LCOV - code coverage report
Current view: top level - media/libopus/celt - cwrs.c (source / functions) Hit Total Coverage
Test: output.info Lines: 0 68 0.0 %
Date: 2017-07-14 16:53:18 Functions: 0 4 0.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /* Copyright (c) 2007-2008 CSIRO
       2             :    Copyright (c) 2007-2009 Xiph.Org Foundation
       3             :    Copyright (c) 2007-2009 Timothy B. Terriberry
       4             :    Written by Timothy B. Terriberry and Jean-Marc Valin */
       5             : /*
       6             :    Redistribution and use in source and binary forms, with or without
       7             :    modification, are permitted provided that the following conditions
       8             :    are met:
       9             : 
      10             :    - Redistributions of source code must retain the above copyright
      11             :    notice, this list of conditions and the following disclaimer.
      12             : 
      13             :    - Redistributions in binary form must reproduce the above copyright
      14             :    notice, this list of conditions and the following disclaimer in the
      15             :    documentation and/or other materials provided with the distribution.
      16             : 
      17             :    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
      18             :    ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
      19             :    LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
      20             :    A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
      21             :    OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
      22             :    EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
      23             :    PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
      24             :    PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
      25             :    LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
      26             :    NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
      27             :    SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
      28             : */
      29             : 
      30             : #ifdef HAVE_CONFIG_H
      31             : #include "config.h"
      32             : #endif
      33             : 
      34             : #include "os_support.h"
      35             : #include "cwrs.h"
      36             : #include "mathops.h"
      37             : #include "arch.h"
      38             : 
      39             : #ifdef CUSTOM_MODES
      40             : 
      41             : /*Guaranteed to return a conservatively large estimate of the binary logarithm
      42             :    with frac bits of fractional precision.
      43             :   Tested for all possible 32-bit inputs with frac=4, where the maximum
      44             :    overestimation is 0.06254243 bits.*/
      45             : int log2_frac(opus_uint32 val, int frac)
      46             : {
      47             :   int l;
      48             :   l=EC_ILOG(val);
      49             :   if(val&(val-1)){
      50             :     /*This is (val>>l-16), but guaranteed to round up, even if adding a bias
      51             :        before the shift would cause overflow (e.g., for 0xFFFFxxxx).
      52             :        Doesn't work for val=0, but that case fails the test above.*/
      53             :     if(l>16)val=((val-1)>>(l-16))+1;
      54             :     else val<<=16-l;
      55             :     l=(l-1)<<frac;
      56             :     /*Note that we always need one iteration, since the rounding up above means
      57             :        that we might need to adjust the integer part of the logarithm.*/
      58             :     do{
      59             :       int b;
      60             :       b=(int)(val>>16);
      61             :       l+=b<<frac;
      62             :       val=(val+b)>>b;
      63             :       val=(val*val+0x7FFF)>>15;
      64             :     }
      65             :     while(frac-->0);
      66             :     /*If val is not exactly 0x8000, then we have to round up the remainder.*/
      67             :     return l+(val>0x8000);
      68             :   }
      69             :   /*Exact powers of two require no rounding.*/
      70             :   else return (l-1)<<frac;
      71             : }
      72             : #endif
      73             : 
      74             : /*Although derived separately, the pulse vector coding scheme is equivalent to
      75             :    a Pyramid Vector Quantizer \cite{Fis86}.
      76             :   Some additional notes about an early version appear at
      77             :    https://people.xiph.org/~tterribe/notes/cwrs.html, but the codebook ordering
      78             :    and the definitions of some terms have evolved since that was written.
      79             : 
      80             :   The conversion from a pulse vector to an integer index (encoding) and back
      81             :    (decoding) is governed by two related functions, V(N,K) and U(N,K).
      82             : 
      83             :   V(N,K) = the number of combinations, with replacement, of N items, taken K
      84             :    at a time, when a sign bit is added to each item taken at least once (i.e.,
      85             :    the number of N-dimensional unit pulse vectors with K pulses).
      86             :   One way to compute this is via
      87             :     V(N,K) = K>0 ? sum(k=1...K,2**k*choose(N,k)*choose(K-1,k-1)) : 1,
      88             :    where choose() is the binomial function.
      89             :   A table of values for N<10 and K<10 looks like:
      90             :   V[10][10] = {
      91             :     {1,  0,   0,    0,    0,     0,     0,      0,      0,       0},
      92             :     {1,  2,   2,    2,    2,     2,     2,      2,      2,       2},
      93             :     {1,  4,   8,   12,   16,    20,    24,     28,     32,      36},
      94             :     {1,  6,  18,   38,   66,   102,   146,    198,    258,     326},
      95             :     {1,  8,  32,   88,  192,   360,   608,    952,   1408,    1992},
      96             :     {1, 10,  50,  170,  450,  1002,  1970,   3530,   5890,    9290},
      97             :     {1, 12,  72,  292,  912,  2364,  5336,  10836,  20256,   35436},
      98             :     {1, 14,  98,  462, 1666,  4942, 12642,  28814,  59906,  115598},
      99             :     {1, 16, 128,  688, 2816,  9424, 27008,  68464, 157184,  332688},
     100             :     {1, 18, 162,  978, 4482, 16722, 53154, 148626, 374274,  864146}
     101             :   };
     102             : 
     103             :   U(N,K) = the number of such combinations wherein N-1 objects are taken at
     104             :    most K-1 at a time.
