LCOV - code coverage report
Current view: top level - media/libopus/silk - A2NLSF.c (source / functions) Hit Total Coverage
Test: output.info Lines: 0 103 0.0 %
Date: 2017-07-14 16:53:18 Functions: 0 4 0.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /***********************************************************************
       2             : Copyright (c) 2006-2011, Skype Limited. All rights reserved.
       3             : Redistribution and use in source and binary forms, with or without
       4             : modification, are permitted provided that the following conditions
       5             : are met:
       6             : - Redistributions of source code must retain the above copyright notice,
       7             : this list of conditions and the following disclaimer.
       8             : - Redistributions in binary form must reproduce the above copyright
       9             : notice, this list of conditions and the following disclaimer in the
      10             : documentation and/or other materials provided with the distribution.
      11             : - Neither the name of Internet Society, IETF or IETF Trust, nor the
      12             : names of specific contributors, may be used to endorse or promote
      13             : products derived from this software without specific prior written
      14             : permission.
      15             : THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
      16             : AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
      17             : IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
      18             : ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
      19             : LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
      20             : CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
      21             : SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
      22             : INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
      23             : CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
      24             : ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
      25             : POSSIBILITY OF SUCH DAMAGE.
      26             : ***********************************************************************/
      27             : 
      28             : /* Conversion between prediction filter coefficients and NLSFs  */
      29             : /* Requires the order to be an even number                      */
      30             : /* A piecewise linear approximation maps LSF <-> cos(LSF)       */
      31             : /* Therefore the result is not accurate NLSFs, but the two      */
      32             : /* functions are accurate inverses of each other                */
      33             : 
      34             : #ifdef HAVE_CONFIG_H
      35             : #include "config.h"
      36             : #endif
      37             : 
      38             : #include "SigProc_FIX.h"
      39             : #include "tables.h"
      40             : 
      41             : /* Number of binary divisions, when not in low complexity mode */
      42             : #define BIN_DIV_STEPS_A2NLSF_FIX      3 /* must be no higher than 16 - log2( LSF_COS_TAB_SZ_FIX ) */
      43             : #define MAX_ITERATIONS_A2NLSF_FIX    16
      44             : 
      45             : /* Helper function for A2NLSF(..)                    */
      46             : /* Transforms polynomials from cos(n*f) to cos(f)^n  */
      47           0 : static OPUS_INLINE void silk_A2NLSF_trans_poly(
      48             :     opus_int32          *p,                     /* I/O    Polynomial                                */
      49             :     const opus_int      dd                      /* I      Polynomial order (= filter order / 2 )    */
      50             : )
      51             : {
      52             :     opus_int k, n;
      53             : 
      54           0 :     for( k = 2; k <= dd; k++ ) {
      55           0 :         for( n = dd; n > k; n-- ) {
      56           0 :             p[ n - 2 ] -= p[ n ];
      57             :         }
      58           0 :         p[ k - 2 ] -= silk_LSHIFT( p[ k ], 1 );
      59             :     }
      60           0 : }
      61             : /* Helper function for A2NLSF(..) */
      62             : /* Polynomial evaluation          */
      63           0 : static OPUS_INLINE opus_int32 silk_A2NLSF_eval_poly( /* return the polynomial evaluation, in Q16     */
      64             :     opus_int32          *p,                     /* I    Polynomial, Q16                         */
      65             :     const opus_int32    x,                      /* I    Evaluation point, Q12                   */
      66             :     const opus_int      dd                      /* I    Order                                   */
      67             : )
      68             : {
      69             :     opus_int   n;
      70             :     opus_int32 x_Q16, y32;
      71             : 
      72           0 :     y32 = p[ dd ];                                  /* Q16 */
      73           0 :     x_Q16 = silk_LSHIFT( x, 4 );
      74             : 
      75           0 :     if ( opus_likely( 8 == dd ) )
      76             :     {
      77           0 :         y32 = silk_SMLAWW( p[ 7 ], y32, x_Q16 );
      78           0 :         y32 = silk_SMLAWW( p[ 6 ], y32, x_Q16 );
      79           0 :         y32 = silk_SMLAWW( p[ 5 ], y32, x_Q16 );
      80           0 :         y32 = silk_SMLAWW( p[ 4 ], y32, x_Q16 );
      81           0 :         y32 = silk_SMLAWW( p[ 3 ], y32, x_Q16 );
