Line data Source code
1 : /* Copyright (c) 2011 Xiph.Org Foundation
2 : Written by Jean-Marc Valin */
3 : /*
4 : Redistribution and use in source and binary forms, with or without
5 : modification, are permitted provided that the following conditions
6 : are met:
7 :
8 : - Redistributions of source code must retain the above copyright
9 : notice, this list of conditions and the following disclaimer.
10 :
11 : - Redistributions in binary form must reproduce the above copyright
12 : notice, this list of conditions and the following disclaimer in the
13 : documentation and/or other materials provided with the distribution.
14 :
15 : THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16 : ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17 : LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
18 : A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
19 : CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
20 : EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
21 : PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
22 : PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
23 : LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
24 : NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25 : SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 : */
27 :
28 : #ifdef HAVE_CONFIG_H
29 : #include "config.h"
30 : #endif
31 :
32 : #define ANALYSIS_C
33 :
34 : #include <stdio.h>
35 :
36 : #include "mathops.h"
37 : #include "kiss_fft.h"
38 : #include "celt.h"
39 : #include "modes.h"
40 : #include "arch.h"
41 : #include "quant_bands.h"
42 : #include "analysis.h"
43 : #include "mlp.h"
44 : #include "stack_alloc.h"
45 : #include "float_cast.h"
46 :
47 : #ifndef M_PI
48 : #define M_PI 3.141592653
49 : #endif
50 :
51 : #ifndef DISABLE_FLOAT_API
52 :
53 : static const float dct_table[128] = {
54 : 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f,
55 : 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f,
56 : 0.351851f, 0.338330f, 0.311806f, 0.273300f, 0.224292f, 0.166664f, 0.102631f, 0.034654f,
57 : -0.034654f,-0.102631f,-0.166664f,-0.224292f,-0.273300f,-0.311806f,-0.338330f,-0.351851f,
58 : 0.346760f, 0.293969f, 0.196424f, 0.068975f,-0.068975f,-0.196424f,-0.293969f,-0.346760f,
59 : -0.346760f,-0.293969f,-0.196424f,-0.068975f, 0.068975f, 0.196424f, 0.293969f, 0.346760f,
60 : 0.338330f, 0.224292f, 0.034654f,-0.166664f,-0.311806f,-0.351851f,-0.273300f,-0.102631f,
61 : 0.102631f, 0.273300f, 0.351851f, 0.311806f, 0.166664f,-0.034654f,-0.224292f,-0.338330f,
62 : 0.326641f, 0.135299f,-0.135299f,-0.326641f,-0.326641f,-0.135299f, 0.135299f, 0.326641f,
63 : 0.326641f, 0.135299f,-0.135299f,-0.326641f,-0.326641f,-0.135299f, 0.135299f, 0.326641f,
64 : 0.311806f, 0.034654f,-0.273300f,-0.338330f,-0.102631f, 0.224292f, 0.351851f, 0.166664f,
65 : -0.166664f,-0.351851f,-0.224292f, 0.102631f, 0.338330f, 0.273300f,-0.034654f,-0.311806f,
66 : 0.293969f,-0.068975f,-0.346760f,-0.196424f, 0.196424f, 0.346760f, 0.068975f,-0.293969f,
67 : -0.293969f, 0.068975f, 0.346760f, 0.196424f,-0.196424f,-0.346760f,-0.068975f, 0.293969f,
68 : 0.273300f,-0.166664f,-0.338330f, 0.034654f, 0.351851f, 0.102631f,-0.311806f,-0.224292f,
69 : 0.224292f, 0.311806f,-0.102631f,-0.351851f,-0.034654f, 0.338330f, 0.166664f,-0.273300f,
70 : };
71 :
72 : static const float analysis_window[240] = {
73 : 0.000043f, 0.000171f, 0.000385f, 0.000685f, 0.001071f, 0.001541f, 0.002098f, 0.002739f,
74 : 0.003466f, 0.004278f, 0.005174f, 0.006156f, 0.007222f, 0.008373f, 0.009607f, 0.010926f,
75 : 0.012329f, 0.013815f, 0.015385f, 0.017037f, 0.018772f, 0.020590f, 0.022490f, 0.024472f,
76 : 0.026535f, 0.028679f, 0.030904f, 0.033210f, 0.035595f, 0.038060f, 0.040604f, 0.043227f,
77 : 0.045928f, 0.048707f, 0.051564f, 0.054497f, 0.057506f, 0.060591f, 0.063752f, 0.066987f,
78 : 0.070297f, 0.073680f, 0.077136f, 0.080665f, 0.084265f, 0.087937f, 0.091679f, 0.095492f,
79 : 0.099373f, 0.103323f, 0.107342f, 0.111427f, 0.115579f, 0.119797f, 0.124080f, 0.128428f,
80 : 0.132839f, 0.137313f, 0.141849f, 0.146447f, 0.151105f, 0.155823f, 0.160600f, 0.165435f,
81 : 0.170327f, 0.175276f, 0.180280f, 0.185340f, 0.190453f, 0.195619f, 0.200838f, 0.206107f,
82 : 0.211427f, 0.216797f, 0.222215f, 0.227680f, 0.233193f, 0.238751f, 0.244353f, 0.250000f,
83 : 0.255689f, 0.261421f, 0.267193f, 0.273005f, 0.278856f, 0.284744f, 0.290670f, 0.296632f,
84 : 0.302628f, 0.308658f, 0.314721f, 0.320816f, 0.326941f, 0.333097f, 0.339280f, 0.345492f,
85 : 0.351729f, 0.357992f, 0.364280f, 0.370590f, 0.376923f, 0.383277f, 0.389651f, 0.396044f,
86 : 0.402455f, 0.408882f, 0.415325f, 0.421783f, 0.428254f, 0.434737f, 0.441231f, 0.447736f,