     105             :   This is given by
     106             :     U(N,K) = sum(k=0...K-1,V(N-1,k))
     107             :            = K>0 ? (V(N-1,K-1) + V(N,K-1))/2 : 0.
     108             :   The latter expression also makes clear that U(N,K) is half the number of such
     109             :    combinations wherein the first object is taken at least once.
     110             :   Although it may not be clear from either of these definitions, U(N,K) is the
     111             :    natural function to work with when enumerating the pulse vector codebooks,
     112             :    not V(N,K).
     113             :   U(N,K) is not well-defined for N=0, but with the extension
     114             :     U(0,K) = K>0 ? 0 : 1,
     115             :    the function becomes symmetric: U(N,K) = U(K,N), with a similar table:
     116             :   U[10][10] = {
     117             :     {1, 0,  0,   0,    0,    0,     0,     0,      0,      0},
     118             :     {0, 1,  1,   1,    1,    1,     1,     1,      1,      1},
     119             :     {0, 1,  3,   5,    7,    9,    11,    13,     15,     17},
     120             :     {0, 1,  5,  13,   25,   41,    61,    85,    113,    145},
     121             :     {0, 1,  7,  25,   63,  129,   231,   377,    575,    833},
     122             :     {0, 1,  9,  41,  129,  321,   681,  1289,   2241,   3649},
     123             :     {0, 1, 11,  61,  231,  681,  1683,  3653,   7183,  13073},
     124             :     {0, 1, 13,  85,  377, 1289,  3653,  8989,  19825,  40081},
     125             :     {0, 1, 15, 113,  575, 2241,  7183, 19825,  48639, 108545},
     126             :     {0, 1, 17, 145,  833, 3649, 13073, 40081, 108545, 265729}
     127             :   };
     128             : 
     129             :   With this extension, V(N,K) may be written in terms of U(N,K):
     130             :     V(N,K) = U(N,K) + U(N,K+1)
     131             :    for all N>=0, K>=0.
     132             :   Thus U(N,K+1) represents the number of combinations where the first element
     133             :    is positive or zero, and U(N,K) represents the number of combinations where
     134             :    it is negative.
     135             :   With a large enough table of U(N,K) values, we could write O(N) encoding
     136             :    and O(min(N*log(K),N+K)) decoding routines, but such a table would be
     137             :    prohibitively large for small embedded devices (K may be as large as 32767
     138             :    for small N, and N may be as large as 200).
     139             : 
     140             :   Both functions obey the same recurrence relation:
     141             :     V(N,K) = V(N-1,K) + V(N,K-1) + V(N-1,K-1),
     142             :     U(N,K) = U(N-1,K) + U(N,K-1) + U(N-1,K-1),
     143             :    for all N>0, K>0, with different initial conditions at N=0 or K=0.
     144             :   This allows us to construct a row of one of the tables above given the
     145             :    previous row or the next row.
     146             :   Thus we can derive O(NK) encoding and decoding routines with O(K) memory
     147             :    using only addition and subtraction.
     148             : 
     149             :   When encoding, we build up from the U(2,K) row and work our way forwards.
     150             :   When decoding, we need to start at the U(N,K) row and work our way backwards,
     151             :    which requires a means of computing U(N,K).
     152             :   U(N,K) may be computed from two previous values with the same N:
     153             :     U(N,K) = ((2*N-1)*U(N,K-1) - U(N,K-2))/(K-1) + U(N,K-2)
     154             :    for all N>1, and since U(N,K) is symmetric, a similar relation holds for two
     155             :    previous values with the same K:
     156             :     U(N,K>1) = ((2*K-1)*U(N-1,K) - U(N-2,K))/(N-1) + U(N-2,K)
     157             :    for all K>1.
     158             :   This allows us to construct an arbitrary row of the U(N,K) table by starting
     159             :    with the first two values, which are constants.
     160             :   This saves roughly 2/3 the work in our O(NK) decoding routine, but costs O(K)
     161             :    multiplications.
     162             :   Similar relations can be derived for V(N,K), but are not used here.
     163             : 
     164             :   For N>0 and K>0, U(N,K) and V(N,K) take on the form of an (N-1)-degree
     165             :    polynomial for fixed N.
     166             :   The first few are
     167             :     U(1,K) = 1,
     168             :     U(2,K) = 2*K-1,
     169             :     U(3,K) = (2*K-2)*K+1,
     170             :     U(4,K) = (((4*K-6)*K+8)*K-3)/3,
     171             :     U(5,K) = ((((2*K-4)*K+10)*K-8)*K+3)/3,
     172             :    and
     173             :     V(1,K) = 2,
     174             :     V(2,K) = 4*K,
     175             :     V(3,K) = 4*K*K+2,
     176             :     V(4,K) = 8*(K*K+2)*K/3,
     177             :     V(5,K) = ((4*K*K+20)*K*K+6)/3,
     178             :    for all K>0.
     179             :   This allows us to derive O(N) encoding and O(N*log(K)) decoding routines for
     180             :    small N (and indeed decoding is also O(N) for N<3).
