LCOV - code coverage report
Current view: top level - media/libopus/silk/x86 - VAD_sse.c (source / functions) Hit Total Coverage
Test: output.info Lines: 0 91 0.0 %
Date: 2017-07-14 16:53:18 Functions: 0 1 0.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /* Copyright (c) 2014, Cisco Systems, INC
       2             :    Written by XiangMingZhu WeiZhou MinPeng YanWang
       3             : 
       4             :    Redistribution and use in source and binary forms, with or without
       5             :    modification, are permitted provided that the following conditions
       6             :    are met:
       7             : 
       8             :    - Redistributions of source code must retain the above copyright
       9             :    notice, this list of conditions and the following disclaimer.
      10             : 
      11             :    - Redistributions in binary form must reproduce the above copyright
      12             :    notice, this list of conditions and the following disclaimer in the
      13             :    documentation and/or other materials provided with the distribution.
      14             : 
      15             :    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
      16             :    ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
      17             :    LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
      18             :    A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
      19             :    OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
      20             :    EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
      21             :    PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
      22             :    PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
      23             :    LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
      24             :    NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
      25             :    SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
      26             : */
      27             : 
      28             : #ifdef HAVE_CONFIG_H
      29             : #include "config.h"
      30             : #endif
      31             : 
      32             : #include <xmmintrin.h>
      33             : #include <emmintrin.h>
      34             : #include <smmintrin.h>
      35             : 
      36             : #include "main.h"
      37             : #include "stack_alloc.h"
      38             : 
      39             : /* Weighting factors for tilt measure */
      40             : static const opus_int32 tiltWeights[ VAD_N_BANDS ] = { 30000, 6000, -12000, -12000 };
      41             : 
      42             : /***************************************/
      43             : /* Get the speech activity level in Q8 */
      44             : /***************************************/
      45           0 : opus_int silk_VAD_GetSA_Q8_sse4_1(                  /* O    Return value, 0 if success                  */
      46             :     silk_encoder_state          *psEncC,            /* I/O  Encoder state                               */
      47             :     const opus_int16            pIn[]               /* I    PCM input                                   */
      48             : )
      49             : {
      50             :     opus_int   SA_Q15, pSNR_dB_Q7, input_tilt;
      51             :     opus_int   decimated_framelength1, decimated_framelength2;
      52             :     opus_int   decimated_framelength;
      53             :     opus_int   dec_subframe_length, dec_subframe_offset, SNR_Q7, i, b, s;
      54             :     opus_int32 sumSquared, smooth_coef_Q16;
      55             :     opus_int16 HPstateTmp;
      56             :     VARDECL( opus_int16, X );
      57             :     opus_int32 Xnrg[ VAD_N_BANDS ];
      58             :     opus_int32 NrgToNoiseRatio_Q8[ VAD_N_BANDS ];
      59             :     opus_int32 speech_nrg, x_tmp;
      60             :     opus_int   X_offset[ VAD_N_BANDS ];
      61           0 :     opus_int   ret = 0;
      62           0 :     silk_VAD_state *psSilk_VAD = &psEncC->sVAD;
      63             : 
      64             :     SAVE_STACK;
      65             : 
      66             :     /* Safety checks */
      67             :     silk_assert( VAD_N_BANDS == 4 );
      68           0 :     silk_assert( MAX_FRAME_LENGTH >= psEncC->frame_length );
      69           0 :     silk_assert( psEncC->frame_length <= 512 );