      82           0 :         y32 = silk_SMLAWW( p[ 2 ], y32, x_Q16 );
      83           0 :         y32 = silk_SMLAWW( p[ 1 ], y32, x_Q16 );
      84           0 :         y32 = silk_SMLAWW( p[ 0 ], y32, x_Q16 );
      85             :     }
      86             :     else
      87             :     {
      88           0 :         for( n = dd - 1; n >= 0; n-- ) {
      89           0 :             y32 = silk_SMLAWW( p[ n ], y32, x_Q16 );    /* Q16 */
      90             :         }
      91             :     }
      92           0 :     return y32;
      93             : }
      94             : 
      95           0 : static OPUS_INLINE void silk_A2NLSF_init(
      96             :      const opus_int32    *a_Q16,
      97             :      opus_int32          *P,
      98             :      opus_int32          *Q,
      99             :      const opus_int      dd
     100             : )
     101             : {
     102             :     opus_int k;
     103             : 
     104             :     /* Convert filter coefs to even and odd polynomials */
     105           0 :     P[dd] = silk_LSHIFT( 1, 16 );
     106           0 :     Q[dd] = silk_LSHIFT( 1, 16 );
     107           0 :     for( k = 0; k < dd; k++ ) {
     108           0 :         P[ k ] = -a_Q16[ dd - k - 1 ] - a_Q16[ dd + k ];    /* Q16 */
     109           0 :         Q[ k ] = -a_Q16[ dd - k - 1 ] + a_Q16[ dd + k ];    /* Q16 */
     110             :     }
     111             : 
     112             :     /* Divide out zeros as we have that for even filter orders, */
     113             :     /* z =  1 is always a root in Q, and                        */
     114             :     /* z = -1 is always a root in P                             */
     115           0 :     for( k = dd; k > 0; k-- ) {
     116           0 :         P[ k - 1 ] -= P[ k ];
     117           0 :         Q[ k - 1 ] += Q[ k ];
     118             :     }
     119             : 
     120             :     /* Transform polynomials from cos(n*f) to cos(f)^n */
     121           0 :     silk_A2NLSF_trans_poly( P, dd );
     122           0 :     silk_A2NLSF_trans_poly( Q, dd );
     123           0 : }
     124             : 
     125             : /* Compute Normalized Line Spectral Frequencies (NLSFs) from whitening filter coefficients      */
     126             : /* If not all roots are found, the a_Q16 coefficients are bandwidth expanded until convergence. */
     127           0 : void silk_A2NLSF(
     128             :     opus_int16                  *NLSF,              /* O    Normalized Line Spectral Frequencies in Q15 (0..2^15-1) [d] */
     129             :     opus_int32                  *a_Q16,             /* I/O  Monic whitening filter coefficients in Q16 [d]              */
     130             :     const opus_int              d                   /* I    Filter order (must be even)                                 */
     131             : )
     132             : {
     133             :     opus_int   i, k, m, dd, root_ix, ffrac;
     134             :     opus_int32 xlo, xhi, xmid;
     135             :     opus_int32 ylo, yhi, ymid, thr;
     136             :     opus_int32 nom, den;
     137             :     opus_int32 P[ SILK_MAX_ORDER_LPC / 2 + 1 ];
     138             :     opus_int32 Q[ SILK_MAX_ORDER_LPC / 2 + 1 ];
     139             :     opus_int32 *PQ[ 2 ];
     140             :     opus_int32 *p;
     141             : 
     142             :     /* Store pointers to array */
     143           0 :     PQ[ 0 ] = P;
     144           0 :     PQ[ 1 ] = Q;
     145             : 
     146           0 :     dd = silk_RSHIFT( d, 1 );
     147             : 
     148           0 :     silk_A2NLSF_init( a_Q16, P, Q, dd );
     149             : 
     150             :     /* Find roots, alternating between P and Q */
     151           0 :     p = P;                          /* Pointer to polynomial */
     152             : 
     153           0 :     xlo = silk_LSFCosTab_FIX_Q12[ 0 ]; /* Q12*/
     154           0 :     ylo = silk_A2NLSF_eval_poly( p, xlo, dd );
     155             : 
     156           0 :     if( ylo < 0 ) {
     157             :         /* Set the first NLSF to zero and move on to the next */
     158           0 :         NLSF[ 0 ] = 0;
     159           0 :         p = Q;                      /* Pointer to polynomial */
     160           0 :         ylo = silk_A2NLSF_eval_poly( p, xlo, dd );
     161           0 :         root_ix = 1;                /* Index of current root */
     162             :     } else {
     163           0 :         root_ix = 0;                /* Index of current root */
     164             :     }
     165           0 :     k = 1;                          /* Loop counter */
     166           0 :     i = 0;                          /* Counter for bandwidth expansions applied */
     167           0 :     thr = 0;
     168             :     while( 1 ) {
     169             :         /* Evaluate polynomial */
     170           0 :         xhi = silk_LSFCosTab_FIX_Q12[ k ]; /* Q12 */
     171           0 :         yhi = silk_A2NLSF_eval_poly( p, xhi, dd );
     172             : 
     173             :         /* Detect zero crossing */
     174           0 :         if( ( ylo <= 0 && yhi >= thr ) || ( ylo >= 0 && yhi <= -thr ) ) {
     175           0 :             if( yhi == 0 ) {
     176             :                 /* If the root lies exactly at the end of the current       */
     177             :                 /* interval, look for the next root in the next interval    */