     181             : 
     182             :   @ARTICLE{Fis86,
     183             :     author="Thomas R. Fischer",
     184             :     title="A Pyramid Vector Quantizer",
     185             :     journal="IEEE Transactions on Information Theory",
     186             :     volume="IT-32",
     187             :     number=4,
     188             :     pages="568--583",
     189             :     month=Jul,
     190             :     year=1986
     191             :   }*/
     192             : 
     193             : #if !defined(SMALL_FOOTPRINT)
     194             : 
     195             : /*U(N,K) = U(K,N) := N>0?K>0?U(N-1,K)+U(N,K-1)+U(N-1,K-1):0:K>0?1:0*/
     196             : # define CELT_PVQ_U(_n,_k) (CELT_PVQ_U_ROW[IMIN(_n,_k)][IMAX(_n,_k)])
     197             : /*V(N,K) := U(N,K)+U(N,K+1) = the number of PVQ codewords for a band of size N
     198             :    with K pulses allocated to it.*/
     199             : # define CELT_PVQ_V(_n,_k) (CELT_PVQ_U(_n,_k)+CELT_PVQ_U(_n,(_k)+1))
     200             : 
     201             : /*For each V(N,K) supported, we will access element U(min(N,K+1),max(N,K+1)).
     202             :   Thus, the number of entries in row I is the larger of the maximum number of
     203             :    pulses we will ever allocate for a given N=I (K=128, or however many fit in
     204             :    32 bits, whichever is smaller), plus one, and the maximum N for which
     205             :    K=I-1 pulses fit in 32 bits.
     206             :   The largest band size in an Opus Custom mode is 208.
     207             :   Otherwise, we can limit things to the set of N which can be achieved by
     208             :    splitting a band from a standard Opus mode: 176, 144, 96, 88, 72, 64, 48,
     209             :    44, 36, 32, 24, 22, 18, 16, 8, 4, 2).*/
     210             : #if defined(CUSTOM_MODES)
     211             : static const opus_uint32 CELT_PVQ_U_DATA[1488]={
     212             : #else
     213             : static const opus_uint32 CELT_PVQ_U_DATA[1272]={
     214             : #endif
     215             :   /*N=0, K=0...176:*/
     216             :   1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
     217             :   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
     218             :   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
     219             :   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
     220             :   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
     221             :   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
     222             :   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
     223             : #if defined(CUSTOM_MODES)
     224             :   /*...208:*/
     225             :   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
     226             :   0, 0, 0, 0, 0, 0,
     227             : #endif
     228             :   /*N=1, K=1...176:*/
     229             :   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
     230             :   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
     231             :   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
     232             :   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
     233             :   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
     234             :   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
     235             :   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
     236             : #if defined(CUSTOM_MODES)
     237             :   /*...208:*/
     238             :   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
     239             :   1, 1, 1, 1, 1, 1,
     240             : #endif
     241             :   /*N=2, K=2...176:*/
     242             :   3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41,
     243             :   43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79,
     244             :   81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113,
     245             :   115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143,
     246             :   145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 167, 169, 171, 173,
     247             :   175, 177, 179, 181, 183, 185, 187, 189, 191, 193, 195, 197, 199, 201, 203,
     248             :   205, 207, 209, 211, 213, 215, 217, 219, 221, 223, 225, 227, 229, 231, 233,
     249             :   235, 237, 239, 241, 243, 245, 247, 249, 251, 253, 255, 257, 259, 261, 263,
     250             :   265, 267, 269, 271, 273, 275, 277, 279, 281, 283, 285, 287, 289, 291, 293,
     251             :   295, 297, 299, 301, 303, 305, 307, 309, 311, 313, 315, 317, 319, 321, 323,
     252             :   325, 327, 329, 331, 333, 335, 337, 339, 341, 343, 345, 347, 349, 351,
     253             : #if defined(CUSTOM_MODES)
     254             :   /*...208:*/
     255             :   353, 355, 357, 359, 361, 363, 365, 367, 369, 371, 373, 375, 377, 379, 381,
     256             :   383, 385, 387, 389, 391, 393, 395, 397, 399, 401, 403, 405, 407, 409, 411,
     257             :   413, 415,
     258             : #endif
     259             :   /*N=3, K=3...176:*/
     260             :   13, 25, 41, 61, 85, 113, 145, 181, 221, 265, 313, 365, 421, 481, 545, 613,
