LCOV - code coverage report
Current view: top level - media/libsoundtouch/src - InterpolateLinear.cpp (source / functions) Hit Total Coverage
Test: output.info Lines: 0 124 0.0 %
Date: 2017-07-14 16:53:18 Functions: 0 11 0.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : ////////////////////////////////////////////////////////////////////////////////
       2             : /// 
       3             : /// Linear interpolation algorithm.
       4             : ///
       5             : /// Author        : Copyright (c) Olli Parviainen
       6             : /// Author e-mail : oparviai 'at' iki.fi
       7             : /// SoundTouch WWW: http://www.surina.net/soundtouch
       8             : ///
       9             : ////////////////////////////////////////////////////////////////////////////////
      10             : //
      11             : // $Id: InterpolateLinear.cpp 180 2014-01-06 19:16:02Z oparviai $
      12             : //
      13             : ////////////////////////////////////////////////////////////////////////////////
      14             : //
      15             : // License :
      16             : //
      17             : //  SoundTouch audio processing library
      18             : //  Copyright (c) Olli Parviainen
      19             : //
      20             : //  This library is free software; you can redistribute it and/or
      21             : //  modify it under the terms of the GNU Lesser General Public
      22             : //  License as published by the Free Software Foundation; either
      23             : //  version 2.1 of the License, or (at your option) any later version.
      24             : //
      25             : //  This library is distributed in the hope that it will be useful,
      26             : //  but WITHOUT ANY WARRANTY; without even the implied warranty of
      27             : //  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
      28             : //  Lesser General Public License for more details.
      29             : //
      30             : //  You should have received a copy of the GNU Lesser General Public
      31             : //  License along with this library; if not, write to the Free Software
      32             : //  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
      33             : //
      34             : ////////////////////////////////////////////////////////////////////////////////
      35             : 
      36             : #include <assert.h>
      37             : #include <stdlib.h>
      38             : #include "InterpolateLinear.h"
      39             : 
      40             : using namespace soundtouch;
      41             : 
      42             : //////////////////////////////////////////////////////////////////////////////
      43             : //
      44             : // InterpolateLinearInteger - integer arithmetic implementation
      45             : // 
      46             : 
      47             : /// fixed-point interpolation routine precision
      48             : #define SCALE    65536
      49             : 
      50             : 
      51             : // Constructor
      52           0 : InterpolateLinearInteger::InterpolateLinearInteger() : TransposerBase()
      53             : {
      54             :     // Notice: use local function calling syntax for sake of clarity, 
      55             :     // to indicate the fact that C++ constructor can't call virtual functions.
      56           0 :     resetRegisters();
      57           0 :     setRate(1.0f);
      58           0 : }
      59             : 
      60             : 
      61           0 : void InterpolateLinearInteger::resetRegisters()
      62             : {
      63           0 :     iFract = 0;
      64           0 : }
      65             : 
      66             : 
      67             : // Transposes the sample rate of the given samples using linear interpolation. 
      68             : // 'Mono' version of the routine. Returns the number of samples returned in 
      69             : // the "dest" buffer
      70           0 : int InterpolateLinearInteger::transposeMono(SAMPLETYPE *dest, const SAMPLETYPE *src, int &srcSamples)
      71             : {
      72             :     int i;
      73           0 :     int srcSampleEnd = srcSamples - 1;
      74           0 :     int srcCount = 0;
      75             : 
      76           0 :     i = 0;
      77           0 :     while (srcCount < srcSampleEnd)
      78             :     {
      79             :         LONG_SAMPLETYPE temp;
      80             :     
      81           0 :         assert(iFract < SCALE);
      82             : 
      83           0 :         temp = (SCALE - iFract) * src[0] + iFract * src[1];
      84           0 :         dest[i] = (SAMPLETYPE)(temp / SCALE);
      85           0 :         i++;
      86             : 
      87           0 :         iFract += iRate;
      88             : 
      89           0 :         int iWhole = iFract / SCALE;
      90           0 :         iFract -= iWhole * SCALE;
      91           0 :         srcCount += iWhole;
      92           0 :         src += iWhole;
      93             :     }
      94           0 :     srcSamples = srcCount;
      95             : 
      96           0 :     return i;
      97             : }
      98             : 
      99             : 
     100             : // Transposes the sample rate of the given samples using linear interpolation. 
