 7059735, 14218905, 27298155, 50250765, 89129247, 152951073,
394 : 254831667, 413442773, 654862247, 1014889769, 1541911931, 2300409629U,
395 : 3375210671U,
396 : /*N=11, K=11...19:*/
397 : 8097453, 18474633, 39753273, 81270333, 158819253, 298199265, 540279585,
398 : 948062325, 1616336765,
399 : #if defined(CUSTOM_MODES)
400 : /*...20:*/
401 : 2684641785U,
402 : #endif
403 : /*N=12, K=12...18:*/
404 : 45046719, 103274625, 224298231, 464387817, 921406335, 1759885185,
405 : 3248227095U,
406 : /*N=13, K=13...16:*/
407 : 251595969, 579168825, 1267854873, 2653649025U,
408 : /*N=14, K=14:*/
409 : 1409933619
410 : };
411 :
412 : #if defined(CUSTOM_MODES)
413 : static const opus_uint32 *const CELT_PVQ_U_ROW[15]={
414 : CELT_PVQ_U_DATA+ 0,CELT_PVQ_U_DATA+ 208,CELT_PVQ_U_DATA+ 415,
415 : CELT_PVQ_U_DATA+ 621,CELT_PVQ_U_DATA+ 826,CELT_PVQ_U_DATA+1030,
416 : CELT_PVQ_U_DATA+1233,CELT_PVQ_U_DATA+1336,CELT_PVQ_U_DATA+1389,
417 : CELT_PVQ_U_DATA+1421,CELT_PVQ_U_DATA+1441,CELT_PVQ_U_DATA+1455,
418 : CELT_PVQ_U_DATA+1464,CELT_PVQ_U_DATA+1470,CELT_PVQ_U_DATA+1473
419 : };
420 : #else
421 : static const opus_uint32 *const CELT_PVQ_U_ROW[15]={
422 : CELT_PVQ_U_DATA+ 0,CELT_PVQ_U_DATA+ 176,CELT_PVQ_U_DATA+ 351,
423 : CELT_PVQ_U_DATA+ 525,CELT_PVQ_U_DATA+ 698,CELT_PVQ_U_DATA+ 870,
424 : CELT_PVQ_U_DATA+1041,CELT_PVQ_U_DATA+1131,CELT_PVQ_U_DATA+1178,
425 : CELT_PVQ_U_DATA+1207,CELT_PVQ_U_DATA+1226,CELT_PVQ_U_DATA+1240,
426 : CELT_PVQ_U_DATA+1248,CELT_PVQ_U_DATA+1254,CELT_PVQ_U_DATA+1257
427 : };
428 : #endif
429 :
430 : #if defined(CUSTOM_MODES)
431 : void get_required_bits(opus_int16 *_bits,int _n,int _maxk,int _frac){
432 : int k;
433 : /*_maxk==0 => there's nothing to do.*/
434 : celt_assert(_maxk>0);
435 : _bits[0]=0;
436 : for(k=1;k<=_maxk;k++)_bits[k]=log2_frac(CELT_PVQ_V(_n,k),_frac);
437 : }
438 : #endif
439 :
440 0 : static opus_uint32 icwrs(int _n,const int *_y){
441 : opus_uint32 i;
442 : int j;
443 : int k;
444 0 : celt_assert(_n>=2);
445 0 : j=_n-1;
446 0 : i=_y[j]<0;
447 0 : k=abs(_y[j]);
448 : do{
449 0 : j--;
450 0 : i+=CELT_PVQ_U(_n-j,k);
451 0 : k+=abs(_y[j]);
452 0 : if(_y[j]<0)i+=CELT_PVQ_U(_n-j,k+1);
453 : }
454 0 : while(j>0);
455 0 : return i;
456 : }
457 :
458 0 : void encode_pulses(const int *_y,int _n,int _k,ec_enc *_enc){
459 0 : celt_assert(_k>0);
460 0 : ec_enc_uint(_enc,icwrs(_n,_y),CELT_PVQ_V(_n,_k));
461 0 : }
462 :
463 0 : static opus_val32 cwrsi(int _n,int _k,opus_uint32 _i,int *_y){
464 : opus_uint32 p;
465 : int s;
466 : int k0;
467 : opus_int16 val;
468 0 : opus_val32 yy=0;
469 0 : celt_assert(_k>0);
470 0 : celt_assert(_n>1);
471 0 : while(_n>2){
472 : opus_uint32 q;
473 : /*Lots of pulses case:*/
474 0 : if(_k>=_n){
475 : const opus_uint32 *row;
476 0 : row=CELT_PVQ_U_ROW[_n];
477 : /*Are the pulses in this dimension negative?*/
478 0 : p=row[_k+1];
479 0 : s=-(_i>=p);
480 0 : _i-=p&s;
481 : /*Count how many pulses were placed in this dimension.*/
482 0 : k0=_k;
483 0 : q=row[_n];
484 0 : if(q>_i){
485 0 : celt_assert(p>q);
486 0 : _k=_n;
487 0 : do p=CELT_PVQ_U_ROW[--_k][_n];
488 0 : while(p>_i);
489 : }
490 0 : else for(p=row[_k];p>_i;p=row[_k])_k--;
491 0 : _i-=p;
492 0 : val=(k0-_k+s)^s;
493 0 : *_y++=val;
494 0 : yy=MAC16_16(yy,val,val);