     261             :   685, 761, 841, 925, 1013, 1105, 1201, 1301, 1405, 1513, 1625, 1741, 1861,
     262             :   1985, 2113, 2245, 2381, 2521, 2665, 2813, 2965, 3121, 3281, 3445, 3613, 3785,
     263             :   3961, 4141, 4325, 4513, 4705, 4901, 5101, 5305, 5513, 5725, 5941, 6161, 6385,
     264             :   6613, 6845, 7081, 7321, 7565, 7813, 8065, 8321, 8581, 8845, 9113, 9385, 9661,
     265             :   9941, 10225, 10513, 10805, 11101, 11401, 11705, 12013, 12325, 12641, 12961,
     266             :   13285, 13613, 13945, 14281, 14621, 14965, 15313, 15665, 16021, 16381, 16745,
     267             :   17113, 17485, 17861, 18241, 18625, 19013, 19405, 19801, 20201, 20605, 21013,
     268             :   21425, 21841, 22261, 22685, 23113, 23545, 23981, 24421, 24865, 25313, 25765,
     269             :   26221, 26681, 27145, 27613, 28085, 28561, 29041, 29525, 30013, 30505, 31001,
     270             :   31501, 32005, 32513, 33025, 33541, 34061, 34585, 35113, 35645, 36181, 36721,
     271             :   37265, 37813, 38365, 38921, 39481, 40045, 40613, 41185, 41761, 42341, 42925,
     272             :   43513, 44105, 44701, 45301, 45905, 46513, 47125, 47741, 48361, 48985, 49613,
     273             :   50245, 50881, 51521, 52165, 52813, 53465, 54121, 54781, 55445, 56113, 56785,
     274             :   57461, 58141, 58825, 59513, 60205, 60901, 61601,
     275             : #if defined(CUSTOM_MODES)
     276             :   /*...208:*/
     277             :   62305, 63013, 63725, 64441, 65161, 65885, 66613, 67345, 68081, 68821, 69565,
     278             :   70313, 71065, 71821, 72581, 73345, 74113, 74885, 75661, 76441, 77225, 78013,
     279             :   78805, 79601, 80401, 81205, 82013, 82825, 83641, 84461, 85285, 86113,
     280             : #endif
     281             :   /*N=4, K=4...176:*/
     282             :   63, 129, 231, 377, 575, 833, 1159, 1561, 2047, 2625, 3303, 4089, 4991, 6017,
     283             :   7175, 8473, 9919, 11521, 13287, 15225, 17343, 19649, 22151, 24857, 27775,
     284             :   30913, 34279, 37881, 41727, 45825, 50183, 54809, 59711, 64897, 70375, 76153,
     285             :   82239, 88641, 95367, 102425, 109823, 117569, 125671, 134137, 142975, 152193,
     286             :   161799, 171801, 182207, 193025, 204263, 215929, 228031, 240577, 253575,
     287             :   267033, 280959, 295361, 310247, 325625, 341503, 357889, 374791, 392217,
     288             :   410175, 428673, 447719, 467321, 487487, 508225, 529543, 551449, 573951,
     289             :   597057, 620775, 645113, 670079, 695681, 721927, 748825, 776383, 804609,
     290             :   833511, 863097, 893375, 924353, 956039, 988441, 1021567, 1055425, 1090023,
     291             :   1125369, 1161471, 1198337, 1235975, 1274393, 1313599, 1353601, 1394407,
     292             :   1436025, 1478463, 1521729, 1565831, 1610777, 1656575, 1703233, 1750759,
     293             :   1799161, 1848447, 1898625, 1949703, 2001689, 2054591, 2108417, 2163175,
     294             :   2218873, 2275519, 2333121, 2391687, 2451225, 2511743, 2573249, 2635751,
     295             :   2699257, 2763775, 2829313, 2895879, 2963481, 3032127, 3101825, 3172583,
     296             :   3244409, 3317311, 3391297, 3466375, 3542553, 3619839, 3698241, 3777767,
     297             :   3858425, 3940223, 4023169, 4107271, 4192537, 4278975, 4366593, 4455399,
     298             :   4545401, 4636607, 4729025, 4822663, 4917529, 5013631, 5110977, 5209575,
     299             :   5309433, 5410559, 5512961, 5616647, 5721625, 5827903, 5935489, 6044391,
     300             :   6154617, 6266175, 6379073, 6493319, 6608921, 6725887, 6844225, 6963943,
     301             :   7085049, 7207551,
     302             : #if defined(CUSTOM_MODES)
     303             :   /*...208:*/
     304             :   7331457, 7456775, 7583513, 7711679, 7841281, 7972327, 8104825, 8238783,
     305             :   8374209, 8511111, 8649497, 8789375, 8930753, 9073639, 9218041, 9363967,
     306             :   9511425, 9660423, 9810969, 9963071, 10116737, 10271975, 10428793, 10587199,
     307             :   10747201, 10908807, 11072025, 11236863, 11403329, 11571431, 11741177,
     308             :   11912575,
     309             : #endif
     310             :   /*N=5, K=5...176:*/
     311             :   321, 681, 1289, 2241, 3649, 5641, 8361, 11969, 16641, 22569, 29961, 39041,
     312             :   50049, 63241, 78889, 97281, 118721, 143529, 172041, 204609, 241601, 283401,
     313             :   330409, 383041, 441729, 506921, 579081, 658689, 746241, 842249, 947241,
     314             :   1061761, 1186369, 1321641, 1468169, 1626561, 1797441, 1981449, 2179241,
     315             :   2391489, 2618881, 2862121, 3121929, 3399041, 3694209, 4008201, 4341801,
     316             :   4695809, 5071041, 5468329, 5888521, 6332481, 6801089, 7295241, 7815849,
     317             :   8363841, 8940161, 9545769, 10181641, 10848769, 11548161, 12280841, 13047849,
     318             :   13850241, 14689089, 15565481, 16480521, 17435329, 18431041, 19468809,
     319             :   20549801, 21675201, 22846209, 24064041, 25329929, 26645121, 28010881,
     320             :   29428489, 30899241, 32424449, 34005441, 35643561, 37340169, 39096641,