     101             : // 'Stereo' version of the routine. Returns the number of samples returned in 
     102             : // the "dest" buffer
     103           0 : int InterpolateLinearInteger::transposeStereo(SAMPLETYPE *dest, const SAMPLETYPE *src, int &srcSamples)
     104             : {
     105             :     int i;
     106           0 :     int srcSampleEnd = srcSamples - 1;
     107           0 :     int srcCount = 0;
     108             : 
     109           0 :     i = 0;
     110           0 :     while (srcCount < srcSampleEnd)
     111             :     {
     112             :         LONG_SAMPLETYPE temp0;
     113             :         LONG_SAMPLETYPE temp1;
     114             :     
     115           0 :         assert(iFract < SCALE);
     116             : 
     117           0 :         temp0 = (SCALE - iFract) * src[0] + iFract * src[2];
     118           0 :         temp1 = (SCALE - iFract) * src[1] + iFract * src[3];
     119           0 :         dest[0] = (SAMPLETYPE)(temp0 / SCALE);
     120           0 :         dest[1] = (SAMPLETYPE)(temp1 / SCALE);
     121           0 :         dest += 2;
     122           0 :         i++;
     123             : 
     124           0 :         iFract += iRate;
     125             : 
     126           0 :         int iWhole = iFract / SCALE;
     127           0 :         iFract -= iWhole * SCALE;
     128           0 :         srcCount += iWhole;
     129           0 :         src += 2*iWhole;
     130             :     }
     131           0 :     srcSamples = srcCount;
     132             : 
     133           0 :     return i;
     134             : }
     135             : 
     136             : 
     137           0 : int InterpolateLinearInteger::transposeMulti(SAMPLETYPE *dest, const SAMPLETYPE *src, int &srcSamples)
     138             : {
     139             :     int i;
     140           0 :     int srcSampleEnd = srcSamples - 1;
     141           0 :     int srcCount = 0;
     142             : 
     143           0 :     i = 0;
     144           0 :     while (srcCount < srcSampleEnd)
     145             :     {
     146             :         LONG_SAMPLETYPE temp, vol1;
     147             :     
     148           0 :         assert(iFract < SCALE);
     149           0 :         vol1 = (SCALE - iFract);
     150           0 :         for (int c = 0; c < numChannels; c ++)
     151             :         {
     152           0 :             temp = vol1 * src[c] + iFract * src[c + numChannels];
     153           0 :             dest[0] = (SAMPLETYPE)(temp / SCALE);
     154           0 :             dest ++;
     155             :         }
     156           0 :         i++;
     157             : 
     158           0 :         iFract += iRate;
     159             : 
     160           0 :         int iWhole = iFract / SCALE;
     161           0 :         iFract -= iWhole * SCALE;
     162           0 :         srcCount += iWhole;
     163           0 :         src += iWhole * numChannels;
     164             :     }
     165           0 :     srcSamples = srcCount;
     166             : 
     167           0 :     return i;
     168             : }
     169             : 
     170             : 
     171             : // Sets new target iRate. Normal iRate = 1.0, smaller values represent slower 
     172             : // iRate, larger faster iRates.
     173           0 : void InterpolateLinearInteger::setRate(float newRate)
     174             : {
     175           0 :     iRate = (int)(newRate * SCALE + 0.5f);
     176           0 :     TransposerBase::setRate(newRate);
     177           0 : }
     178             : 
     179             : 
     180             : //////////////////////////////////////////////////////////////////////////////
     181             : //
     182             : // InterpolateLinearFloat - floating point arithmetic implementation
     183             : // 
     184             : //////////////////////////////////////////////////////////////////////////////
     185             : 
     186             : 
     187             : // Constructor
     188           0 : InterpolateLinearFloat::InterpolateLinearFloat() : TransposerBase()
     189             : {
     190             :     // Notice: use local function calling syntax for sake of clarity, 
     191             :     // to indicate the fact that C++ constructor can't call virtual functions.
