LCOV - code coverage report
Current view: top level - media/libopus/silk/float - burg_modified_FLP.c (source / functions) Hit Total Coverage
Test: output.info Lines: 0 83 0.0 %
Date: 2017-07-14 16:53:18 Functions: 0 1 0.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /***********************************************************************
       2             : Copyright (c) 2006-2011, Skype Limited. All rights reserved.
       3             : Redistribution and use in source and binary forms, with or without
       4             : modification, are permitted provided that the following conditions
       5             : are met:
       6             : - Redistributions of source code must retain the above copyright notice,
       7             : this list of conditions and the following disclaimer.
       8             : - Redistributions in binary form must reproduce the above copyright
       9             : notice, this list of conditions and the following disclaimer in the
      10             : documentation and/or other materials provided with the distribution.
      11             : - Neither the name of Internet Society, IETF or IETF Trust, nor the
      12             : names of specific contributors, may be used to endorse or promote
      13             : products derived from this software without specific prior written
      14             : permission.
      15             : THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
      16             : AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
      17             : IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
      18             : ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
      19             : LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
      20             : CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
      21             : SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
      22             : INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
      23             : CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
      24             : ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
      25             : POSSIBILITY OF SUCH DAMAGE.
      26             : ***********************************************************************/
      27             : 
      28             : #ifdef HAVE_CONFIG_H
      29             : #include "config.h"
      30             : #endif
      31             : 
      32             : #include "SigProc_FLP.h"
      33             : #include "tuning_parameters.h"
      34             : #include "define.h"
      35             : 
      36             : #define MAX_FRAME_SIZE              384 /* subfr_length * nb_subfr = ( 0.005 * 16000 + 16 ) * 4 = 384*/
      37             : 
      38             : /* Compute reflection coefficients from input signal */
      39           0 : silk_float silk_burg_modified_FLP(          /* O    returns residual energy                                     */
      40             :     silk_float          A[],                /* O    prediction coefficients (length order)                      */
      41             :     const silk_float    x[],                /* I    input signal, length: nb_subfr*(D+L_sub)                    */
      42             :     const silk_float    minInvGain,         /* I    minimum inverse prediction gain                             */
      43             :     const opus_int      subfr_length,       /* I    input signal subframe length (incl. D preceding samples)    */
      44             :     const opus_int      nb_subfr,           /* I    number of subframes stacked in x                            */
      45             :     const opus_int      D                   /* I    order                                                       */
      46             : )
      47             : {
      48             :     opus_int         k, n, s, reached_max_gain;
      49             :     double           C0, invGain, num, nrg_f, nrg_b, rc, Atmp, tmp1, tmp2;
      50             :     const silk_float *x_ptr;
      51             :     double           C_first_row[ SILK_MAX_ORDER_LPC ], C_last_row[ SILK_MAX_ORDER_LPC ];
      52             :     double           CAf[ SILK_MAX_ORDER_LPC + 1 ], CAb[ SILK_MAX_ORDER_LPC + 1 ];
      53             :     double           Af[ SILK_MAX_ORDER_LPC ];
      54             : 
      55           0 :     silk_assert( subfr_length * nb_subfr <= MAX_FRAME_SIZE );
      56             : 
      57             :     /* Compute autocorrelations, added over subframes */
      58           0 :     C0 = silk_energy_FLP( x, nb_subfr * subfr_length );
      59           0 :     silk_memset( C_first_row, 0, SILK_MAX_ORDER_LPC * sizeof( double ) );
      60           0 :     for( s = 0; s < nb_subfr; s++ ) {
      61           0 :         x_ptr = x + s * subfr_length;
      62           0 :         for( n = 1; n < D + 1; n++ ) {
      63           0 :             C_first_row[ n - 1 ] += silk_inner_product_FLP( x_ptr, x_ptr + n, subfr_length - n );
      64             :         }
      65             :     }
      66           0 :     silk_memcpy( C_last_row, C_first_row, SILK_MAX_ORDER_LPC * sizeof( double ) );
      67             : 
      68             :     /* Initialize */
      69           0 :     CAb[ 0 ] = CAf[ 0 ] = C0 + FIND_LPC_COND_FAC * C0 + 1e-9f;
      70           0 :     invGain = 1.0f;
      71           0 :     reached_max_gain = 0;
      72           0 :     for( n = 0; n < D; n++ ) {
      73             :         /* Update first row of correlation matrix (without first element) */
      74             :         /* Update last row of correlation matrix (without last element, stored in reversed order) */
      75             :         /* Update C * Af */
      76             :         /* Update C * flipud(Af) (stored in reversed order) */
      77           0 :         for( s = 0; s < nb_subfr; s++ ) {
      78           0 :             x_ptr = x + s * subfr_length;
      79           0 :             tmp1 = x_ptr[ n ];