     321             :   40914369, 42794761, 44739241, 46749249, 48826241, 50971689, 53187081,
     322             :   55473921, 57833729, 60268041, 62778409, 65366401, 68033601, 70781609,
     323             :   73612041, 76526529, 79526721, 82614281, 85790889, 89058241, 92418049,
     324             :   95872041, 99421961, 103069569, 106816641, 110664969, 114616361, 118672641,
     325             :   122835649, 127107241, 131489289, 135983681, 140592321, 145317129, 150160041,
     326             :   155123009, 160208001, 165417001, 170752009, 176215041, 181808129, 187533321,
     327             :   193392681, 199388289, 205522241, 211796649, 218213641, 224775361, 231483969,
     328             :   238341641, 245350569, 252512961, 259831041, 267307049, 274943241, 282741889,
     329             :   290705281, 298835721, 307135529, 315607041, 324252609, 333074601, 342075401,
     330             :   351257409, 360623041, 370174729, 379914921, 389846081, 399970689, 410291241,
     331             :   420810249, 431530241, 442453761, 453583369, 464921641, 476471169, 488234561,
     332             :   500214441, 512413449, 524834241, 537479489, 550351881, 563454121, 576788929,
     333             :   590359041, 604167209, 618216201, 632508801,
     334             : #if defined(CUSTOM_MODES)
     335             :   /*...208:*/
     336             :   647047809, 661836041, 676876329, 692171521, 707724481, 723538089, 739615241,
     337             :   755958849, 772571841, 789457161, 806617769, 824056641, 841776769, 859781161,
     338             :   878072841, 896654849, 915530241, 934702089, 954173481, 973947521, 994027329,
     339             :   1014416041, 1035116809, 1056132801, 1077467201, 1099123209, 1121104041,
     340             :   1143412929, 1166053121, 1189027881, 1212340489, 1235994241,
     341             : #endif
     342             :   /*N=6, K=6...96:*/
     343             :   1683, 3653, 7183, 13073, 22363, 36365, 56695, 85305, 124515, 177045, 246047,
     344             :   335137, 448427, 590557, 766727, 982729, 1244979, 1560549, 1937199, 2383409,
     345             :   2908411, 3522221, 4235671, 5060441, 6009091, 7095093, 8332863, 9737793,
     346             :   11326283, 13115773, 15124775, 17372905, 19880915, 22670725, 25765455,
     347             :   29189457, 32968347, 37129037, 41699767, 46710137, 52191139, 58175189,
     348             :   64696159, 71789409, 79491819, 87841821, 96879431, 106646281, 117185651,
     349             :   128542501, 140763503, 153897073, 167993403, 183104493, 199284183, 216588185,
     350             :   235074115, 254801525, 275831935, 298228865, 322057867, 347386557, 374284647,
     351             :   402823977, 433078547, 465124549, 499040399, 534906769, 572806619, 612825229,
     352             :   655050231, 699571641, 746481891, 795875861, 847850911, 902506913, 959946283,
     353             :   1020274013, 1083597703, 1150027593, 1219676595, 1292660325, 1369097135,
     354             :   1449108145, 1532817275, 1620351277, 1711839767, 1807415257, 1907213187,
     355             :   2011371957, 2120032959,
     356             : #if defined(CUSTOM_MODES)
     357             :   /*...109:*/
     358             :   2233340609U, 2351442379U, 2474488829U, 2602633639U, 2736033641U, 2874848851U,
     359             :   3019242501U, 3169381071U, 3325434321U, 3487575323U, 3655980493U, 3830829623U,
     360             :   4012305913U,
     361             : #endif
     362             :   /*N=7, K=7...54*/
     363             :   8989, 19825, 40081, 75517, 134245, 227305, 369305, 579125, 880685, 1303777,
     364             :   1884961, 2668525, 3707509, 5064793, 6814249, 9041957, 11847485, 15345233,
     365             :   19665841, 24957661, 31388293, 39146185, 48442297, 59511829, 72616013,
     366             :   88043969, 106114625, 127178701, 151620757, 179861305, 212358985, 249612805,
     367             :   292164445, 340600625, 395555537, 457713341, 527810725, 606639529, 695049433,
     368             :   793950709, 904317037, 1027188385, 1163673953, 1314955181, 1482288821,
     369             :   1667010073, 1870535785, 2094367717,
     370             : #if defined(CUSTOM_MODES)
     371             :   /*...60:*/
     372             :   2340095869U, 2609401873U, 2904062449U, 3225952925U, 3577050821U, 3959439497U,
     373             : #endif
     374             :   /*N=8, K=8...37*/
     375             :   48639, 108545, 224143, 433905, 795455, 1392065, 2340495, 3800305, 5984767,
     376             :   9173505, 13726991, 20103025, 28875327, 40754369, 56610575, 77500017,
     377             :   104692735, 139703809, 184327311, 240673265, 311207743, 398796225, 506750351,
     378             :   638878193, 799538175, 993696769, 1226990095, 1505789553, 1837271615,
     379             :   2229491905U,
     380             : #if defined(CUSTOM_MODES)
     381             :   /*...40:*/
     382             :   2691463695U, 3233240945U, 3866006015U,
     383             : #endif
     384             :   /*N=9, K=9...28:*/
     385             :   265729, 598417, 1256465, 2485825, 4673345, 8405905, 14546705, 24331777,
     386             :   39490049, 62390545, 96220561, 145198913, 214828609, 312193553, 446304145,
     387             :   628496897, 872893441, 1196924561, 1621925137, 2173806145U,