87 : 0.454249f, 0.460770f, 0.467298f, 0.473832f, 0.480370f, 0.486912f, 0.493455f, 0.500000f,
88 : 0.506545f, 0.513088f, 0.519630f, 0.526168f, 0.532702f, 0.539230f, 0.545751f, 0.552264f,
89 : 0.558769f, 0.565263f, 0.571746f, 0.578217f, 0.584675f, 0.591118f, 0.597545f, 0.603956f,
90 : 0.610349f, 0.616723f, 0.623077f, 0.629410f, 0.635720f, 0.642008f, 0.648271f, 0.654508f,
91 : 0.660720f, 0.666903f, 0.673059f, 0.679184f, 0.685279f, 0.691342f, 0.697372f, 0.703368f,
92 : 0.709330f, 0.715256f, 0.721144f, 0.726995f, 0.732807f, 0.738579f, 0.744311f, 0.750000f,
93 : 0.755647f, 0.761249f, 0.766807f, 0.772320f, 0.777785f, 0.783203f, 0.788573f, 0.793893f,
94 : 0.799162f, 0.804381f, 0.809547f, 0.814660f, 0.819720f, 0.824724f, 0.829673f, 0.834565f,
95 : 0.839400f, 0.844177f, 0.848895f, 0.853553f, 0.858151f, 0.862687f, 0.867161f, 0.871572f,
96 : 0.875920f, 0.880203f, 0.884421f, 0.888573f, 0.892658f, 0.896677f, 0.900627f, 0.904508f,
97 : 0.908321f, 0.912063f, 0.915735f, 0.919335f, 0.922864f, 0.926320f, 0.929703f, 0.933013f,
98 : 0.936248f, 0.939409f, 0.942494f, 0.945503f, 0.948436f, 0.951293f, 0.954072f, 0.956773f,
99 : 0.959396f, 0.961940f, 0.964405f, 0.966790f, 0.969096f, 0.971321f, 0.973465f, 0.975528f,
100 : 0.977510f, 0.979410f, 0.981228f, 0.982963f, 0.984615f, 0.986185f, 0.987671f, 0.989074f,
101 : 0.990393f, 0.991627f, 0.992778f, 0.993844f, 0.994826f, 0.995722f, 0.996534f, 0.997261f,
102 : 0.997902f, 0.998459f, 0.998929f, 0.999315f, 0.999615f, 0.999829f, 0.999957f, 1.000000f,
103 : };
104 :
105 : static const int tbands[NB_TBANDS+1] = {
106 : 4, 8, 12, 16, 20, 24, 28, 32, 40, 48, 56, 64, 80, 96, 112, 136, 160, 192, 240
107 : };
108 :
109 : #define NB_TONAL_SKIP_BANDS 9
110 :
111 0 : static opus_val32 silk_resampler_down2_hp(
112 : opus_val32 *S, /* I/O State vector [ 2 ] */
113 : opus_val32 *out, /* O Output signal [ floor(len/2) ] */
114 : const opus_val32 *in, /* I Input signal [ len ] */
115 : int inLen /* I Number of input samples */
116 : )
117 : {
118 0 : int k, len2 = inLen/2;
119 : opus_val32 in32, out32, out32_hp, Y, X;
120 0 : opus_val64 hp_ener = 0;
121 : /* Internal variables and state are in Q10 format */
122 0 : for( k = 0; k < len2; k++ ) {
123 : /* Convert to Q10 */
124 0 : in32 = in[ 2 * k ];
125 :
126 : /* All-pass section for even input sample */
127 0 : Y = SUB32( in32, S[ 0 ] );
128 0 : X = MULT16_32_Q15(QCONST16(0.6074371f, 15), Y);
129 0 : out32 = ADD32( S[ 0 ], X );
130 0 : S[ 0 ] = ADD32( in32, X );
131 0 : out32_hp = out32;
132 : /* Convert to Q10 */
133 0 : in32 = in[ 2 * k + 1 ];
134 :
135 : /* All-pass section for odd input sample, and add to output of previous section */
136 0 : Y = SUB32( in32, S[ 1 ] );
137 0 : X = MULT16_32_Q15(QCONST16(0.15063f, 15), Y);
138 0 : out32 = ADD32( out32, S[ 1 ] );
139 0 : out32 = ADD32( out32, X );
140 0 : S[ 1 ] = ADD32( in32, X );
141 :
142 0 : Y = SUB32( -in32, S[ 2 ] );
143 0 : X = MULT16_32_Q15(QCONST16(0.15063f, 15), Y);
144 0 : out32_hp = ADD32( out32_hp, S[ 2 ] );
145 0 : out32_hp = ADD32( out32_hp, X );
146 0 : S[ 2 ] = ADD32( -in32, X );
147 :
148 0 : hp_ener += out32_hp*(opus_val64)out32_hp;
149 : /* Add, convert back to int16 and store to output */
150 0 : out[ k ] = HALF32(out32);
151 : }
152 : #ifdef FIXED_POINT
153 : /* len2 can be up to 480, so we shift by 8 more to make it fit. */
154 : hp_ener = hp_ener >> (2*SIG_SHIFT + 8);
155 : #endif
156 0 : return (opus_val32)hp_ener;
157 : }
158 :
159 0 : static opus_val32 downmix_and_resample(downmix_func downmix, const void *_x, opus_val32 *y, opus_val32 S[3], int subframe, int offset, int c1, int c2, int C, int Fs)
160 : {
161 : VARDECL(opus_val32, tmp);
162 : opus_val32 scale;
163 : int j;
164 0 : opus_val32 ret = 0;
165 : SAVE_STACK;
166 :
167 0 : if (subframe==0) return 0;
168 0 : if (Fs == 48000)
169 : {
170 0 : subframe *= 2;
171 0 : offset *= 2;
172 0 : } else if (Fs == 16000) {
173 0 : subframe = subframe*2/3;
174 0 : offset = offset*2/3;
175 : }
176 0 : ALLOC(tmp, subframe, opus_val32);
177 :
178 0 : downmix(_x, tmp, subframe, offset, c1, c2, C);
179 : #ifdef FIXED_POINT
180 : scale = (1<<SIG_SHIFT);
181 : #else
182 0 : scale = 1.f/32768;
183 : #endif
184 0 : if (c2==-2)
185 0 : scale /= C;
186 0 : else if (c2>-1)
187 0 : scale /= 2;
188 0 : for (j=0;j<subframe;j++)
189 0 : tmp[j] *= scale;
190 0 : if (Fs == 48000)
191 : {
192 0 : ret = silk_resampler_down2_hp(S, y, tmp, subframe);
193 0 : } else if (Fs == 24000) {
194 0 : OPUS_COPY(y, tmp, subframe);
195 0 : } else if (Fs == 16000) {
196 : VARDECL(opus_val32, tmp3x);
197 0 : ALLOC(tmp3x, 3*subframe, opus_val32);
198 : /* Don't do this at home! This resampler is horrible and it's only (barely)