      80           0 :             tmp2 = x_ptr[ subfr_length - n - 1 ];
      81           0 :             for( k = 0; k < n; k++ ) {
      82           0 :                 C_first_row[ k ] -= x_ptr[ n ] * x_ptr[ n - k - 1 ];
      83           0 :                 C_last_row[ k ]  -= x_ptr[ subfr_length - n - 1 ] * x_ptr[ subfr_length - n + k ];
      84           0 :                 Atmp = Af[ k ];
      85           0 :                 tmp1 += x_ptr[ n - k - 1 ] * Atmp;
      86           0 :                 tmp2 += x_ptr[ subfr_length - n + k ] * Atmp;
      87             :             }
      88           0 :             for( k = 0; k <= n; k++ ) {
      89           0 :                 CAf[ k ] -= tmp1 * x_ptr[ n - k ];
      90           0 :                 CAb[ k ] -= tmp2 * x_ptr[ subfr_length - n + k - 1 ];
      91             :             }
      92             :         }
      93           0 :         tmp1 = C_first_row[ n ];
      94           0 :         tmp2 = C_last_row[ n ];
      95           0 :         for( k = 0; k < n; k++ ) {
      96           0 :             Atmp = Af[ k ];
      97           0 :             tmp1 += C_last_row[  n - k - 1 ] * Atmp;
      98           0 :             tmp2 += C_first_row[ n - k - 1 ] * Atmp;
      99             :         }
     100           0 :         CAf[ n + 1 ] = tmp1;
     101           0 :         CAb[ n + 1 ] = tmp2;
     102             : 
     103             :         /* Calculate nominator and denominator for the next order reflection (parcor) coefficient */
     104           0 :         num = CAb[ n + 1 ];
     105           0 :         nrg_b = CAb[ 0 ];
     106           0 :         nrg_f = CAf[ 0 ];
     107           0 :         for( k = 0; k < n; k++ ) {
     108           0 :             Atmp = Af[ k ];
     109           0 :             num   += CAb[ n - k ] * Atmp;
     110           0 :             nrg_b += CAb[ k + 1 ] * Atmp;
     111           0 :             nrg_f += CAf[ k + 1 ] * Atmp;
     112             :         }
     113           0 :         silk_assert( nrg_f > 0.0 );
     114           0 :         silk_assert( nrg_b > 0.0 );
     115             : 
     116             :         /* Calculate the next order reflection (parcor) coefficient */
     117           0 :         rc = -2.0 * num / ( nrg_f + nrg_b );
     118           0 :         silk_assert( rc > -1.0 && rc < 1.0 );
     119             : 
     120             :         /* Update inverse prediction gain */
     121           0 :         tmp1 = invGain * ( 1.0 - rc * rc );
     122           0 :         if( tmp1 <= minInvGain ) {
     123             :             /* Max prediction gain exceeded; set reflection coefficient such that max prediction gain is exactly hit */
     124           0 :             rc = sqrt( 1.0 - minInvGain / invGain );
     125           0 :             if( num > 0 ) {
     126             :                 /* Ensure adjusted reflection coefficients has the original sign */
     127           0 :                 rc = -rc;
     128             :             }
     129           0 :             invGain = minInvGain;
     130           0 :             reached_max_gain = 1;
     131             :         } else {
     132           0 :             invGain = tmp1;
     133             :         }
     134             : 
     135             :         /* Update the AR coefficients */
     136           0 :         for( k = 0; k < (n + 1) >> 1; k++ ) {
     137           0 :             tmp1 = Af[ k ];
     138           0 :             tmp2 = Af[ n - k - 1 ];
     139           0 :             Af[ k ]         = tmp1 + rc * tmp2;
     140           0 :             Af[ n - k - 1 ] = tmp2 + rc * tmp1;
     141             :         }
     142           0 :         Af[ n ] = rc;
     143             : 
     144           0 :         if( reached_max_gain ) {
     145             :             /* Reached max prediction gain; set remaining coefficients to zero and exit loop */
     146           0 :             for( k = n + 1; k < D; k++ ) {
     147           0 :                 Af[ k ] = 0.0;
     148             :             }
     149           0 :             break;
     150             :         }
     151             : 
     152             :         /* Update C * Af and C * Ab */
     153           0 :         for( k = 0; k <= n + 1; k++ ) {
     154           0 :             tmp1 = CAf[ k ];
     155           0 :             CAf[ k ]          += rc * CAb[ n - k + 1 ];
     156           0 :             CAb[ n - k + 1  ] += rc * tmp1;
     157             :         }
     158             :     }
     159             : 
     160           0 :     if( reached_max_gain ) {
     161             :         /* Convert to silk_float */
     162           0 :         for( k = 0; k < D; k++ ) {
     163           0 :             A[ k ] = (silk_float)( -Af[ k ] );
     164             :         }
     165             :         /* Subtract energy of preceding samples from C0 */
     166           0 :         for( s = 0; s < nb_subfr; s++ ) {
     167           0 :             C0 -= silk_energy_FLP( x + s * subfr_length, D );
     168             :         }
     169             :         /* Approximate residual energy */
     170           0 :         nrg_f = C0 * invGain;
     171             :     } else {
     172             :         /* Compute residual energy and store coefficients as silk_float */
     173           0 :         nrg_f = CAf[ 0 ];
     174           0 :         tmp1 = 1.0;
     175           0 :         for( k = 0; k < D; k++ ) {
     176           0 :             Atmp = Af[ k ];
     177           0 :             nrg_f += CAf[ k + 1 ] * Atmp;
     178           0 :             tmp1  += Atmp * Atmp;
     179           0 :             A[ k ] = (silk_float)(-Atmp);
     180             :         }
     181           0 :         nrg_f -= FIND_LPC_COND_FAC * C0 * tmp1;
     182             :     }
     183             : 
     184             :     /* Return residual energy */
     185           0 :     return (silk_float)nrg_f;
     186             : }

Generated by: LCOV version 1.13