      70           0 :     silk_assert( psEncC->frame_length == 8 * silk_RSHIFT( psEncC->frame_length, 3 ) );
      71             : 
      72             :     /***********************/
      73             :     /* Filter and Decimate */
      74             :     /***********************/
      75           0 :     decimated_framelength1 = silk_RSHIFT( psEncC->frame_length, 1 );
      76           0 :     decimated_framelength2 = silk_RSHIFT( psEncC->frame_length, 2 );
      77           0 :     decimated_framelength = silk_RSHIFT( psEncC->frame_length, 3 );
      78             :     /* Decimate into 4 bands:
      79             :        0       L      3L       L              3L                             5L
      80             :                -      --       -              --                             --
      81             :                8       8       2               4                              4
      82             : 
      83             :        [0-1 kHz| temp. |1-2 kHz|    2-4 kHz    |            4-8 kHz           |
      84             : 
      85             :        They're arranged to allow the minimal ( frame_length / 4 ) extra
      86             :        scratch space during the downsampling process */
      87           0 :     X_offset[ 0 ] = 0;
      88           0 :     X_offset[ 1 ] = decimated_framelength + decimated_framelength2;
      89           0 :     X_offset[ 2 ] = X_offset[ 1 ] + decimated_framelength;
      90           0 :     X_offset[ 3 ] = X_offset[ 2 ] + decimated_framelength2;
      91           0 :     ALLOC( X, X_offset[ 3 ] + decimated_framelength1, opus_int16 );
      92             : 
      93             :     /* 0-8 kHz to 0-4 kHz and 4-8 kHz */
      94           0 :     silk_ana_filt_bank_1( pIn, &psSilk_VAD->AnaState[  0 ],
      95           0 :         X, &X[ X_offset[ 3 ] ], psEncC->frame_length );
      96             : 
      97             :     /* 0-4 kHz to 0-2 kHz and 2-4 kHz */
      98           0 :     silk_ana_filt_bank_1( X, &psSilk_VAD->AnaState1[ 0 ],
      99           0 :         X, &X[ X_offset[ 2 ] ], decimated_framelength1 );
     100             : 
     101             :     /* 0-2 kHz to 0-1 kHz and 1-2 kHz */
     102           0 :     silk_ana_filt_bank_1( X, &psSilk_VAD->AnaState2[ 0 ],
     103           0 :         X, &X[ X_offset[ 1 ] ], decimated_framelength2 );
     104             : 
     105             :     /*********************************************/
     106             :     /* HP filter on lowest band (differentiator) */
     107             :     /*********************************************/
     108           0 :     X[ decimated_framelength - 1 ] = silk_RSHIFT( X[ decimated_framelength - 1 ], 1 );
     109           0 :     HPstateTmp = X[ decimated_framelength - 1 ];
     110           0 :     for( i = decimated_framelength - 1; i > 0; i-- ) {
     111           0 :         X[ i - 1 ]  = silk_RSHIFT( X[ i - 1 ], 1 );
     112           0 :         X[ i ]     -= X[ i - 1 ];
     113             :     }
     114           0 :     X[ 0 ] -= psSilk_VAD->HPstate;
     115           0 :     psSilk_VAD->HPstate = HPstateTmp;
     116             : 
     117             :     /*************************************/
     118             :     /* Calculate the energy in each band */
     119             :     /*************************************/
     120           0 :     for( b = 0; b < VAD_N_BANDS; b++ ) {
     121             :         /* Find the decimated framelength in the non-uniformly divided bands */
     122           0 :         decimated_framelength = silk_RSHIFT( psEncC->frame_length, silk_min_int( VAD_N_BANDS - b, VAD_N_BANDS - 1 ) );
     123             : 
     124             :         /* Split length into subframe lengths */
     125           0 :         dec_subframe_length = silk_RSHIFT( decimated_framelength, VAD_INTERNAL_SUBFRAMES_LOG2 );
     126           0 :         dec_subframe_offset = 0;
     127             : 
     128             :         /* Compute energy per sub-frame */
     129             :         /* initialize with summed energy of last subframe */
     130           0 :         Xnrg[ b ] = psSilk_VAD->XnrgSubfr[ b ];
     131           0 :         for( s = 0; s < VAD_INTERNAL_SUBFRAMES; s++ ) {
     132             :             __m128i xmm_X, xmm_acc;
     133           0 :             sumSquared = 0;
     134             : 
     135           0 :             xmm_acc = _mm_setzero_si128();
     136             : 