199 : usable for the purpose of the analysis because we don't care about all
200 : the aliasing between 8 kHz and 12 kHz. */
201 0 : for (j=0;j<subframe;j++)
202 : {
203 0 : tmp3x[3*j] = tmp[j];
204 0 : tmp3x[3*j+1] = tmp[j];
205 0 : tmp3x[3*j+2] = tmp[j];
206 : }
207 0 : silk_resampler_down2_hp(S, y, tmp3x, 3*subframe);
208 : }
209 : RESTORE_STACK;
210 0 : return ret;
211 : }
212 :
213 0 : void tonality_analysis_init(TonalityAnalysisState *tonal, opus_int32 Fs)
214 : {
215 : /* Initialize reusable fields. */
216 0 : tonal->arch = opus_select_arch();
217 0 : tonal->Fs = Fs;
218 : /* Clear remaining fields. */
219 0 : tonality_analysis_reset(tonal);
220 0 : }
221 :
222 0 : void tonality_analysis_reset(TonalityAnalysisState *tonal)
223 : {
224 : /* Clear non-reusable fields. */
225 0 : char *start = (char*)&tonal->TONALITY_ANALYSIS_RESET_START;
226 0 : OPUS_CLEAR(start, sizeof(TonalityAnalysisState) - (start - (char*)tonal));
227 0 : tonal->music_confidence = .9f;
228 0 : tonal->speech_confidence = .1f;
229 0 : }
230 :
231 0 : void tonality_get_info(TonalityAnalysisState *tonal, AnalysisInfo *info_out, int len)
232 : {
233 : int pos;
234 : int curr_lookahead;
235 : float psum;
236 : float tonality_max;
237 : float tonality_avg;
238 : int tonality_count;
239 : int i;
240 :
241 0 : pos = tonal->read_pos;
242 0 : curr_lookahead = tonal->write_pos-tonal->read_pos;
243 0 : if (curr_lookahead<0)
244 0 : curr_lookahead += DETECT_SIZE;
245 :
246 : /* On long frames, look at the second analysis window rather than the first. */
247 0 : if (len > tonal->Fs/50 && pos != tonal->write_pos)
248 : {
249 0 : pos++;
250 0 : if (pos==DETECT_SIZE)
251 0 : pos=0;
252 : }
253 0 : if (pos == tonal->write_pos)
254 0 : pos--;
255 0 : if (pos<0)
256 0 : pos = DETECT_SIZE-1;
257 0 : OPUS_COPY(info_out, &tonal->info[pos], 1);
258 0 : tonality_max = tonality_avg = info_out->tonality;
259 0 : tonality_count = 1;
260 : /* If possible, look ahead for a tone to compensate for the delay in the tone detector. */
261 0 : for (i=0;i<3;i++)
262 : {
263 0 : pos++;
264 0 : if (pos==DETECT_SIZE)
265 0 : pos = 0;
266 0 : if (pos == tonal->write_pos)
267 0 : break;
268 0 : tonality_max = MAX32(tonality_max, tonal->info[pos].tonality);
269 0 : tonality_avg += tonal->info[pos].tonality;
270 0 : tonality_count++;
271 : }
272 0 : info_out->tonality = MAX32(tonality_avg/tonality_count, tonality_max-.2f);
273 0 : tonal->read_subframe += len/(tonal->Fs/400);
274 0 : while (tonal->read_subframe>=8)
275 : {
276 0 : tonal->read_subframe -= 8;
277 0 : tonal->read_pos++;
278 : }
279 0 : if (tonal->read_pos>=DETECT_SIZE)
280 0 : tonal->read_pos-=DETECT_SIZE;
281 :
282 : /* The -1 is to compensate for the delay in the features themselves. */
283 0 : curr_lookahead = IMAX(curr_lookahead-1, 0);
284 :
285 0 : psum=0;
286 : /* Summing the probability of transition patterns that involve music at
287 : time (DETECT_SIZE-curr_lookahead-1) */
288 0 : for (i=0;i<DETECT_SIZE-curr_lookahead;i++)
289 0 : psum += tonal->pmusic[i];
290 0 : for (;i<DETECT_SIZE;i++)
291 0 : psum += tonal->pspeech[i];
292 0 : psum = psum*tonal->music_confidence + (1-psum)*tonal->speech_confidence;
293 : /*printf("%f %f %f %f %f\n", psum, info_out->music_prob, info_out->vad_prob, info_out->activity_probability, info_out->tonality);*/
294 :
295 0 : info_out->music_prob = psum;
296 0 : }
297 :
298 : static const float std_feature_bias[9] = {
299 : 5.684947f, 3.475288f, 1.770634f, 1.599784f, 3.773215f,
300 : 2.163313f, 1.260756f, 1.116868f, 1.918795f
301 : };
302 :
303 : #define LEAKAGE_OFFSET 2.5f
304 : #define LEAKAGE_SLOPE 2.f
305 :
306 : #ifdef FIXED_POINT
307 : /* For fixed-point, the input is +/-2^15 shifted up by SIG_SHIFT, so we need to
308 : compensate for that in the energy. */
309 : #define SCALE_COMPENS (1.f/((opus_int32)1<<(15+SIG_SHIFT)))
310 : #define SCALE_ENER(e) ((SCALE_COMPENS*SCALE_COMPENS)*(e))
311 : #else
312 : #define SCALE_ENER(e) (e)
313 : #endif
314 :
315 0 : static void tonality_analysis(TonalityAnalysisState *tonal, const CELTMode *celt_mode, const void *x, int len, int offset, int c1, int c2, int C, int lsb_depth, downmix_func downmix)
316 : {
317 : int i, b;
318 : const kiss_fft_state *kfft;
319 : VARDECL(kiss_fft_cpx, in);
320 : VARDECL(kiss_fft_cpx, out);
321 0 : int N = 480, N2=240;
322 0 : float * OPUS_RESTRICT A = tonal->angle;
323 0 : float * OPUS_RESTRICT dA = tonal->d_angle;
324 0 : float * OPUS_RESTRICT d2A = tonal->d2_angle;
325 : VARDECL(float, tonality);
326 : VARDECL(float, noisiness);
327 : float band_tonality[NB_TBANDS];
328 : float logE[NB_TBANDS];
329 : float BFCC[8];