495 : }
496 : /*Lots of dimensions case:*/
497 : else{
498 : /*Are there any pulses in this dimension at all?*/
499 0 : p=CELT_PVQ_U_ROW[_k][_n];
500 0 : q=CELT_PVQ_U_ROW[_k+1][_n];
501 0 : if(p<=_i&&_i<q){
502 0 : _i-=p;
503 0 : *_y++=0;
504 : }
505 : else{
506 : /*Are the pulses in this dimension negative?*/
507 0 : s=-(_i>=q);
508 0 : _i-=q&s;
509 : /*Count how many pulses were placed in this dimension.*/
510 0 : k0=_k;
511 0 : do p=CELT_PVQ_U_ROW[--_k][_n];
512 0 : while(p>_i);
513 0 : _i-=p;
514 0 : val=(k0-_k+s)^s;
515 0 : *_y++=val;
516 0 : yy=MAC16_16(yy,val,val);
517 : }
518 : }
519 0 : _n--;
520 : }
521 : /*_n==2*/
522 0 : p=2*_k+1;
523 0 : s=-(_i>=p);
524 0 : _i-=p&s;
525 0 : k0=_k;
526 0 : _k=(_i+1)>>1;
527 0 : if(_k)_i-=2*_k-1;
528 0 : val=(k0-_k+s)^s;
529 0 : *_y++=val;
530 0 : yy=MAC16_16(yy,val,val);
531 : /*_n==1*/
532 0 : s=-(int)_i;
533 0 : val=(_k+s)^s;
534 0 : *_y=val;
535 0 : yy=MAC16_16(yy,val,val);
536 0 : return yy;
537 : }
538 :
539 0 : opus_val32 decode_pulses(int *_y,int _n,int _k,ec_dec *_dec){
540 0 : return cwrsi(_n,_k,ec_dec_uint(_dec,CELT_PVQ_V(_n,_k)),_y);
541 : }
542 :
543 : #else /* SMALL_FOOTPRINT */
544 :
545 : /*Computes the next row/column of any recurrence that obeys the relation
546 : u[i][j]=u[i-1][j]+u[i][j-1]+u[i-1][j-1].
547 : _ui0 is the base case for the new row/column.*/
548 : static OPUS_INLINE void unext(opus_uint32 *_ui,unsigned _len,opus_uint32 _ui0){
549 : opus_uint32 ui1;
550 : unsigned j;
551 : /*This do-while will overrun the array if we don't have storage for at least
552 : 2 values.*/
553 : j=1; do {
554 : ui1=UADD32(UADD32(_ui[j],_ui[j-1]),_ui0);
555 : _ui[j-1]=_ui0;
556 : _ui0=ui1;
557 : } while (++j<_len);
558 : _ui[j-1]=_ui0;
559 : }
560 :
561 : /*Computes the previous row/column of any recurrence that obeys the relation
562 : u[i-1][j]=u[i][j]-u[i][j-1]-u[i-1][j-1].
563 : _ui0 is the base case for the new row/column.*/
564 : static OPUS_INLINE void uprev(opus_uint32 *_ui,unsigned _n,opus_uint32 _ui0){
565 : opus_uint32 ui1;
566 : unsigned j;
567 : /*This do-while will overrun the array if we don't have storage for at least
568 : 2 values.*/
569 : j=1; do {
570 : ui1=USUB32(USUB32(_ui[j],_ui[j-1]),_ui0);
571 : _ui[j-1]=_ui0;
572 : _ui0=ui1;
573 : } while (++j<_n);
574 : _ui[j-1]=_ui0;
575 : }
576 :
577 : /*Compute V(_n,_k), as well as U(_n,0..._k+1).
578 : _u: On exit, _u[i] contains U(_n,i) for i in [0..._k+1].*/
579 : static opus_uint32 ncwrs_urow(unsigned _n,unsigned _k,opus_uint32 *_u){
580 : opus_uint32 um2;
581 : unsigned len;
582 : unsigned k;
583 : len=_k+2;
584 : /*We require storage at least 3 values (e.g., _k>0).*/
585 : celt_assert(len>=3);
586 : _u[0]=0;
587 : _u[1]=um2=1;
588 : /*If _n==0, _u[0] should be 1 and the rest should be 0.*/
589 : /*If _n==1, _u[i] should be 1 for i>1.*/
590 : celt_assert(_n>=2);
591 : /*If _k==0, the following do-while loop will overflow the buffer.*/
592 : celt_assert(_k>0);
593 : k=2;
594 : do _u[k]=(k<<1)-1;
595 : while(++k<len);
596 : for(k=2;k<_n;k++)unext(_u+1,_k+1,1);
597 : return _u[_k]+_u[_k+1];
598 : }
599 :
600 : /*Returns the _i'th combination of _k elements chosen from a set of size _n
601 : with associated sign bits.