     388             : #if defined(CUSTOM_MODES)
     389             :   /*...29:*/
     390             :   2883810113U,
     391             : #endif
     392             :   /*N=10, K=10...24:*/
     393             :   1462563, 3317445, 7059735, 14218905, 27298155, 50250765, 89129247, 152951073,
     394             :   254831667, 413442773, 654862247, 1014889769, 1541911931, 2300409629U,
     395             :   3375210671U,
     396             :   /*N=11, K=11...19:*/
     397             :   8097453, 18474633, 39753273, 81270333, 158819253, 298199265, 540279585,
     398             :   948062325, 1616336765,
     399             : #if defined(CUSTOM_MODES)
     400             :   /*...20:*/
     401             :   2684641785U,
     402             : #endif
     403             :   /*N=12, K=12...18:*/
     404             :   45046719, 103274625, 224298231, 464387817, 921406335, 1759885185,
     405             :   3248227095U,
     406             :   /*N=13, K=13...16:*/
     407             :   251595969, 579168825, 1267854873, 2653649025U,
     408             :   /*N=14, K=14:*/
     409             :   1409933619
     410             : };
     411             : 
     412             : #if defined(CUSTOM_MODES)
     413             : static const opus_uint32 *const CELT_PVQ_U_ROW[15]={
     414             :   CELT_PVQ_U_DATA+   0,CELT_PVQ_U_DATA+ 208,CELT_PVQ_U_DATA+ 415,
     415             :   CELT_PVQ_U_DATA+ 621,CELT_PVQ_U_DATA+ 826,CELT_PVQ_U_DATA+1030,
     416             :   CELT_PVQ_U_DATA+1233,CELT_PVQ_U_DATA+1336,CELT_PVQ_U_DATA+1389,
     417             :   CELT_PVQ_U_DATA+1421,CELT_PVQ_U_DATA+1441,CELT_PVQ_U_DATA+1455,
     418             :   CELT_PVQ_U_DATA+1464,CELT_PVQ_U_DATA+1470,CELT_PVQ_U_DATA+1473
     419             : };
     420             : #else
     421             : static const opus_uint32 *const CELT_PVQ_U_ROW[15]={
     422             :   CELT_PVQ_U_DATA+   0,CELT_PVQ_U_DATA+ 176,CELT_PVQ_U_DATA+ 351,
     423             :   CELT_PVQ_U_DATA+ 525,CELT_PVQ_U_DATA+ 698,CELT_PVQ_U_DATA+ 870,
     424             :   CELT_PVQ_U_DATA+1041,CELT_PVQ_U_DATA+1131,CELT_PVQ_U_DATA+1178,
     425             :   CELT_PVQ_U_DATA+1207,CELT_PVQ_U_DATA+1226,CELT_PVQ_U_DATA+1240,
     426             :   CELT_PVQ_U_DATA+1248,CELT_PVQ_U_DATA+1254,CELT_PVQ_U_DATA+1257
     427             : };
     428             : #endif
     429             : 
     430             : #if defined(CUSTOM_MODES)
     431             : void get_required_bits(opus_int16 *_bits,int _n,int _maxk,int _frac){
     432             :   int k;
     433             :   /*_maxk==0 => there's nothing to do.*/
     434             :   celt_assert(_maxk>0);
     435             :   _bits[0]=0;
     436             :   for(k=1;k<=_maxk;k++)_bits[k]=log2_frac(CELT_PVQ_V(_n,k),_frac);
     437             : }
     438             : #endif
     439             : 
     440           0 : static opus_uint32 icwrs(int _n,const int *_y){
     441             :   opus_uint32 i;
     442             :   int         j;
     443             :   int         k;
     444           0 :   celt_assert(_n>=2);
     445           0 :   j=_n-1;
     446           0 :   i=_y[j]<0;
     447           0 :   k=abs(_y[j]);
     448             :   do{
     449           0 :     j--;
     450           0 :     i+=CELT_PVQ_U(_n-j,k);
     451           0 :     k+=abs(_y[j]);
     452           0 :     if(_y[j]<0)i+=CELT_PVQ_U(_n-j,k+1);
     453             :   }
     454           0 :   while(j>0);
     455           0 :   return i;
     456             : }
     457             : 
     458           0 : void encode_pulses(const int *_y,int _n,int _k,ec_enc *_enc){
     459           0 :   celt_assert(_k>0);
     460           0 :   ec_enc_uint(_enc,icwrs(_n,_y),CELT_PVQ_V(_n,_k));
     461           0 : }
     462             : 
     463           0 : static opus_val32 cwrsi(int _n,int _k,opus_uint32 _i,int *_y){
     464             :   opus_uint32 p;
     465             :   int         s;
     466             :   int         k0;
     467             :   opus_int16  val;
     468           0 :   opus_val32  yy=0;
     469           0 :   celt_assert(_k>0);
     470           0 :   celt_assert(_n>1);
     471           0 :   while(_n>2){
     472             :     opus_uint32 q;
     473             :     /*Lots of pulses case:*/
     474           0 :     if(_k>=_n){
     475             :       const opus_uint32 *row;
     476           0 :       row=CELT_PVQ_U_ROW[_n];
     477             :       /*Are the pulses in this dimension negative?*/
     478           0 :       p=row[_k+1];
     479           0 :       s=-(_i>=p);
     480           0 :       _i-=p&s;
     481             :       /*Count how many pulses were placed in this dimension.*/
     482           0 :       k0=_k;
     483           0 :       q=row[_n];
     484           0 :       if(q>_i){
     485           0 :         celt_assert(p>q);
     486           0 :         _k=_n;
     487           0 :         do p=CELT_PVQ_U_ROW[--_k][_n];
     488           0 :         while(p>_i);
     489             :       }
     490           0 :       else for(p=row[_k];p>_i;p=row[_k])_k--;
     491           0 :       _i-=p;
     492           0 :       val=(k0-_k+s)^s;
     493           0 :       *_y++=val;