330 : float features[25];
331 : float frame_tonality;
332 : float max_frame_tonality;
333 : /*float tw_sum=0;*/
334 : float frame_noisiness;
335 0 : const float pi4 = (float)(M_PI*M_PI*M_PI*M_PI);
336 0 : float slope=0;
337 : float frame_stationarity;
338 : float relativeE;
339 : float frame_probs[2];
340 : float alpha, alphaE, alphaE2;
341 : float frame_loudness;
342 : float bandwidth_mask;
343 0 : int bandwidth=0;
344 0 : float maxE = 0;
345 : float noise_floor;
346 : int remaining;
347 : AnalysisInfo *info;
348 : float hp_ener;
349 : float tonality2[240];
350 : float midE[8];
351 0 : float spec_variability=0;
352 : float band_log2[NB_TBANDS+1];
353 : float leakage_from[NB_TBANDS+1];
354 : float leakage_to[NB_TBANDS+1];
355 : SAVE_STACK;
356 :
357 0 : alpha = 1.f/IMIN(10, 1+tonal->count);
358 0 : alphaE = 1.f/IMIN(25, 1+tonal->count);
359 0 : alphaE2 = 1.f/IMIN(500, 1+tonal->count);
360 :
361 0 : if (tonal->Fs == 48000)
362 : {
363 : /* len and offset are now at 24 kHz. */
364 0 : len/= 2;
365 0 : offset /= 2;
366 0 : } else if (tonal->Fs == 16000) {
367 0 : len = 3*len/2;
368 0 : offset = 3*offset/2;
369 : }
370 :
371 0 : if (tonal->count<4) {
372 0 : if (tonal->application == OPUS_APPLICATION_VOIP)
373 0 : tonal->music_prob = .1f;
374 : else
375 0 : tonal->music_prob = .625f;
376 : }
377 0 : kfft = celt_mode->mdct.kfft[0];
378 0 : if (tonal->count==0)
379 0 : tonal->mem_fill = 240;
380 0 : tonal->hp_ener_accum += (float)downmix_and_resample(downmix, x,
381 0 : &tonal->inmem[tonal->mem_fill], tonal->downmix_state,
382 0 : IMIN(len, ANALYSIS_BUF_SIZE-tonal->mem_fill), offset, c1, c2, C, tonal->Fs);
383 0 : if (tonal->mem_fill+len < ANALYSIS_BUF_SIZE)
384 : {
385 0 : tonal->mem_fill += len;
386 : /* Don't have enough to update the analysis */
387 : RESTORE_STACK;
388 0 : return;
389 : }
390 0 : hp_ener = tonal->hp_ener_accum;
391 0 : info = &tonal->info[tonal->write_pos++];
392 0 : if (tonal->write_pos>=DETECT_SIZE)
393 0 : tonal->write_pos-=DETECT_SIZE;
394 :
395 0 : ALLOC(in, 480, kiss_fft_cpx);
396 0 : ALLOC(out, 480, kiss_fft_cpx);
397 0 : ALLOC(tonality, 240, float);
398 0 : ALLOC(noisiness, 240, float);
399 0 : for (i=0;i<N2;i++)
400 : {
401 0 : float w = analysis_window[i];
402 0 : in[i].r = (kiss_fft_scalar)(w*tonal->inmem[i]);
403 0 : in[i].i = (kiss_fft_scalar)(w*tonal->inmem[N2+i]);
404 0 : in[N-i-1].r = (kiss_fft_scalar)(w*tonal->inmem[N-i-1]);
405 0 : in[N-i-1].i = (kiss_fft_scalar)(w*tonal->inmem[N+N2-i-1]);
406 : }
407 0 : OPUS_MOVE(tonal->inmem, tonal->inmem+ANALYSIS_BUF_SIZE-240, 240);
408 0 : remaining = len - (ANALYSIS_BUF_SIZE-tonal->mem_fill);
409 0 : tonal->hp_ener_accum = (float)downmix_and_resample(downmix, x,
410 0 : &tonal->inmem[240], tonal->downmix_state, remaining,
411 0 : offset+ANALYSIS_BUF_SIZE-tonal->mem_fill, c1, c2, C, tonal->Fs);
412 0 : tonal->mem_fill = 240 + remaining;
413 0 : opus_fft(kfft, in, out, tonal->arch);
414 : #ifndef FIXED_POINT
415 : /* If there's any NaN on the input, the entire output will be NaN, so we only need to check one value. */
416 0 : if (celt_isnan(out[0].r))
417 : {
418 0 : info->valid = 0;
419 : RESTORE_STACK;
420 0 : return;
421 : }
422 : #endif
423 :
424 0 : for (i=1;i<N2;i++)
425 : {
426 : float X1r, X2r, X1i, X2i;
427 : float angle, d_angle, d2_angle;
428 : float angle2, d_angle2, d2_angle2;
429 : float mod1, mod2, avg_mod;
430 0 : X1r = (float)out[i].r+out[N-i].r;
431 0 : X1i = (float)out[i].i-out[N-i].i;
432 0 : X2r = (float)out[i].i+out[N-i].i;
433 0 : X2i = (float)out[N-i].r-out[i].r;
434 :
435 0 : angle = (float)(.5f/M_PI)*fast_atan2f(X1i, X1r);
436 0 : d_angle = angle - A[i];
437 0 : d2_angle = d_angle - dA[i];
438 :
439 0 : angle2 = (float)(.5f/M_PI)*fast_atan2f(X2i, X2r);
440 0 : d_angle2 = angle2 - angle;
441 0 : d2_angle2 = d_angle2 - d_angle;
442 :
443 0 : mod1 = d2_angle - (float)float2int(d2_angle);
444 0 : noisiness[i] = ABS16(mod1);
445 0 : mod1 *= mod1;
446 0 : mod1 *= mod1;
447 :
448 0 : mod2 = d2_angle2 - (float)float2int(d2_angle2);
449 0 : noisiness[i] += ABS16(mod2);
450 0 : mod2 *= mod2;
451 0 : mod2 *= mod2;
452 :
453 0 : avg_mod = .25f*(d2A[i]+mod1+2*mod2);
454 : /* This introduces an extra delay of 2 frames in the detection. */
455 0 : tonality[i] = 1.f/(1.f+40.f*16.f*pi4*avg_mod)-.015f;
456 : /* No delay on this detection, but it's less reliable. */
457 0 : tonality2[i] = 1.f/(1.f+40.f*16.f*pi4*mod2)-.015f;
458 :
459 0 : A[i] = angle2;
460 0 : dA[i] = d_angle2;
461 0 : d2A[i] = mod2;
462 : }
463 0 : for (i=2;i<N2-1;i++)
464 : {
465 0 : float tt = MIN32(tonality2[i], MAX32(tonality2[i-1], tonality2[i+1]));
466 0 : tonality[i] = .9f*MAX32(tonality[i], tt-.1f);