     137           0 :             for( i = 0; i < dec_subframe_length - 7; i += 8 )
     138             :             {
     139           0 :                 xmm_X   = _mm_loadu_si128( (__m128i *)&(X[ X_offset[ b ] + i + dec_subframe_offset ] ) );
     140           0 :                 xmm_X   = _mm_srai_epi16( xmm_X, 3 );
     141           0 :                 xmm_X   = _mm_madd_epi16( xmm_X, xmm_X );
     142           0 :                 xmm_acc = _mm_add_epi32( xmm_acc, xmm_X );
     143             :             }
     144             : 
     145           0 :             xmm_acc = _mm_add_epi32( xmm_acc, _mm_unpackhi_epi64( xmm_acc, xmm_acc ) );
     146           0 :             xmm_acc = _mm_add_epi32( xmm_acc, _mm_shufflelo_epi16( xmm_acc, 0x0E ) );
     147             : 
     148           0 :             sumSquared += _mm_cvtsi128_si32( xmm_acc );
     149             : 
     150           0 :             for( ; i < dec_subframe_length; i++ ) {
     151             :                 /* The energy will be less than dec_subframe_length * ( silk_int16_MIN / 8 ) ^ 2.            */
     152             :                 /* Therefore we can accumulate with no risk of overflow (unless dec_subframe_length > 128)  */
     153           0 :                 x_tmp = silk_RSHIFT(
     154             :                     X[ X_offset[ b ] + i + dec_subframe_offset ], 3 );
     155           0 :                 sumSquared = silk_SMLABB( sumSquared, x_tmp, x_tmp );
     156             : 
     157             :                 /* Safety check */
     158           0 :                 silk_assert( sumSquared >= 0 );
     159             :             }
     160             : 
     161             :             /* Add/saturate summed energy of current subframe */
     162           0 :             if( s < VAD_INTERNAL_SUBFRAMES - 1 ) {
     163           0 :                 Xnrg[ b ] = silk_ADD_POS_SAT32( Xnrg[ b ], sumSquared );
     164             :             } else {
     165             :                 /* Look-ahead subframe */
     166           0 :                 Xnrg[ b ] = silk_ADD_POS_SAT32( Xnrg[ b ], silk_RSHIFT( sumSquared, 1 ) );
     167             :             }
     168             : 
     169           0 :             dec_subframe_offset += dec_subframe_length;
     170             :         }
     171           0 :         psSilk_VAD->XnrgSubfr[ b ] = sumSquared;
     172             :     }
     173             : 
     174             :     /********************/
     175             :     /* Noise estimation */
     176             :     /********************/
     177           0 :     silk_VAD_GetNoiseLevels( &Xnrg[ 0 ], psSilk_VAD );
     178             : 
     179             :     /***********************************************/
     180             :     /* Signal-plus-noise to noise ratio estimation */
     181             :     /***********************************************/
     182           0 :     sumSquared = 0;
     183           0 :     input_tilt = 0;
     184           0 :     for( b = 0; b < VAD_N_BANDS; b++ ) {
     185           0 :         speech_nrg = Xnrg[ b ] - psSilk_VAD->NL[ b ];
     186           0 :         if( speech_nrg > 0 ) {
     187             :             /* Divide, with sufficient resolution */
     188           0 :             if( ( Xnrg[ b ] & 0xFF800000 ) == 0 ) {
     189           0 :                 NrgToNoiseRatio_Q8[ b ] = silk_DIV32( silk_LSHIFT( Xnrg[ b ], 8 ), psSilk_VAD->NL[ b ] + 1 );
     190             :             } else {
     191           0 :                 NrgToNoiseRatio_Q8[ b ] = silk_DIV32( Xnrg[ b ], silk_RSHIFT( psSilk_VAD->NL[ b ], 8 ) + 1 );
     192             :             }
     193             : 
     194             :             /* Convert to log domain */
     195           0 :             SNR_Q7 = silk_lin2log( NrgToNoiseRatio_Q8[ b ] ) - 8 * 128;
     196             : 
     197             :             /* Sum-of-squares */
     198           0 :             sumSquared = silk_SMLABB( sumSquared, SNR_Q7, SNR_Q7 );          /* Q14 */
     199             : 
     200             :             /* Tilt measure */
     201           0 :             if( speech_nrg < ( (opus_int32)1 << 20 ) ) {
     202             :                 /* Scale down SNR value for small subband speech energies */
     203           0 :                 SNR_Q7 = silk_SMULWB( silk_LSHIFT( silk_SQRT_APPROX( speech_nrg ), 6 ), SNR_Q7 );
     204             :             }