     192           0 :     resetRegisters();
     193           0 :     setRate(1.0f);
     194           0 : }
     195             : 
     196             : 
     197           0 : void InterpolateLinearFloat::resetRegisters()
     198             : {
     199           0 :     fract = 0;
     200           0 : }
     201             : 
     202             : 
     203             : // Transposes the sample rate of the given samples using linear interpolation. 
     204             : // 'Mono' version of the routine. Returns the number of samples returned in 
     205             : // the "dest" buffer
     206           0 : int InterpolateLinearFloat::transposeMono(SAMPLETYPE *dest, const SAMPLETYPE *src, int &srcSamples)
     207             : {
     208             :     int i;
     209           0 :     int srcSampleEnd = srcSamples - 1;
     210           0 :     int srcCount = 0;
     211             : 
     212           0 :     i = 0;
     213           0 :     while (srcCount < srcSampleEnd)
     214             :     {
     215             :         double out;
     216           0 :         assert(fract < 1.0);
     217             : 
     218           0 :         out = (1.0 - fract) * src[0] + fract * src[1];
     219           0 :         dest[i] = (SAMPLETYPE)out;
     220           0 :         i ++;
     221             : 
     222             :         // update position fraction
     223           0 :         fract += rate;
     224             :         // update whole positions
     225           0 :         int whole = (int)fract;
     226           0 :         fract -= whole;
     227           0 :         src += whole;
     228           0 :         srcCount += whole;
     229             :     }
     230           0 :     srcSamples = srcCount;
     231           0 :     return i;
     232             : }
     233             : 
     234             : 
     235             : // Transposes the sample rate of the given samples using linear interpolation. 
     236             : // 'Mono' version of the routine. Returns the number of samples returned in 
     237             : // the "dest" buffer
     238           0 : int InterpolateLinearFloat::transposeStereo(SAMPLETYPE *dest, const SAMPLETYPE *src, int &srcSamples)
     239             : {
     240             :     int i;
     241           0 :     int srcSampleEnd = srcSamples - 1;
     242           0 :     int srcCount = 0;
     243             : 
     244           0 :     i = 0;
     245           0 :     while (srcCount < srcSampleEnd)
     246             :     {
     247             :         double out0, out1;
     248           0 :         assert(fract < 1.0);
     249             : 
     250           0 :         out0 = (1.0 - fract) * src[0] + fract * src[2];
     251           0 :         out1 = (1.0 - fract) * src[1] + fract * src[3];
     252           0 :         dest[2*i]   = (SAMPLETYPE)out0;
     253           0 :         dest[2*i+1] = (SAMPLETYPE)out1;
     254           0 :         i ++;
     255             : 
     256             :         // update position fraction
     257           0 :         fract += rate;
     258             :         // update whole positions
     259           0 :         int whole = (int)fract;
     260           0 :         fract -= whole;
     261           0 :         src += 2*whole;
     262           0 :         srcCount += whole;
     263             :     }
     264           0 :     srcSamples = srcCount;
     265           0 :     return i;
     266             : }
     267             : 
     268             : 
     269           0 : int InterpolateLinearFloat::transposeMulti(SAMPLETYPE *dest, const SAMPLETYPE *src, int &srcSamples)
     270             : {
     271             :     int i;
     272           0 :     int srcSampleEnd = srcSamples - 1;
     273           0 :     int srcCount = 0;
     274             : 
     275           0 :     i = 0;
     276           0 :     while (srcCount < srcSampleEnd)
     277             :     {
     278             :         float temp, vol1;
     279             :     
     280           0 :         vol1 = (1.0f- fract);
     281           0 :         for (int c = 0; c < numChannels; c ++)
     282             :         {
     283           0 :             temp = vol1 * src[c] + fract * src[c + numChannels];
     284           0 :             *dest = (SAMPLETYPE)temp;
     285           0 :             dest ++;
     286             :         }
     287           0 :         i++;
     288             : 
     289           0 :         fract += rate;
     290             : 
     291           0 :         int iWhole = (int)fract;
     292           0 :         fract -= iWhole;
     293           0 :         srcCount += iWhole;
     294           0 :         src += iWhole * numChannels;
     295             :     }
     296           0 :     srcSamples = srcCount;
     297             : 
     298           0 :     return i;
     299             : }

Generated by: LCOV version 1.13