467 : }
468 0 : frame_tonality = 0;
469 0 : max_frame_tonality = 0;
470 : /*tw_sum = 0;*/
471 0 : info->activity = 0;
472 0 : frame_noisiness = 0;
473 0 : frame_stationarity = 0;
474 0 : if (!tonal->count)
475 : {
476 0 : for (b=0;b<NB_TBANDS;b++)
477 : {
478 0 : tonal->lowE[b] = 1e10;
479 0 : tonal->highE[b] = -1e10;
480 : }
481 : }
482 0 : relativeE = 0;
483 0 : frame_loudness = 0;
484 : /* The energy of the very first band is special because of DC. */
485 : {
486 0 : float E = 0;
487 : float X1r, X2r;
488 0 : X1r = 2*(float)out[0].r;
489 0 : X2r = 2*(float)out[0].i;
490 0 : E = X1r*X1r + X2r*X2r;
491 0 : for (i=1;i<4;i++)
492 : {
493 0 : float binE = out[i].r*(float)out[i].r + out[N-i].r*(float)out[N-i].r
494 0 : + out[i].i*(float)out[i].i + out[N-i].i*(float)out[N-i].i;
495 0 : E += binE;
496 : }
497 0 : E = SCALE_ENER(E);
498 0 : band_log2[0] = .5f*1.442695f*(float)log(E+1e-10f);
499 : }
500 0 : for (b=0;b<NB_TBANDS;b++)
501 : {
502 0 : float E=0, tE=0, nE=0;
503 : float L1, L2;
504 : float stationarity;
505 0 : for (i=tbands[b];i<tbands[b+1];i++)
506 : {
507 0 : float binE = out[i].r*(float)out[i].r + out[N-i].r*(float)out[N-i].r
508 0 : + out[i].i*(float)out[i].i + out[N-i].i*(float)out[N-i].i;
509 0 : binE = SCALE_ENER(binE);
510 0 : E += binE;
511 0 : tE += binE*MAX32(0, tonality[i]);
512 0 : nE += binE*2.f*(.5f-noisiness[i]);
513 : }
514 : #ifndef FIXED_POINT
515 : /* Check for extreme band energies that could cause NaNs later. */
516 0 : if (!(E<1e9f) || celt_isnan(E))
517 : {
518 0 : info->valid = 0;
519 : RESTORE_STACK;
520 0 : return;
521 : }
522 : #endif
523 :
524 0 : tonal->E[tonal->E_count][b] = E;
525 0 : frame_noisiness += nE/(1e-15f+E);
526 :
527 0 : frame_loudness += (float)sqrt(E+1e-10f);
528 0 : logE[b] = (float)log(E+1e-10f);
529 0 : band_log2[b+1] = .5f*1.442695f*(float)log(E+1e-10f);
530 0 : tonal->logE[tonal->E_count][b] = logE[b];
531 0 : if (tonal->count==0)
532 0 : tonal->highE[b] = tonal->lowE[b] = logE[b];
533 0 : if (tonal->highE[b] > tonal->lowE[b] + 7.5)
534 : {
535 0 : if (tonal->highE[b] - logE[b] > logE[b] - tonal->lowE[b])
536 0 : tonal->highE[b] -= .01f;
537 : else
538 0 : tonal->lowE[b] += .01f;
539 : }
540 0 : if (logE[b] > tonal->highE[b])
541 : {
542 0 : tonal->highE[b] = logE[b];
543 0 : tonal->lowE[b] = MAX32(tonal->highE[b]-15, tonal->lowE[b]);
544 0 : } else if (logE[b] < tonal->lowE[b])
545 : {
546 0 : tonal->lowE[b] = logE[b];
547 0 : tonal->highE[b] = MIN32(tonal->lowE[b]+15, tonal->highE[b]);
548 : }
549 0 : relativeE += (logE[b]-tonal->lowE[b])/(1e-15f + (tonal->highE[b]-tonal->lowE[b]));
550 :
551 0 : L1=L2=0;
552 0 : for (i=0;i<NB_FRAMES;i++)
553 : {
554 0 : L1 += (float)sqrt(tonal->E[i][b]);
555 0 : L2 += tonal->E[i][b];
556 : }
557 :
558 0 : stationarity = MIN16(0.99f,L1/(float)sqrt(1e-15+NB_FRAMES*L2));
559 0 : stationarity *= stationarity;
560 0 : stationarity *= stationarity;
561 0 : frame_stationarity += stationarity;
562 : /*band_tonality[b] = tE/(1e-15+E)*/;
563 0 : band_tonality[b] = MAX16(tE/(1e-15f+E), stationarity*tonal->prev_band_tonality[b]);
564 : #if 0
565 : if (b>=NB_TONAL_SKIP_BANDS)
566 : {
567 : frame_tonality += tweight[b]*band_tonality[b];
568 : tw_sum += tweight[b];
569 : }
570 : #else
571 0 : frame_tonality += band_tonality[b];
572 0 : if (b>=NB_TBANDS-NB_TONAL_SKIP_BANDS)
573 0 : frame_tonality -= band_tonality[b-NB_TBANDS+NB_TONAL_SKIP_BANDS];
574 : #endif
575 0 : max_frame_tonality = MAX16(max_frame_tonality, (1.f+.03f*(b-NB_TBANDS))*frame_tonality);
576 0 : slope += band_tonality[b]*(b-8);
577 : /*printf("%f %f ", band_tonality[b], stationarity);*/
578 0 : tonal->prev_band_tonality[b] = band_tonality[b];
579 : }
580 :
581 0 : leakage_from[0] = band_log2[0];
582 0 : leakage_to[0] = band_log2[0] - LEAKAGE_OFFSET;
583 0 : for (b=1;b<NB_TBANDS+1;b++)
584 : {
585 0 : float leak_slope = LEAKAGE_SLOPE*(tbands[b]-tbands[b-1])/4;
586 0 : leakage_from[b] = MIN16(leakage_from[b-1]+leak_slope, band_log2[b]);
587 0 : leakage_to[b] = MAX16(leakage_to[b-1]-leak_slope, band_log2[b]-LEAKAGE_OFFSET);
588 : }
589 0 : for (b=NB_TBANDS-2;b>=0;b--)
590 : {
591 0 : float leak_slope = LEAKAGE_SLOPE*(tbands[b+1]-tbands[b])/4;
592 0 : leakage_from[b] = MIN16(leakage_from[b+1]+leak_slope, leakage_from[b]);
593 0 : leakage_to[b] = MAX16(leakage_to[b+1]-leak_slope, leakage_to[b]);
594 : }
595 : celt_assert(NB_TBANDS+1 <= LEAK_BANDS);
596 0 : for (b=0;b<NB_TBANDS+1;b++)
597 : {
598 : /* leak_boost[] is made up of two terms. The first, based on leakage_to[],
599 : represents the boost needed to overcome the amount of analysis leakage
600 : cause in a weaker band b by louder neighbouring bands.