     178           0 :                 thr = 1;
     179             :             } else {
     180           0 :                 thr = 0;
     181             :             }
     182             :             /* Binary division */
     183           0 :             ffrac = -256;
     184           0 :             for( m = 0; m < BIN_DIV_STEPS_A2NLSF_FIX; m++ ) {
     185             :                 /* Evaluate polynomial */
     186           0 :                 xmid = silk_RSHIFT_ROUND( xlo + xhi, 1 );
     187           0 :                 ymid = silk_A2NLSF_eval_poly( p, xmid, dd );
     188             : 
     189             :                 /* Detect zero crossing */
     190           0 :                 if( ( ylo <= 0 && ymid >= 0 ) || ( ylo >= 0 && ymid <= 0 ) ) {
     191             :                     /* Reduce frequency */
     192           0 :                     xhi = xmid;
     193           0 :                     yhi = ymid;
     194             :                 } else {
     195             :                     /* Increase frequency */
     196           0 :                     xlo = xmid;
     197           0 :                     ylo = ymid;
     198           0 :                     ffrac = silk_ADD_RSHIFT( ffrac, 128, m );
     199             :                 }
     200             :             }
     201             : 
     202             :             /* Interpolate */
     203           0 :             if( silk_abs( ylo ) < 65536 ) {
     204             :                 /* Avoid dividing by zero */
     205           0 :                 den = ylo - yhi;
     206           0 :                 nom = silk_LSHIFT( ylo, 8 - BIN_DIV_STEPS_A2NLSF_FIX ) + silk_RSHIFT( den, 1 );
     207           0 :                 if( den != 0 ) {
     208           0 :                     ffrac += silk_DIV32( nom, den );
     209             :                 }
     210             :             } else {
     211             :                 /* No risk of dividing by zero because abs(ylo - yhi) >= abs(ylo) >= 65536 */
     212           0 :                 ffrac += silk_DIV32( ylo, silk_RSHIFT( ylo - yhi, 8 - BIN_DIV_STEPS_A2NLSF_FIX ) );
     213             :             }
     214           0 :             NLSF[ root_ix ] = (opus_int16)silk_min_32( silk_LSHIFT( (opus_int32)k, 8 ) + ffrac, silk_int16_MAX );
     215             : 
     216           0 :             silk_assert( NLSF[ root_ix ] >= 0 );
     217             : 
     218           0 :             root_ix++;        /* Next root */
     219           0 :             if( root_ix >= d ) {
     220             :                 /* Found all roots */
     221           0 :                 break;
     222             :             }
     223             :             /* Alternate pointer to polynomial */
     224           0 :             p = PQ[ root_ix & 1 ];
     225             : 
     226             :             /* Evaluate polynomial */
     227           0 :             xlo = silk_LSFCosTab_FIX_Q12[ k - 1 ]; /* Q12*/
     228           0 :             ylo = silk_LSHIFT( 1 - ( root_ix & 2 ), 12 );
     229             :         } else {
     230             :             /* Increment loop counter */
     231           0 :             k++;
     232           0 :             xlo = xhi;
     233           0 :             ylo = yhi;
     234           0 :             thr = 0;
     235             : 
     236           0 :             if( k > LSF_COS_TAB_SZ_FIX ) {
     237           0 :                 i++;
     238           0 :                 if( i > MAX_ITERATIONS_A2NLSF_FIX ) {
     239             :                     /* Set NLSFs to white spectrum and exit */
     240           0 :                     NLSF[ 0 ] = (opus_int16)silk_DIV32_16( 1 << 15, d + 1 );
     241           0 :                     for( k = 1; k < d; k++ ) {
     242           0 :                         NLSF[ k ] = (opus_int16)silk_ADD16( NLSF[ k-1 ], NLSF[ 0 ] );
     243             :                     }
     244           0 :                     return;
     245             :                 }
     246             : 
     247             :                 /* Error: Apply progressively more bandwidth expansion and run again */
     248           0 :                 silk_bwexpander_32( a_Q16, d, 65536 - silk_LSHIFT( 1, i ) );
     249             : 
     250           0 :                 silk_A2NLSF_init( a_Q16, P, Q, dd );
     251           0 :                 p = P;                            /* Pointer to polynomial */
     252           0 :                 xlo = silk_LSFCosTab_FIX_Q12[ 0 ]; /* Q12*/
     253           0 :                 ylo = silk_A2NLSF_eval_poly( p, xlo, dd );
     254           0 :                 if( ylo < 0 ) {
     255             :                     /* Set the first NLSF to zero and move on to the next */
     256           0 :                     NLSF[ 0 ] = 0;
     257           0 :                     p = Q;                        /* Pointer to polynomial */
     258           0 :                     ylo = silk_A2NLSF_eval_poly( p, xlo, dd );
     259           0 :                     root_ix = 1;                  /* Index of current root */
     260             :                 } else {
     261           0 :                     root_ix = 0;                  /* Index of current root */
     262             :                 }
     263           0 :                 k = 1;                            /* Reset loop counter */
     264             :             }
     265             :         }
     266             :     }
     267             : }

Generated by: LCOV version 1.13