     494           0 :       yy=MAC16_16(yy,val,val);
     495             :     }
     496             :     /*Lots of dimensions case:*/
     497             :     else{
     498             :       /*Are there any pulses in this dimension at all?*/
     499           0 :       p=CELT_PVQ_U_ROW[_k][_n];
     500           0 :       q=CELT_PVQ_U_ROW[_k+1][_n];
     501           0 :       if(p<=_i&&_i<q){
     502           0 :         _i-=p;
     503           0 :         *_y++=0;
     504             :       }
     505             :       else{
     506             :         /*Are the pulses in this dimension negative?*/
     507           0 :         s=-(_i>=q);
     508           0 :         _i-=q&s;
     509             :         /*Count how many pulses were placed in this dimension.*/
     510           0 :         k0=_k;
     511           0 :         do p=CELT_PVQ_U_ROW[--_k][_n];
     512           0 :         while(p>_i);
     513           0 :         _i-=p;
     514           0 :         val=(k0-_k+s)^s;
     515           0 :         *_y++=val;
     516           0 :         yy=MAC16_16(yy,val,val);
     517             :       }
     518             :     }
     519           0 :     _n--;
     520             :   }
     521             :   /*_n==2*/
     522           0 :   p=2*_k+1;
     523           0 :   s=-(_i>=p);
     524           0 :   _i-=p&s;
     525           0 :   k0=_k;
     526           0 :   _k=(_i+1)>>1;
     527           0 :   if(_k)_i-=2*_k-1;
     528           0 :   val=(k0-_k+s)^s;
     529           0 :   *_y++=val;
     530           0 :   yy=MAC16_16(yy,val,val);
     531             :   /*_n==1*/
     532           0 :   s=-(int)_i;
     533           0 :   val=(_k+s)^s;
     534           0 :   *_y=val;
     535           0 :   yy=MAC16_16(yy,val,val);
     536           0 :   return yy;
     537             : }
     538             : 
     539           0 : opus_val32 decode_pulses(int *_y,int _n,int _k,ec_dec *_dec){
     540           0 :   return cwrsi(_n,_k,ec_dec_uint(_dec,CELT_PVQ_V(_n,_k)),_y);
     541             : }
     542             : 
     543             : #else /* SMALL_FOOTPRINT */
     544             : 
     545             : /*Computes the next row/column of any recurrence that obeys the relation
     546             :    u[i][j]=u[i-1][j]+u[i][j-1]+u[i-1][j-1].
     547             :   _ui0 is the base case for the new row/column.*/
     548             : static OPUS_INLINE void unext(opus_uint32 *_ui,unsigned _len,opus_uint32 _ui0){
     549             :   opus_uint32 ui1;
     550             :   unsigned      j;
     551             :   /*This do-while will overrun the array if we don't have storage for at least
     552             :      2 values.*/
     553             :   j=1; do {
     554             :     ui1=UADD32(UADD32(_ui[j],_ui[j-1]),_ui0);
     555             :     _ui[j-1]=_ui0;
     556             :     _ui0=ui1;
     557             :   } while (++j<_len);
     558             :   _ui[j-1]=_ui0;
     559             : }
     560             : 
     561             : /*Computes the previous row/column of any recurrence that obeys the relation
     562             :    u[i-1][j]=u[i][j]-u[i][j-1]-u[i-1][j-1].
     563             :   _ui0 is the base case for the new row/column.*/
     564             : static OPUS_INLINE void uprev(opus_uint32 *_ui,unsigned _n,opus_uint32 _ui0){
     565             :   opus_uint32 ui1;
     566             :   unsigned      j;
     567             :   /*This do-while will overrun the array if we don't have storage for at least
     568             :      2 values.*/
     569             :   j=1; do {
     570             :     ui1=USUB32(USUB32(_ui[j],_ui[j-1]),_ui0);
     571             :     _ui[j-1]=_ui0;
     572             :     _ui0=ui1;
     573             :   } while (++j<_n);
     574             :   _ui[j-1]=_ui0;
     575             : }
     576             : 
     577             : /*Compute V(_n,_k), as well as U(_n,0..._k+1).
     578             :   _u: On exit, _u[i] contains U(_n,i) for i in [0..._k+1].*/
     579             : static opus_uint32 ncwrs_urow(unsigned _n,unsigned _k,opus_uint32 *_u){
     580             :   opus_uint32 um2;
     581             :   unsigned      len;
     582             :   unsigned      k;
     583             :   len=_k+2;
     584             :   /*We require storage at least 3 values (e.g., _k>0).*/
     585             :   celt_assert(len>=3);
     586             :   _u[0]=0;
     587             :   _u[1]=um2=1;
     588             :   /*If _n==0, _u[0] should be 1 and the rest should be 0.*/
     589             :   /*If _n==1, _u[i] should be 1 for i>1.*/
     590             :   celt_assert(_n>=2);
     591             :   /*If _k==0, the following do-while loop will overflow the buffer.*/
     592             :   celt_assert(_k>0);
     593             :   k=2;
     594             :   do _u[k]=(k<<1)-1;
     595             :   while(++k<len);
     596             :   for(k=2;k<_n;k++)unext(_u+1,_k+1,1);
     597             :   return _u[_k]+_u[_k+1];
     598             : }
     599             : 
     600             : /*Returns the _i'th combination of _k elements chosen from a set of size _n
     601             :    with associated sign bits.