601 : The second, based on leakage_from[], applies to a loud band b for
602 : which the quantization noise causes synthesis leakage to the weaker
603 : neighbouring bands. */
604 0 : float boost = MAX16(0, leakage_to[b] - band_log2[b]) +
605 0 : MAX16(0, band_log2[b] - (leakage_from[b]+LEAKAGE_OFFSET));
606 0 : info->leak_boost[b] = IMIN(255, (int)floor(.5 + 64.f*boost));
607 : }
608 0 : for (;b<LEAK_BANDS;b++) info->leak_boost[b] = 0;
609 :
610 0 : for (i=0;i<NB_FRAMES;i++)
611 : {
612 : int j;
613 0 : float mindist = 1e15f;
614 0 : for (j=0;j<NB_FRAMES;j++)
615 : {
616 : int k;
617 0 : float dist=0;
618 0 : for (k=0;k<NB_TBANDS;k++)
619 : {
620 : float tmp;
621 0 : tmp = tonal->logE[i][k] - tonal->logE[j][k];
622 0 : dist += tmp*tmp;
623 : }
624 0 : if (j!=i)
625 0 : mindist = MIN32(mindist, dist);
626 : }
627 0 : spec_variability += mindist;
628 : }
629 0 : spec_variability = (float)sqrt(spec_variability/NB_FRAMES/NB_TBANDS);
630 0 : bandwidth_mask = 0;
631 0 : bandwidth = 0;
632 0 : maxE = 0;
633 0 : noise_floor = 5.7e-4f/(1<<(IMAX(0,lsb_depth-8)));
634 0 : noise_floor *= noise_floor;
635 0 : for (b=0;b<NB_TBANDS;b++)
636 : {
637 0 : float E=0;
638 : int band_start, band_end;
639 : /* Keep a margin of 300 Hz for aliasing */
640 0 : band_start = tbands[b];
641 0 : band_end = tbands[b+1];
642 0 : for (i=band_start;i<band_end;i++)
643 : {
644 0 : float binE = out[i].r*(float)out[i].r + out[N-i].r*(float)out[N-i].r
645 0 : + out[i].i*(float)out[i].i + out[N-i].i*(float)out[N-i].i;
646 0 : E += binE;
647 : }
648 0 : E = SCALE_ENER(E);
649 0 : maxE = MAX32(maxE, E);
650 0 : tonal->meanE[b] = MAX32((1-alphaE2)*tonal->meanE[b], E);
651 0 : E = MAX32(E, tonal->meanE[b]);
652 : /* Use a simple follower with 13 dB/Bark slope for spreading function */
653 0 : bandwidth_mask = MAX32(.05f*bandwidth_mask, E);
654 : /* Consider the band "active" only if all these conditions are met:
655 : 1) less than 10 dB below the simple follower
656 : 2) less than 90 dB below the peak band (maximal masking possible considering
657 : both the ATH and the loudness-dependent slope of the spreading function)
658 : 3) above the PCM quantization noise floor
659 : We use b+1 because the first CELT band isn't included in tbands[]
660 : */
661 0 : if (E>.1*bandwidth_mask && E*1e9f > maxE && E > noise_floor*(band_end-band_start))
662 0 : bandwidth = b+1;
663 : }
664 : /* Special case for the last two bands, for which we don't have spectrum but only
665 : the energy above 12 kHz. */
666 0 : if (tonal->Fs == 48000) {
667 : float ratio;
668 0 : float E = hp_ener*(1.f/(240*240));
669 0 : ratio = tonal->prev_bandwidth==20 ? 0.03f : 0.07f;
670 : #ifdef FIXED_POINT
671 : /* silk_resampler_down2_hp() shifted right by an extra 8 bits. */
672 : E *= 256.f*(1.f/Q15ONE)*(1.f/Q15ONE);
673 : #endif
674 0 : maxE = MAX32(maxE, E);
675 0 : tonal->meanE[b] = MAX32((1-alphaE2)*tonal->meanE[b], E);
676 0 : E = MAX32(E, tonal->meanE[b]);
677 : /* Use a simple follower with 13 dB/Bark slope for spreading function */
678 0 : bandwidth_mask = MAX32(.05f*bandwidth_mask, E);
679 0 : if (E>ratio*bandwidth_mask && E*1e9f > maxE && E > noise_floor*160)
680 0 : bandwidth = 20;
681 : /* This detector is unreliable, so if the bandwidth is close to SWB, assume it's FB. */
682 0 : if (bandwidth >= 17)
683 0 : bandwidth = 20;
684 : }
685 0 : if (tonal->count<=2)
686 0 : bandwidth = 20;
687 0 : frame_loudness = 20*(float)log10(frame_loudness);
688 0 : tonal->Etracker = MAX32(tonal->Etracker-.003f, frame_loudness);
689 0 : tonal->lowECount *= (1-alphaE);
690 0 : if (frame_loudness < tonal->Etracker-30)
691 0 : tonal->lowECount += alphaE;
692 :
693 0 : for (i=0;i<8;i++)
694 : {
695 0 : float sum=0;
696 0 : for (b=0;b<16;b++)
697 0 : sum += dct_table[i*16+b]*logE[b];
698 0 : BFCC[i] = sum;
699 : }
700 0 : for (i=0;i<8;i++)
701 : {
702 0 : float sum=0;
703 0 : for (b=0;b<16;b++)
704 0 : sum += dct_table[i*16+b]*.5f*(tonal->highE[b]+tonal->lowE[b]);
705 0 : midE[i] = sum;
706 : }
707 :
708 0 : frame_stationarity /= NB_TBANDS;
709 0 : relativeE /= NB_TBANDS;
710 0 : if (tonal->count<10)
711 0 : relativeE = .5f;
712 0 : frame_noisiness /= NB_TBANDS;
713 : #if 1
714 0 : info->activity = frame_noisiness + (1-frame_noisiness)*relativeE;
715 : #else
716 : info->activity = .5*(1+frame_noisiness-frame_stationarity);
717 : #endif
718 0 : frame_tonality = (max_frame_tonality/(NB_TBANDS-NB_TONAL_SKIP_BANDS));
719 0 : frame_tonality = MAX16(frame_tonality, tonal->prev_tonality*.8f);
720 0 : tonal->prev_tonality = frame_tonality;
721 :
722 0 : slope /= 8*8;
723 0 : info->tonality_slope = slope;
724 :