602 : _y: Returns the vector of pulses.
603 : _u: Must contain entries [0..._k+1] of row _n of U() on input.
604 : Its contents will be destructively modified.*/
605 : static opus_val32 cwrsi(int _n,int _k,opus_uint32 _i,int *_y,opus_uint32 *_u){
606 : int j;
607 : opus_int16 val;
608 : opus_val32 yy=0;
609 : celt_assert(_n>0);
610 : j=0;
611 : do{
612 : opus_uint32 p;
613 : int s;
614 : int yj;
615 : p=_u[_k+1];
616 : s=-(_i>=p);
617 : _i-=p&s;
618 : yj=_k;
619 : p=_u[_k];
620 : while(p>_i)p=_u[--_k];
621 : _i-=p;
622 : yj-=_k;
623 : val=(yj+s)^s;
624 : _y[j]=val;
625 : yy=MAC16_16(yy,val,val);
626 : uprev(_u,_k+2,0);
627 : }
628 : while(++j<_n);
629 : return yy;
630 : }
631 :
632 : /*Returns the index of the given combination of K elements chosen from a set
633 : of size 1 with associated sign bits.
634 : _y: The vector of pulses, whose sum of absolute values is K.
635 : _k: Returns K.*/
636 : static OPUS_INLINE opus_uint32 icwrs1(const int *_y,int *_k){
637 : *_k=abs(_y[0]);
638 : return _y[0]<0;
639 : }
640 :
641 : /*Returns the index of the given combination of K elements chosen from a set
642 : of size _n with associated sign bits.
643 : _y: The vector of pulses, whose sum of absolute values must be _k.
644 : _nc: Returns V(_n,_k).*/
645 : static OPUS_INLINE opus_uint32 icwrs(int _n,int _k,opus_uint32 *_nc,const int *_y,
646 : opus_uint32 *_u){
647 : opus_uint32 i;
648 : int j;
649 : int k;
650 : /*We can't unroll the first two iterations of the loop unless _n>=2.*/
651 : celt_assert(_n>=2);
652 : _u[0]=0;
653 : for(k=1;k<=_k+1;k++)_u[k]=(k<<1)-1;
654 : i=icwrs1(_y+_n-1,&k);
655 : j=_n-2;
656 : i+=_u[k];
657 : k+=abs(_y[j]);
658 : if(_y[j]<0)i+=_u[k+1];
659 : while(j-->0){
660 : unext(_u,_k+2,0);
661 : i+=_u[k];
662 : k+=abs(_y[j]);
663 : if(_y[j]<0)i+=_u[k+1];
664 : }
665 : *_nc=_u[k]+_u[k+1];
666 : return i;
667 : }
668 :
669 : #ifdef CUSTOM_MODES
670 : void get_required_bits(opus_int16 *_bits,int _n,int _maxk,int _frac){
671 : int k;
672 : /*_maxk==0 => there's nothing to do.*/
673 : celt_assert(_maxk>0);
674 : _bits[0]=0;
675 : if (_n==1)
676 : {
677 : for (k=1;k<=_maxk;k++)
678 : _bits[k] = 1<<_frac;
679 : }
680 : else {
681 : VARDECL(opus_uint32,u);
682 : SAVE_STACK;
683 : ALLOC(u,_maxk+2U,opus_uint32);
684 : ncwrs_urow(_n,_maxk,u);
685 : for(k=1;k<=_maxk;k++)
686 : _bits[k]=log2_frac(u[k]+u[k+1],_frac);
687 : RESTORE_STACK;
688 : }
689 : }
690 : #endif /* CUSTOM_MODES */
691 :
692 : void encode_pulses(const int *_y,int _n,int _k,ec_enc *_enc){
693 : opus_uint32 i;
694 : VARDECL(opus_uint32,u);
695 : opus_uint32 nc;
696 : SAVE_STACK;
697 : celt_assert(_k>0);
698 : ALLOC(u,_k+2U,opus_uint32);
699 : i=icwrs(_n,_k,&nc,_y,u);
700 : ec_enc_uint(_enc,i,nc);
701 : RESTORE_STACK;
702 : }
703 :
704 : opus_val32 decode_pulses(int *_y,int _n,int _k,ec_dec *_dec){
705 : VARDECL(opus_uint32,u);
706 : int ret;
707 : SAVE_STACK;
708 : celt_assert(_k>0);
709 : ALLOC(u,_k+2U,opus_uint32);
710 : ret = cwrsi(_n,_k,ec_dec_uint(_dec,ncwrs_urow(_n,_k,u)),_y,u);
711 : RESTORE_STACK;
712 : return ret;
713 : }
714 :
715 : #endif /* SMALL_FOOTPRINT */
|