     602             :   _y: Returns the vector of pulses.
     603             :   _u: Must contain entries [0..._k+1] of row _n of U() on input.
     604             :       Its contents will be destructively modified.*/
     605             : static opus_val32 cwrsi(int _n,int _k,opus_uint32 _i,int *_y,opus_uint32 *_u){
     606             :   int j;
     607             :   opus_int16 val;
     608             :   opus_val32 yy=0;
     609             :   celt_assert(_n>0);
     610             :   j=0;
     611             :   do{
     612             :     opus_uint32 p;
     613             :     int           s;
     614             :     int           yj;
     615             :     p=_u[_k+1];
     616             :     s=-(_i>=p);
     617             :     _i-=p&s;
     618             :     yj=_k;
     619             :     p=_u[_k];
     620             :     while(p>_i)p=_u[--_k];
     621             :     _i-=p;
     622             :     yj-=_k;
     623             :     val=(yj+s)^s;
     624             :     _y[j]=val;
     625             :     yy=MAC16_16(yy,val,val);
     626             :     uprev(_u,_k+2,0);
     627             :   }
     628             :   while(++j<_n);
     629             :   return yy;
     630             : }
     631             : 
     632             : /*Returns the index of the given combination of K elements chosen from a set
     633             :    of size 1 with associated sign bits.
     634             :   _y: The vector of pulses, whose sum of absolute values is K.
     635             :   _k: Returns K.*/
     636             : static OPUS_INLINE opus_uint32 icwrs1(const int *_y,int *_k){
     637             :   *_k=abs(_y[0]);
     638             :   return _y[0]<0;
     639             : }
     640             : 
     641             : /*Returns the index of the given combination of K elements chosen from a set
     642             :    of size _n with associated sign bits.
     643             :   _y:  The vector of pulses, whose sum of absolute values must be _k.
     644             :   _nc: Returns V(_n,_k).*/
     645             : static OPUS_INLINE opus_uint32 icwrs(int _n,int _k,opus_uint32 *_nc,const int *_y,
     646             :  opus_uint32 *_u){
     647             :   opus_uint32 i;
     648             :   int         j;
     649             :   int         k;
     650             :   /*We can't unroll the first two iterations of the loop unless _n>=2.*/
     651             :   celt_assert(_n>=2);
     652             :   _u[0]=0;
     653             :   for(k=1;k<=_k+1;k++)_u[k]=(k<<1)-1;
     654             :   i=icwrs1(_y+_n-1,&k);
     655             :   j=_n-2;
     656             :   i+=_u[k];
     657             :   k+=abs(_y[j]);
     658             :   if(_y[j]<0)i+=_u[k+1];
     659             :   while(j-->0){
     660             :     unext(_u,_k+2,0);
     661             :     i+=_u[k];
     662             :     k+=abs(_y[j]);
     663             :     if(_y[j]<0)i+=_u[k+1];
     664             :   }
     665             :   *_nc=_u[k]+_u[k+1];
     666             :   return i;
     667             : }
     668             : 
     669             : #ifdef CUSTOM_MODES
     670             : void get_required_bits(opus_int16 *_bits,int _n,int _maxk,int _frac){
     671             :   int k;
     672             :   /*_maxk==0 => there's nothing to do.*/
     673             :   celt_assert(_maxk>0);
     674             :   _bits[0]=0;
     675             :   if (_n==1)
     676             :   {
     677             :     for (k=1;k<=_maxk;k++)
     678             :       _bits[k] = 1<<_frac;
     679             :   }
     680             :   else {
     681             :     VARDECL(opus_uint32,u);
     682             :     SAVE_STACK;
     683             :     ALLOC(u,_maxk+2U,opus_uint32);
     684             :     ncwrs_urow(_n,_maxk,u);
     685             :     for(k=1;k<=_maxk;k++)
     686             :       _bits[k]=log2_frac(u[k]+u[k+1],_frac);
     687             :     RESTORE_STACK;
     688             :   }
     689             : }
     690             : #endif /* CUSTOM_MODES */
     691             : 
     692             : void encode_pulses(const int *_y,int _n,int _k,ec_enc *_enc){
     693             :   opus_uint32 i;
     694             :   VARDECL(opus_uint32,u);
     695             :   opus_uint32 nc;
     696             :   SAVE_STACK;
     697             :   celt_assert(_k>0);
     698             :   ALLOC(u,_k+2U,opus_uint32);
     699             :   i=icwrs(_n,_k,&nc,_y,u);
     700             :   ec_enc_uint(_enc,i,nc);
     701             :   RESTORE_STACK;
     702             : }
     703             : 
     704             : opus_val32 decode_pulses(int *_y,int _n,int _k,ec_dec *_dec){
     705             :   VARDECL(opus_uint32,u);
     706             :   int ret;
     707             :   SAVE_STACK;
     708             :   celt_assert(_k>0);
     709             :   ALLOC(u,_k+2U,opus_uint32);
     710             :   ret = cwrsi(_n,_k,ec_dec_uint(_dec,ncwrs_urow(_n,_k,u)),_y,u);
     711             :   RESTORE_STACK;
     712             :   return ret;
     713             : }
     714             : 
     715             : #endif /* SMALL_FOOTPRINT */

Generated by: LCOV version 1.13