725 0 : tonal->E_count = (tonal->E_count+1)%NB_FRAMES;
726 0 : tonal->count = IMIN(tonal->count+1, ANALYSIS_COUNT_MAX);
727 0 : info->tonality = frame_tonality;
728 :
729 0 : for (i=0;i<4;i++)
730 0 : features[i] = -0.12299f*(BFCC[i]+tonal->mem[i+24]) + 0.49195f*(tonal->mem[i]+tonal->mem[i+16]) + 0.69693f*tonal->mem[i+8] - 1.4349f*tonal->cmean[i];
731 :
732 0 : for (i=0;i<4;i++)
733 0 : tonal->cmean[i] = (1-alpha)*tonal->cmean[i] + alpha*BFCC[i];
734 :
735 0 : for (i=0;i<4;i++)
736 0 : features[4+i] = 0.63246f*(BFCC[i]-tonal->mem[i+24]) + 0.31623f*(tonal->mem[i]-tonal->mem[i+16]);
737 0 : for (i=0;i<3;i++)
738 0 : features[8+i] = 0.53452f*(BFCC[i]+tonal->mem[i+24]) - 0.26726f*(tonal->mem[i]+tonal->mem[i+16]) -0.53452f*tonal->mem[i+8];
739 :
740 0 : if (tonal->count > 5)
741 : {
742 0 : for (i=0;i<9;i++)
743 0 : tonal->std[i] = (1-alpha)*tonal->std[i] + alpha*features[i]*features[i];
744 : }
745 0 : for (i=0;i<4;i++)
746 0 : features[i] = BFCC[i]-midE[i];
747 :
748 0 : for (i=0;i<8;i++)
749 : {
750 0 : tonal->mem[i+24] = tonal->mem[i+16];
751 0 : tonal->mem[i+16] = tonal->mem[i+8];
752 0 : tonal->mem[i+8] = tonal->mem[i];
753 0 : tonal->mem[i] = BFCC[i];
754 : }
755 0 : for (i=0;i<9;i++)
756 0 : features[11+i] = (float)sqrt(tonal->std[i]) - std_feature_bias[i];
757 0 : features[18] = spec_variability - 0.78f;
758 0 : features[20] = info->tonality - 0.154723f;
759 0 : features[21] = info->activity - 0.724643f;
760 0 : features[22] = frame_stationarity - 0.743717f;
761 0 : features[23] = info->tonality_slope + 0.069216f;
762 0 : features[24] = tonal->lowECount - 0.067930f;
763 :
764 0 : mlp_process(&net, features, frame_probs);
765 0 : frame_probs[0] = .5f*(frame_probs[0]+1);
766 : /* Curve fitting between the MLP probability and the actual probability */
767 : /*frame_probs[0] = .01f + 1.21f*frame_probs[0]*frame_probs[0] - .23f*(float)pow(frame_probs[0], 10);*/
768 : /* Probability of active audio (as opposed to silence) */
769 0 : frame_probs[1] = .5f*frame_probs[1]+.5f;
770 0 : frame_probs[1] *= frame_probs[1];
771 :
772 : /* Probability of speech or music vs noise */
773 0 : info->activity_probability = frame_probs[1];
774 :
775 : /*printf("%f %f\n", frame_probs[0], frame_probs[1]);*/
776 : {
777 : /* Probability of state transition */
778 : float tau;
779 : /* Represents independence of the MLP probabilities, where
780 : beta=1 means fully independent. */
781 : float beta;
782 : /* Denormalized probability of speech (p0) and music (p1) after update */
783 : float p0, p1;
784 : /* Probabilities for "all speech" and "all music" */
785 : float s0, m0;
786 : /* Probability sum for renormalisation */
787 : float psum;
788 : /* Instantaneous probability of speech and music, with beta pre-applied. */
789 : float speech0;
790 : float music0;
791 : float p, q;
792 :
793 : /* More silence transitions for speech than for music. */
794 0 : tau = .001f*tonal->music_prob + .01f*(1-tonal->music_prob);
795 0 : p = MAX16(.05f,MIN16(.95f,frame_probs[1]));
796 0 : q = MAX16(.05f,MIN16(.95f,tonal->vad_prob));
797 0 : beta = .02f+.05f*ABS16(p-q)/(p*(1-q)+q*(1-p));
798 : /* p0 and p1 are the probabilities of speech and music at this frame
799 : using only information from previous frame and applying the
800 : state transition model */
801 0 : p0 = (1-tonal->vad_prob)*(1-tau) + tonal->vad_prob *tau;
802 0 : p1 = tonal->vad_prob *(1-tau) + (1-tonal->vad_prob)*tau;
803 : /* We apply the current probability with exponent beta to work around
804 : the fact that the probability estimates aren't independent. */
805 0 : p0 *= (float)pow(1-frame_probs[1], beta);
806 0 : p1 *= (float)pow(frame_probs[1], beta);
807 : /* Normalise the probabilities to get the Marokv probability of music. */
808 0 : tonal->vad_prob = p1/(p0+p1);
809 0 : info->vad_prob = tonal->vad_prob;
810 : /* Consider that silence has a 50-50 probability of being speech or music. */
811 0 : frame_probs[0] = tonal->vad_prob*frame_probs[0] + (1-tonal->vad_prob)*.5f;
812 :
813 : /* One transition every 3 minutes of active audio */
814 0 : tau = .0001f;
815 : /* Adapt beta based on how "unexpected" the new prob is */
816 0 : p = MAX16(.05f,MIN16(.95f,frame_probs[0]));
817 0 : q = MAX16(.05f,MIN16(.95f,tonal->music_prob));
818 0 : beta = .02f+.05f*ABS16(p-q)/(p*(1-q)+q*(1-p));
819 : /* p0 and p1 are the probabilities of speech and music at this frame
820 : using only information from previous frame and applying the
821 : state transition model */
822 0 : p0 = (1-tonal->music_prob)*(1-tau) + tonal->music_prob *tau;
823 0 : p1 = tonal->music_prob *(1-tau) + (1-tonal->music_prob)*tau;