     205           0 :             input_tilt = silk_SMLAWB( input_tilt, tiltWeights[ b ], SNR_Q7 );
     206             :         } else {
     207           0 :             NrgToNoiseRatio_Q8[ b ] = 256;
     208             :         }
     209             :     }
     210             : 
     211             :     /* Mean-of-squares */
     212           0 :     sumSquared = silk_DIV32_16( sumSquared, VAD_N_BANDS ); /* Q14 */
     213             : 
     214             :     /* Root-mean-square approximation, scale to dBs, and write to output pointer */
     215           0 :     pSNR_dB_Q7 = (opus_int16)( 3 * silk_SQRT_APPROX( sumSquared ) ); /* Q7 */
     216             : 
     217             :     /*********************************/
     218             :     /* Speech Probability Estimation */
     219             :     /*********************************/
     220           0 :     SA_Q15 = silk_sigm_Q15( silk_SMULWB( VAD_SNR_FACTOR_Q16, pSNR_dB_Q7 ) - VAD_NEGATIVE_OFFSET_Q5 );
     221             : 
     222             :     /**************************/
     223             :     /* Frequency Tilt Measure */
     224             :     /**************************/
     225           0 :     psEncC->input_tilt_Q15 = silk_LSHIFT( silk_sigm_Q15( input_tilt ) - 16384, 1 );
     226             : 
     227             :     /**************************************************/
     228             :     /* Scale the sigmoid output based on power levels */
     229             :     /**************************************************/
     230           0 :     speech_nrg = 0;
     231           0 :     for( b = 0; b < VAD_N_BANDS; b++ ) {
     232             :         /* Accumulate signal-without-noise energies, higher frequency bands have more weight */
     233           0 :         speech_nrg += ( b + 1 ) * silk_RSHIFT( Xnrg[ b ] - psSilk_VAD->NL[ b ], 4 );
     234             :     }
     235             : 
     236             :     /* Power scaling */
     237           0 :     if( speech_nrg <= 0 ) {
     238           0 :         SA_Q15 = silk_RSHIFT( SA_Q15, 1 );
     239           0 :     } else if( speech_nrg < 32768 ) {
     240           0 :         if( psEncC->frame_length == 10 * psEncC->fs_kHz ) {
     241           0 :             speech_nrg = silk_LSHIFT_SAT32( speech_nrg, 16 );
     242             :         } else {
     243           0 :             speech_nrg = silk_LSHIFT_SAT32( speech_nrg, 15 );
     244             :         }
     245             : 
     246             :         /* square-root */
     247           0 :         speech_nrg = silk_SQRT_APPROX( speech_nrg );
     248           0 :         SA_Q15 = silk_SMULWB( 32768 + speech_nrg, SA_Q15 );
     249             :     }
     250             : 
     251             :     /* Copy the resulting speech activity in Q8 */
     252           0 :     psEncC->speech_activity_Q8 = silk_min_int( silk_RSHIFT( SA_Q15, 7 ), silk_uint8_MAX );
     253             : 
     254             :     /***********************************/
     255             :     /* Energy Level and SNR estimation */
     256             :     /***********************************/
     257             :     /* Smoothing coefficient */
     258           0 :     smooth_coef_Q16 = silk_SMULWB( VAD_SNR_SMOOTH_COEF_Q18, silk_SMULWB( (opus_int32)SA_Q15, SA_Q15 ) );
     259             : 
     260           0 :     if( psEncC->frame_length == 10 * psEncC->fs_kHz ) {
     261           0 :         smooth_coef_Q16 >>= 1;
     262             :     }
     263             : 
     264           0 :     for( b = 0; b < VAD_N_BANDS; b++ ) {
     265             :         /* compute smoothed energy-to-noise ratio per band */
     266           0 :         psSilk_VAD->NrgRatioSmth_Q8[ b ] = silk_SMLAWB( psSilk_VAD->NrgRatioSmth_Q8[ b ],
     267             :             NrgToNoiseRatio_Q8[ b ] - psSilk_VAD->NrgRatioSmth_Q8[ b ], smooth_coef_Q16 );
     268             : 
     269             :         /* signal to noise ratio in dB per band */
     270           0 :         SNR_Q7 = 3 * ( silk_lin2log( psSilk_VAD->NrgRatioSmth_Q8[b] ) - 8 * 128 );
     271             :         /* quality = sigmoid( 0.25 * ( SNR_dB - 16 ) ); */
     272           0 :         psEncC->input_quality_bands_Q15[ b ] = silk_sigm_Q15( silk_RSHIFT( SNR_Q7 - 16 * 128, 4 ) );
     273             :     }
     274             : 
     275             :     RESTORE_STACK;
     276           0 :     return( ret );
     277             : }

Generated by: LCOV version 1.13