824 : /* We apply the current probability with exponent beta to work around
825 : the fact that the probability estimates aren't independent. */
826 0 : p0 *= (float)pow(1-frame_probs[0], beta);
827 0 : p1 *= (float)pow(frame_probs[0], beta);
828 : /* Normalise the probabilities to get the Marokv probability of music. */
829 0 : tonal->music_prob = p1/(p0+p1);
830 0 : info->music_prob = tonal->music_prob;
831 :
832 : /*printf("%f %f %f %f\n", frame_probs[0], frame_probs[1], tonal->music_prob, tonal->vad_prob);*/
833 : /* This chunk of code deals with delayed decision. */
834 0 : psum=1e-20f;
835 : /* Instantaneous probability of speech and music, with beta pre-applied. */
836 0 : speech0 = (float)pow(1-frame_probs[0], beta);
837 0 : music0 = (float)pow(frame_probs[0], beta);
838 0 : if (tonal->count==1)
839 : {
840 0 : if (tonal->application == OPUS_APPLICATION_VOIP)
841 0 : tonal->pmusic[0] = .1f;
842 : else
843 0 : tonal->pmusic[0] = .625f;
844 0 : tonal->pspeech[0] = 1-tonal->pmusic[0];
845 : }
846 : /* Updated probability of having only speech (s0) or only music (m0),
847 : before considering the new observation. */
848 0 : s0 = tonal->pspeech[0] + tonal->pspeech[1];
849 0 : m0 = tonal->pmusic [0] + tonal->pmusic [1];
850 : /* Updates s0 and m0 with instantaneous probability. */
851 0 : tonal->pspeech[0] = s0*(1-tau)*speech0;
852 0 : tonal->pmusic [0] = m0*(1-tau)*music0;
853 : /* Propagate the transition probabilities */
854 0 : for (i=1;i<DETECT_SIZE-1;i++)
855 : {
856 0 : tonal->pspeech[i] = tonal->pspeech[i+1]*speech0;
857 0 : tonal->pmusic [i] = tonal->pmusic [i+1]*music0;
858 : }
859 : /* Probability that the latest frame is speech, when all the previous ones were music. */
860 0 : tonal->pspeech[DETECT_SIZE-1] = m0*tau*speech0;
861 : /* Probability that the latest frame is music, when all the previous ones were speech. */
862 0 : tonal->pmusic [DETECT_SIZE-1] = s0*tau*music0;
863 :
864 : /* Renormalise probabilities to 1 */
865 0 : for (i=0;i<DETECT_SIZE;i++)
866 0 : psum += tonal->pspeech[i] + tonal->pmusic[i];
867 0 : psum = 1.f/psum;
868 0 : for (i=0;i<DETECT_SIZE;i++)
869 : {
870 0 : tonal->pspeech[i] *= psum;
871 0 : tonal->pmusic [i] *= psum;
872 : }
873 0 : psum = tonal->pmusic[0];
874 0 : for (i=1;i<DETECT_SIZE;i++)
875 0 : psum += tonal->pspeech[i];
876 :
877 : /* Estimate our confidence in the speech/music decisions */
878 0 : if (frame_probs[1]>.75)
879 : {
880 0 : if (tonal->music_prob>.9)
881 : {
882 : float adapt;
883 0 : adapt = 1.f/(++tonal->music_confidence_count);
884 0 : tonal->music_confidence_count = IMIN(tonal->music_confidence_count, 500);
885 0 : tonal->music_confidence += adapt*MAX16(-.2f,frame_probs[0]-tonal->music_confidence);
886 : }
887 0 : if (tonal->music_prob<.1)
888 : {
889 : float adapt;
890 0 : adapt = 1.f/(++tonal->speech_confidence_count);
891 0 : tonal->speech_confidence_count = IMIN(tonal->speech_confidence_count, 500);
892 0 : tonal->speech_confidence += adapt*MIN16(.2f,frame_probs[0]-tonal->speech_confidence);
893 : }
894 : }
895 : }
896 0 : tonal->last_music = tonal->music_prob>.5f;
897 : #ifdef MLP_TRAINING
898 : for (i=0;i<25;i++)
899 : printf("%f ", features[i]);
900 : printf("\n");
901 : #endif
902 :
903 0 : info->bandwidth = bandwidth;
904 0 : tonal->prev_bandwidth = bandwidth;
905 : /*printf("%d %d\n", info->bandwidth, info->opus_bandwidth);*/
906 0 : info->noisiness = frame_noisiness;
907 0 : info->valid = 1;
908 : RESTORE_STACK;
909 : }
910 :
911 0 : void run_analysis(TonalityAnalysisState *analysis, const CELTMode *celt_mode, const void *analysis_pcm,
912 : int analysis_frame_size, int frame_size, int c1, int c2, int C, opus_int32 Fs,
913 : int lsb_depth, downmix_func downmix, AnalysisInfo *analysis_info)
914 : {
915 : int offset;
916 : int pcm_len;
917 :
918 0 : analysis_frame_size -= analysis_frame_size&1;
919 0 : if (analysis_pcm != NULL)
920 : {
921 : /* Avoid overflow/wrap-around of the analysis buffer */
922 0 : analysis_frame_size = IMIN((DETECT_SIZE-5)*Fs/50, analysis_frame_size);
923 :
924 0 : pcm_len = analysis_frame_size - analysis->analysis_offset;
925 0 : offset = analysis->analysis_offset;
926 0 : while (pcm_len>0) {
927 0 : tonality_analysis(analysis, celt_mode, analysis_pcm, IMIN(Fs/50, pcm_len), offset, c1, c2, C, lsb_depth, downmix);
928 0 : offset += Fs/50;
929 0 : pcm_len -= Fs/50;
930 : }
931 0 : analysis->analysis_offset = analysis_frame_size;
932 :
933 0 : analysis->analysis_offset -= frame_size;
934 : }
935 :
936 0 : analysis_info->valid = 0;
937 0 : tonality_get_info(analysis, analysis_info, frame_size);
938 0 : }
939 :
940 : #endif /* DISABLE_FLOAT_API */
|